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Abstract

The human prioritization of image regions can be mod-
eled in a time invariant fashion with saliency maps or se-
quentially with scanpath models. However, while both types
of models have steadily improved on several benchmarks
and datasets, there is still a considerable gap in predict-
ing human gaze. Here, we leverage two recent develop-
ments to reduce this gap: theoretical analyses establishing
a principled framework for predicting the next gaze target
and the empirical measurement of the human cost for gaze
switches independently of image content. We introduce an
algorithm in the framework of sequential decision making,
which converts any static saliency map into a sequence of
dynamic history-dependent value maps, which are recom-
puted after each gaze shift. These maps are based on 1)
a saliency map provided by an arbitrary saliency model,
2) the recently measured human cost function quantifying
preferences in magnitude and direction of eye movements,
and 3) a sequential exploration bonus, which changes with
each subsequent gaze shift. The parameters of the spatial
extent and temporal decay of this exploration bonus are es-
timated from human gaze data. The relative contributions
of these three components were optimized on the MIT1003
dataset for the NSS score and are sufficient to significantly
outperform predictions of the next gaze target on NSS and
AUC scores for five state of the art saliency models on three
image data sets.

1. Introduction

Because of the inhomogeneous spatial acuity of the vi-
sual system, humans shift their gaze sequentially across vi-
sual scenes using saccadic gaze movements [18]. Four main
factors have been shown to influence observers’ eye move-
ments: the ongoing task, image features such as contrast
and intensity, semantic features such as faces and scene
context, but also factors that arise from the sequential inter-
action of an observer with the scene including center bias,

proximity preference, inhibition of return [52]. Empirically,
gaze targets of multiple human observers while inspecting
an image given different task instructions can be collected.
Assuming that gaze prioritization is image-computable, the
computational task of predicting gaze prioritization given
an image is referred to as visual saliency modeling resulting
in a time invariant saliency map, whereas scanpath models
generate a sequence of gaze targets.

While originally developed to account for the phe-
nomenon of pop-out [56], visual saliency modeling has
been generalized to predicting the likelihood of human ob-
servers looking at image regions for arbitrary images. Ini-
tially, saliency models used handcrafted features inspired by
neurophysiological properties of the visual system [26, 50],
but more recently data driven approaches [25, 33, 45, 37, 13,
59, 17, 28] have commonly used features from DNNs pre-
trained on large image datasets, thereby improving perfor-
mance on various benchmarks [7, 6]. These improvements
are due to the rich image structure learned by DNNs when
trained on large image datasets, e.g. the VGG19 [49] un-
derlying Deep Gaze II [37] is trained on object recognition
of one Million images before tuning to saliency problems
using the SALICON dataset [30] containing 10000 images.

Scanpath models, by contrast, take an image as input
and generate a full scanpath, i.e. a sequence of individual
fixation locations as output [58, 5, 40, 62, 3, 2]. Progress
on a variety of benchmarks and image databases has been
made, but, a fundamental difficulty with scanpath models
compared to saliency models is the well known variability
of gaze sequences between observers, which poses partic-
ular challenges for evaluating predictions. A recent com-
prehensive theoretical and empirical evaluation of scanpath
models [34] has revealed that common scanpath similarity
metrics can score wrong models better than the true gener-
ating model. The resulting analysis in [34] establishes that a
more consistent and meaningful task consists in the predic-
tion of the next fixation target conditional on past fixations
within an image, which is the task we adopt in this study.

Here, we leverage two recent developments to improve
the prediction of the next fixation of human observers given
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an arbitrary saliency map and the sequence of preceding
fixations: the theoretical analysis of scanpath models [34]
and the recently measured human cost function for gaze
shifts [54]. We adopt a computational account of the scan-
path as a sequential decision process in the spirit of previ-
ous approaches [29, 41, 24], but differently from these ap-
proaches, our algorithm can utilize arbitrary saliency maps
as input instead of estimating rewards for image features.
First, we reason that saliency corresponds to the reward as-
sociated with the free-viewing task which is approximated
by marginalizing over all visual tasks. The reason is, that
the free-viewing task is maximally ambiguous regarding its
task goal. Second, our formulation allows incorporating
a map representing the human preferences for gaze shifts,
which have recently been estimated for the first time inde-
pendently of image content through a human psychophys-
ical experiment [54]. This gives a computational explana-
tion for commonly used heuristics including the proximity
preference. Third, we account for past fixations through
a temporally changing exploration map and present the re-
sulting predictions of subsequent gaze targets. The relative
contributions of these three components were optimized on
the MIT1003 dataset for the NSS score and are sufficient to
significantly outperform predictions of the next gaze target
on NSS and AUC scores for five state of the art saliency
models on three image data sets.

2. Related Work
The concept of saliency lies at the intersection of cogni-

tive science, neuroscience, and computer vision [52]. Em-
pirically, human gaze targets depend strongly on the ongo-
ing task [20] but humans tend to look preferentially at cer-
tain areas even when free-viewing images [22]. These ob-
servations have been complemented with the discoveries of
multiple retinotopic maps in the visual system [57]. While
the exact relationships between attention, gaze sequences,
and their neuronal underpinnings are still heavily debated,
visual saliency modeling has become a canonical computer
vision task.

Initially, saliency models used handcrafted lower level
features like intensity, color, and orientation [26], whereas
current DNN based algorithms determine salient regions in
a data driven fashion by reusing learnt features e.g from
CNNs [33]. Other studies have emphasized the importance
of higher level information in images, such as text and faces
[12, 10] or general semantic content [21, 46]. Relevance
might be biased, e.g. towards text [2]. Some approaches
have incorporated task goals into models of gaze selec-
tion [44, 8], albeit with a small number of tasks with re-
spect to the broad range of human visual and visuomotor
tasks. Semantic information has been incorporated by neu-
ral network approaches, for example by pretraining on ob-
ject recognition [37, 25, 45, 13, 33, 59]. The work on atten-

tion in DNNs, e.g [42, 60] is somewhat complimentary [1],
as it is not necessarily modeling overt shifts of attention by
gaze shifts but sequential processing of internal representa-
tions. Overall, visual saliency modeling is an established
field with canonical datasets and benchmarks and progress
on these benchmarks has been steady [7, 6].

Scanpath models have received less attention compared
to saliency models but recent approaches include models
based on biological and cognitive facts [26, 58, 64], sta-
tistically motivated models [5, 40, 62], and models, which
leverage machine learning techniques for prediction without
reference to underlying mechanisms of vision [3, 2]. While
some algorithms require an image as input [26, 37, 50, 17,
28, 14, 16], other models use a saliency map as input for
generating a scanpath [26, 58, 64, 3, 2, 4, 5, 50, 62]. In
[5, 4] the authors investigated the properties of scanpaths as
function of parameters in random walks on saliency maps.
[58] proposed a model incorporating an image representa-
tion map based on filter responses, foveation, and a memory
module to generate sequential saliency maps. [50] used an
algorithm based on projection pursuit to select image targets
for simulating scanpath in order to mimic the sparsity of
human gaze selection. PathGAN [2] extracts DNN features
and trains recurrent layers to generate scanpaths in a train-
ing set. While PathGAN learned scanpaths end-to-end and
outperformed several other models, qualitative results sug-
gest persistent deviation to scanpaths of human observers.

Of particular relevance in this context is recent work
on characterizing and evaluating the prediction accuracy
of scanpath models relative to human gaze [34]. The au-
thors’ in depth analyses show that some scapath similar-
ity metrics such as ScanMatch [15] or MultiMatch [27] can
score wrong models better than the generating model given
ground truth. Note also, that some of the current scanpath
models employ statistics of scanpaths as a means to cap-
ture behavioral biases of gaze shifts, but these have so far
never been measured independently of image content. The
in depth analyses in [34] convincingly lead to the conclu-
sion, that instead of comparing entire scanpaths it is more
adequate to evaluate models regarding their prediction of
the next fixation within a given scanpath.

Finally, scanpaths have also been conceptualized as se-
quential decision problems, which is particularly success-
ful in situations where observers’ goals are known and can
therefore be formalized as rewards [42, 23, 24]. Very much
related to the present approach, [41] used inverse RL to es-
timate implicit rewards from human gaze sequences. While
this extracts reward functions in terms of image features, it
is agnostic in relation to internal, behavioral costs and ben-
efits. Other studies have used RL to predict scanpaths [29]
with a state consisting of low-level features, semantic fea-
tures, center bias, spatial distribution of eye-fixation shifts
as well as a measure indicating previous gaze visits. How-
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ever, these studies did not utilize the human cost for eye
movements measured independently of image content and
predicted ’fixation stages’ in an experiment and not individ-
ual fixations. But empirical studies have shown, that oculo-
motor biases are not independent of image content, e.g. by
simply rotating images [19]. Here, our goal is to leverage
the recently measured human cost for making a gaze shift
independently of image content [54] for arbitrary saliency
models so that we do not infer the rewards of image fea-
tures from scratch. This allows arbitrary saliency models to
improve their predictions of the next gaze target by incorpo-
rating the intrinsic costs of a gaze shift in human observers,
which interact with the prioritization of image content.

3. One-step ahead prediction model

Our general model is based on statistical decision the-
ory and gaze sequences are viewed as reward-driven be-
havioral sequences, that can be described using a Markov
Decision Process (MDP), similar to [41, 29, 24]. A scan-
path is a sequence of gaze locations x0,x1, . . . ,xt visited
on an Image I through movement of the visual apparatus.
Each of the visited gaze locations is the result of a deci-
sion for that particular location, following a policy π(s) =
argmax

xt+1

Q(s,xt+1), where Q(s,xt+1) = E [G | s,xt+1]

are the Q-values, i.e. the expected discounted total future
rewards Gt =

∑N
i=1 γ

i−1rt+i when switching gaze to a
location xt+1 while being in state s. The state s summa-
rizes relevant factors that contribute to the selection of the
next action xt+1, γ is the discount factor, and N is the total
number of gaze shifts viewing an image. When exploring
an image I , action selection is affected by past eye move-
ments as well as the image, therefore s = (I,x0, . . . ,xt).
For some tasks, s might also include further task-relevant
features or it could represent a belief state.

As has been shown repeatedly in the past, human action
selection, in particular the generation of eye movements, is
driven by multi-dimensional reward structures. However,
the precise composition of the sources of rewards is usu-
ally unknown or not easy to measure. Here, we consider
three components that have been shown to drive action se-
lection: task-related reward, behavioral costs, and sequen-
tial effects related to the history of previous actions. In
order to compute the state-action values Qtask(s,xt+1) =
E [G | s,xt+1] in a specific task, we need to specify the re-
wards:

r(s,xt+1) = w0rtask(s,xt+1) + w1rinternal(s,xt+1)

+ w2rfixation history(s,xt+1) (1)

where xt+1 is a potential next eye movement location and
rinternal, rtask and rfixation history are components contributing
to the state-action value.

3.1. Saliency in the context of rewards

One dimension contributing to action selection is task-
related reward. Eye movements have been shown to be car-
ried out to lead to high rewards in their respective tasks,
such as visual search [43], image classification [48], and can
even be planned [24]. For free viewing of natural images,
however, the reward function is difficult to obtain theoret-
ically because the task instructions are highly ambiguous:
”Just look around.”. Here, we conjecture that saliency can
be thought of as an average reward over all possible states
within all possible tasks as we will formulate in the follow-
ing. One possible approach is to formulate the task-related
reward structure of free viewing as the result of marginaliz-
ing over all possible tasks:

rfree view(s,xt+1) = Etask
[
Estask [rtask(I, stask,xt+1)]

]
= Etask

∫
stask

rtask(I, stask,xt+1)p(stask)dstask


=

∑
task

∫
stask

rtask(I, stask,xt+1)p(stask) dstask p(task)

≈ S(I,xt+1) (2)

where rtask(I, stask,xt+1) denotes the reward when per-
forming eye movement xt+1 in image I under a specific
task while being in state stask. The state stask summarizes
all relevant information about the actions performed prior
to the current decision for a specific task. The probability
distribution over potential tasks p(task) weights the task-
dependent reward according to how likely the task is. For
example, information that is relevant for many visual tasks,
e.g., faces, receives higher weights. Finally, p(stask) is the
probability distribution of the current state within a task, i.e.
the action sequence (scanpath) prior to the current fixation
and S(I,x) is the saliency score.

In conclusion, we view the saliency of an image location
during free viewing as the approximate average reward of
that location across all possible tasks and all possible previ-
ous gaze shifts in that task.

3.2. Influence of past fixations

According to Equation 2 we can approximate the task
related component to the reward using the predictions of
a saliency model. However saliency models are time-
invariant, depending only on the image. Here, we pro-
pose an extension to overcome this problem and compute
saliency models taking into account past actions. Our ap-
proach is based on the fact that the next fixation depends on
prior fixations. Since the exact nature of this relationship
is unknown, we developed a model that quantifies the influ-
ence of a fixation within a gaze sequence on the selection of
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future fixation choices:

rfixation history(s,xt+1) = r(x0, . . . ,xt−1,xt,xt+1)

=

t∑
i=0

ϕiN (xt+1;xi,Σ) (3)

Positive values (ϕi > 0) indicate that having visited loca-
tion xi at timestep i during the same scanpath increases the
probability of targeting the next fixation to location xi. Neg-
ative values lead to reduced probabilities, therefore corre-
sponding to an effect such as a spatial version of inhibition
of return.

This reward can be conceptualized as the trade-off be-
tween exploration and exploitation, i.e. a reward for either
parts of the state-space that have never been explored, or,
if the environment can change over time, have not been ex-
plored recently [51]. Equivalently, this reward can be for-
mulated as an exploration bonus. Therefore, this part of the
reward structure encourages an agent to try long-ignored ac-
tions, i.e. visit locations that have not been visited yet or
have not been visited in a long time. Since the exact nature
of this relationship is yet to be understood, we estimated
the parameters ϕi from the eye movement data. Note that
we did not constrain the parameters to sum up to one, to al-
low both positive and negative values for already visited or
not recently visited regions, in principle.

3.3. Oculomotor preference map

Saliency models commonly neglect the agent’s effort ex-
pended in the actual action to gain visual information, al-
though such internal costs influence gaze shifts [23, 24].
These costs and benefits have their origin in the effort to
produce the movement, which includes cognitive costs such
as deciding upon where to move next [24] and when [23].
The oculomotor preferences were recently measured inde-
pendently of image content in a psychophysical experiment
involving a preference elicitation paradigm [54]. Subjects
repeatedly chose between two visual targets by directing
gaze to the preferred target. For each choice, three prop-
erties were manipulated for both targets: the distance to the
current fixation location, the absolute direction to the target
(e.g., left), and the angle relative to the last saccade. Using
the decisions we inferred the value of each component and
integrated them in an oculo-motor preference map. This
map assigns behavioral costs to each possible gaze location
dependent on the last two fixations:

rinternal(s,xt+1) = rinternal(xt−1,xt,xt+1)

= ψ0 (∥xt+1 − xt∥)

+ ψ1 arccos

(
(xt+1 − xt) · (xt − xt−1)

∥xt+1 − xt∥∥xt − xt−1∥

)
+ ψ2 arccos

(
(xt+1 − xt) · [1 0]

∥xt+1 − xt∥

)
(4)

3.4. Approximating the value map

We proposed three factors contributing to the final re-
ward of an image location: task-related reward (Equation 2;
approximated through saliency), fixation history (Equation
3) and the oculomotor costs (Equation 4). To account for
the sequential nature of visual scanpaths we extend static
saliency approaches using an additional reward component,
which is an exploration part based on past fixations. Note
however, that only the reward component associated with
the free viewing task is dependent on the image content
whereas both the internal costs and the fixation history de-
pendent part are independent of the image content.

By consistently formulating the components as rewards
we can combine them to yield the desired reward function:

r(s,xt+1) = w0rfree view(s,xt+1) + w1rinternal(xt−1,xt,xt+1)

+ w2rfixation history(x0, . . . ,xt−1,xt,xt+1)

≈ w0S(I,xt+1) + w1

∑
i∈{0,1,2}

ψi(xt−1,xt,xt+1)

+ w2

t∑
i=0

ϕiN (xt+1;xi,Σ) (5)

The parameters w0, w1, w2 are linear weights and control
the trade-off between task-related rewards, fixation history
dependent rewards and internal costs and were estimated
from the data. We set w0 equal to 1, since the scale of our
final value map does not matter and for the purpose of in-
terpretability of the other parameters.

Computing the optimal policy in the MDP framework
according to the reward function specified in Equation 5
would now require knowledge of the transition function,
i.e. the state dependent gaze dynamics and their associated
stochasticity. Similarly, knowledge of sensory uncertain-
ties would be needed across all possible tasks in order to
find the optimal gaze shift policy within the POMDP frame-
work. Unfortunately, both these approaches are unfeasible.
Instead, we use the common approximation of selecting the
optimal one-step look-ahead action, i.e. greedy approxima-
tion by selecting the action that maximizes the reward for a
single subsequent gaze shift.

The approximate value map depends on the image
(through S), on the location of the last fixation (through the
internal costs) and on the entire sequence of past fixations
(through the history dependent part). Crucially, as a con-
sequence, the value map changes with every new fixation.
The procedure of the computation of Q is illustrated in Fig-
ure 1 and examples of the respective maps for a succession
of fixations is shown in Figure 2. Based on the approxi-
mate value map we can predict the future fixation locations
from the policy π based on the value map Q(s,xt+1), see
Algorithm 1.
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Figure 1: Schematic of the algorithm. An arbitrary saliency map and the scanpath with the current gaze position are the input.
Output is a value map, which integrates the saliency map, the recomputed map for the cost of gaze shifts, and the sequential
history dependent map. Note that the original image is not an input to the algorithm.

4. Experiments
First, to demonstrate the utility of our algorithm in im-

proving the prediction of the next fixation of human ob-
servers for arbitrary saliency models, our model was im-
plemented with four different underlying saliency mod-
els, which are currently among the ten best on the
MIT/Tuebingen saliency benchmark [36] with respect to
several evaluation metrics: DeepGaze II [37], SAM-ResNet
[13], EML-NET [28] and CASNet II [17].

The parameters describing the three components of the
behavioral costs for gaze switches corresponding to internal
motor and cognitive costs were recently estimated in a psy-
chophysical experiment from eye movement data collected
in a preference elicitation paradigm [54] 1. We collected a
total of 70643 gaze shifts across 14 subjects following the
experimental paradigm described in [54]. Values for the
cost dimensions saccade amplitude, relative angle, and ab-
solute angle were estimated using a random utility model
[55]. The utility function was computed as the weighted
sum of the individual dimensions.

1The estimated cost structure is available from [54]

Algorithm 1 Compute history dependent value map V at
timestep t

Input: Arbitrary saliency map S from Image I , human
scanpath X = {x0,x1, ...,xt}
for all possible fixations x do
C[x] =

∑
i∈{0,1,2} ψi(xt−1,xt,x)

E[x] =
∑t

i=0 ϕiN (x;xi,Σ)
V [x] = w0S[x] + w1C[x] + w2E[x]

end for
return V

To include the exploration map and calculate the result-
ing value map, the corresponding free parameters had to
be estimated. Since we want to evaluate the prediction
of the next n fixations, we need to find a metric suitable
for comparing individual fixations. We chose the Normal-
ized Scanpath Saliency metric [47], which is defined as
NSS(S,x0, . . . ,xT) = 1/T

∑T
i=0 SZ(xi). where T is the

total amount of fixations for the current image. Here SZ

is the saliency map standardized by its mean µS and its
standard deviation σS , i.e. SZ = (S − µS)/σS . Thus,
the metric can be viewed as an average of the standardized
saliency scores at the corresponding fixation locations. For
more details on the metric score see e.g. [35, 10, 31]. Since
this method does not compare two continuous maps, but
also considers the actual set of fixations in addition to the
saliency map [38], the metric is also suitable for our case
of one-step or n-step ahead prediction. In this case, we do
not average over the entire gaze sequence, but optimize the
value map of our model so that there is as much mass as
possible at the location of the next fixation.

More specific, a random subset of 10000 real human fix-
ations from the MIT1003 dataset, was selected and the pa-
rameters of our model were optimized so that the value map
could predict the single subsequent fixation as well as pos-
sible and thus maximizes the NSS score. All optimizations
were done on the MIT1003 dataset [32]. All selected fix-
ations were between the third and eleventh gaze target in
their respective sequence. This fixation interval was chosen
so that at least two fixations had already been carried out
by the human observers to be able to compute the cost map
and because only about one percent of all fixation sequences
contain more than ten fixations.

We estimated the exploration values ϕi, the covariance
matrix Σ for the Exploration Map (Equation 3) and the
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Figure 2: Example predictions of the next fixation. Each row shows the original image together with the respective preceding
scanpath together with the current i-th fixation marked with a cross. The corresponding saliency, cost, and exploration maps
as well as the final value map are shown from left to right. The predicted fixation is shown together with the ground truth
next fixation of the human observer marked with a diamond.

weight parameters w1,w2 (Equation 5) through gradient
based optimization. Note that the covariance matrix Σ was
constrained to be a multiple of the identity matrix σ2I. We
fixed the weight for the saliency map to one, so that the
estimated parameters w1,w2 can be interpreted as quantify-
ing the relative contributions of the costs for gaze switches
and the history dependent reward relative to the saliency
value. We used the Limited-memory BFGS-B algorithm
[11] given the NSS score as an objective function to be max-
imized. The hyperparameters can be found in Section S1 in
the Supplementary Material. In addition, to meet the com-
putational cost of the multidimensional problem, the images
were reduced by a factor of ten in both dimensions using bi-
linear interpolation.
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Figure 3: Estimated exploration values for four different
saliency models and the averaged value (black). Note that
the estimated ϕi are multiplied here by their associated
weight w2 to show the influence of the exploration map.

Computations were performed on a high performance
computer cluster. All simulations were run on nodes with
an Intel Xeon Processor E5-2680 v3 processor (2.5 GHz
processor rate and 2.4 GB RAM). The results of the opti-
mization for all parameters can be found in the Supplemen-
tary Material in Table S1. Additionally, the estimated ex-
ploration values, and thus the weighting of past fixations are
shown for all four models over time in Figure 3. These inter-
mediate results were used to derive general weights of past
fixations independent of the particular model saliency. To
this end, the estimated exploration values of the four models
were averaged to be flexibly applied to arbitrary, new mod-
els. The resulting distribution is shown by the bold black
curve in Figure 3.

The same experiment was repeated for all saliency mod-
els and image databases, except that the weight parameters
were no longer co-estimated, i.e. the previously determined
values were used. The results of this experiment can be
found in Table S2 in the Supplementary Material. In ad-
dition, a new model was evaluated, which also belongs to
the top evaluated saliency models on the MIT/Tuebingen
benchmark - UNISAL [16]. This was to investigate the de-
gree to which the optimized model parameters would gen-
eralize from the four baseline models to a new model.

5. Results
We evaluated our method on three frequently used

benchmarks, the MIT1003 [32], the OSIE [63] and the
Toronto dataset [9]. The MIT1003 and the OSIE dataset
contain eye movements of 15 subjects during a three-second

2109



Table 1: Evaluation results. AUC and NSS scores for the one-step and two-step ahead prediction of gaze targets based on
sequential value maps compared to the respective saliency model’s baseline.

(a) One-step ahead predictions

MIT 1003 OSIE Toronto
AUC NSS AUC NSS AUC NSS

DeepGaze II 0.844 1.506 0.906 1.867 0.497 -0.031
Our extension 0.874 1.856 0.908 2.569 0.632 0.823
SAM-ResNet 0.864 2.222 0.905 3.088 0.477 -0.105
Our extension 0.881 2.323 0.917 3.315 0.639 0.706
EML-NET 0.864 2.255 0.902 3.050 0.490 -0.073
Our extension 0.882 2.329 0.919 3.330 0.638 0.656
CASNet II 0.860 1.993 0.898 2.587 0.515 -0.059
Our extension 0.879 2.155 0.915 3.003 0.684 1.033
UNISAL 0.889 2.612 0.890 2.755 0.542 0.020
Our extension 0.898 2.653 0.909 3.159 0.626 0.451

(b) Two-step ahead predictions

MIT 1003 OSIE Toronto
AUC NSS AUC NSS AUC NSS
0.844 1.506 0.906 1.867 0.497 -0.031
0.8554 1.725 0.888 1.899 0.602 0.624
0.864 2.222 0.905 3.088 0.477 -0.105
0.862 2.301 0.894 2.862 0.598 0.535
0.864 2.255 0.902 3.050 0.490 -0.073
0.869 2.332 0.903 2.897 0.601 0.508
0.860 1.993 0.898 2.587 0.515 -0.059
0.865 2.098 0.894 2.475 0.608 0.598
0.889 2.612 0.890 2.755 0.542 0.020
0.888 2.667 0.893 2.841 0.604 0.371

free viewing task on 1003 and 700 natural indoor and out-
door scenes, respectively. The Toronto dataset consits of
20 subjects during a four-second free viewing task on 120
color images of outdoor and indoor scenes.

5.1. One-step ahead predictions

We evaluated the one-step ahead predictions of our
model with the NSS metric on the three datasets. Addition-
ally we used a second metric, the Area under Curve (AUC)
(see [61, 35, 10, 31] for details) for a second evaluation
measurement, which was not considered during optimiza-
tion. AUC is also a well known hybrid measure for evaluat-
ing fixation prediction and saliency models [38], which can
be understood as a binary classifier for whether pixels are
fixated or not.

These two metrics can be used in evaluating the predic-
tion of the next fixation, see [34]. Other saliency metrics,
like KL-divergence, Correlation Coefficient or Information
gain are distribution based, so they assume the ground truth
map to be a density and not a single fixation. Therefore,
they cannot be used to evaluate models predicting the next
gaze target or any other per fixation evaluation. Example
images with best and worst NSS scores are provided in Fig-
ure S2 and S3 of the Supplementary Material.

Regarding scanpath prediction metrics (like ScanMatch
or MultiMatch), we follow the evidence and argumentation
from [34], arguing that it makes more sense to evaluate the
capability of a model to predict the next fixation, which
is exactly what saliency metrics do. For evaluation, both
metrics were calculated on all fixations of the three datasets
above. For the first fixation, the model selects a target ex-
clusively based on the saliency map as neither the internal
cost nor an fixation history can contribute. To predict the
second fixation, we assumed that the fixation prior to image
onset was at the image’s center. This is true for most exper-
iments and this only influences the relative angle of the cost
map.

The baseline saliency models were evaluated equiva-
lently, but instead of using our dynamic value maps, the
static history-independent maps were used. The results on
the three different datasets with five different baseline mod-
els are shown in Table 1(a). We reached higher scores on
all three datasets compared to all baseline models, even for
the UNISAL model, which was not used in the estimation
of the parameters of the exploration map. These results
transferred in all cases to the AUC score, which had not
been used in the optimization. Thus, subsequent fixations
on the datasets are better predicted by our dynamic one-
step ahead prediction maps compared to the static baseline
saliency models. This provides evidence, that including the
independently measured human cost function for carrying
out eye movements improves predictions by saliency maps.

5.2. n-step ahead predictions

Although the free parameters of the model were opti-
mized to maximize predictions of the single next fixation
on the NSS score for the MIT1003 data set, we can test the
performance of the n-step predictions. Table 1(b) and Ta-
ble S3 in the Supplementary Material report the results of
the two-step and three-step predictions respectively. These
results show, that the present model performs better consis-
tently on the NSS score for both the MIT1003 and Toronto
datasets across the second and third fixation predictions for
all tested saliency models. Performance on the AUC score
starts deteriorating for the prediction of the third fixation on
the MIT1003 dataset but not the Toronto dataset. By com-
parison, both AUC and NSS scores are weaker already for
the predictions of the second fixations on the OSIE dataset
for all tested saliency models.

5.3. Influence of past fixations

In addition to predicting the next fixation in a gaze se-
quence, our model allows quantifying and explaining the
relative influence of past fixations. Since the exploration
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Figure 4: Differences in the NSS scores between our dynamic value maps and the underlying static saliency maps. Positive
values indicate that our dynamic model predicted the subsequent fixation better than the baseline model. The errorbars
indicate ± standard error of the mean.

values ϕi were not constrained, we are able to interpret them
directly. Figure 3 shows the relative value of past fixations
over time. Overall, the value of refixating an image loca-
tion increases approximately linearly over time. This indi-
cates that having visited location xi i fixations ago during
the same gaze sequence increases the probability of target-
ing the next fixation at location xi. This effect increases
with increasing i, which means that fixation locations vis-
ited longer ago become more attractive for the observer.

For further analysis, we can quantify how well our pre-
dictions work for individual ordinal positions in the gaze
sequence. For this, we selected all predictions by their ordi-
nal position and averaged the NSS scores grouped by their
fixation index. The progression of the goodness of the pre-
dictions can be seen in Figure S1 for all five models on
all three datasets in comparison to the underlying baseline
saliency models. The differences in NSS scores can be seen
in Figure 4. These results demonstrate, that the prediction
accuracy is higher throughout the entire sequence up to the
tenth gaze target, which was the last considered for almost
all combinations of saliency models and image data sets.
This further supports the usefulness and validity of the cur-
rent approach.

6. Discussion

In this paper, we introduced a computational model
utilizing arbitrary saliency maps for computing sequential
value maps to predict the next gaze target in human fixation
sequences [34]. We conceptualized gaze sequences as se-
quential decision making within the framework of statistical
decision theory, similar to previous approaches [41, 29, 24].
Given a saliency map of arbitrary origin and a sequence of
previous gaze targets on an image, the model generates pre-
dictions of the next most likely fixation. The intrinsic pref-
erences for gaze shifts used in the algorithm were recently
estimated through a preference elicitation experiment inde-
pendently of image content [54] and the spatial and tempo-
ral parameters of the influence of fixation history were in-

ferred based on the MIT1003 data set. Finally, the relative
contributions of the three value maps were optimized on the
same data set to maximize prediction of the next fixation.
The algorithm can be applied to arbitrary saliency models
and is available upon request from the authors.

The results demonstrate that the three components of
the intrinsic costs for human gaze shifts [54] are sufficient
to improve predictions of subsequent gaze targets obtained
from a saliency model. These results are evidence that
the common simplifying assumption that human scan paths
are independent of behavioral preferences in gaze selec-
tion does not hold. Instead, the analysis of the distribu-
tion of preferred angles demonstrates, that image content
and preferences in gaze shifts interact in non-trivial ways,
a fact that has previously been demonstrated empirically
[19]. Although some previous approaches in scanpath mod-
eling have acknowledged or implemented statistics of hu-
man gaze shifts [5, 58, 53, 39, 64], these were not mea-
sured independently of image content. The problem this
gives rise to, is that the empirical statistics e.g. of saccade
lengths measured in free viewing is the result of the prefer-
ences for gaze shifts and the distribution of image features.
Thus, predictions of the next fixation need to be generated
by taking the actual human costs of gaze shifts into account
instead of the empirical distributions of gaze obtained from
the databases, because the latter are the result of the inter-
action between image features and the costs for gaze shifts.
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[34] Matthias Kümmerer and Matthias Bethge. State-of-
the-art in human scanpath prediction. arXiv preprint
arXiv:2102.12239, 2021.
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