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Abstract

Separating diffuse and specular reflection components
observed on an object surface is important for preprocess-
ing of various computer vision techniques. Convention-
ally, diffuse-specular separation based on the polarimet-
ric and color clues assumes that the diffuse/specular reflec-
tion components are unpolarized/partially polarized under
unpolarized light sources. However, the diffuse reflection
component is partially polarized in fact, because the dif-
fuse reflectance is maximal when the polarization direction
is parallel to the outgoing plane. Accordingly, we propose a
method for separating partially-polarized diffuse and spec-
ular reflection components on the basis of the polariza-
tion reflection model and the dichromatic reflection model.
In particular, our method enables us not only to achieve
diffuse-specular separation but also to estimate the polari-
metric properties of the object surface from a single color
polarization image. We experimentally confirmed that our
method performs better than the method assuming unpolar-
ized diffuse reflection components.

1. Introduction

In general, the reflected light observed on an object
surface consists of a diffuse reflection component and a
specular reflection component. Separating those reflection
components is important for preprocessing of various tech-
niques in computer vision and computer graphics such as
multi-view stereo [31], shape from shading [16, 36], shape
from polarization [45], relighting [12], and image-based
material editing [25, 19].

For diffuse-specular separation, we can make use of
the difference in the colors of diffuse and specular reflec-
tion components. According to the dichromatic reflection
model [32], the color of a specular reflection component is
independent of an object surface and is equal to the color
of a light source. On the other hand, the color of a diffuse

reflection component depends not only on the light source
color but also on the spectral reflectance of the object sur-
face. Therefore, the diffuse and specular reflection compo-
nents can be separated on the basis of the distribution of the
observed pixel colors in the RGB color space [18].

We can also make use of the difference in the polariza-
tion states of diffuse and specular reflection components.
When we observe the reflected light from an object sur-
face illuminated by a polarized light, the specular reflec-
tion component is polarized whereas the diffuse reflection
component is approximately unpolarized [8]. Therefore,
the diffuse and specular reflection components can be sep-
arated from the images taken by placing linear polarizers
in front of a light source and a camera, and rotating one of
them [45].

In order to achieve robust diffuse-specular separation,
we can combine the polarimetric and color clues. Nayar et
al. [26] and Wen et al. [43] consider an object illuminated
by an unpolarized light source, and separate the diffuse and
specular reflection components observed on the object sur-
face under the assumption that the specular reflection com-
ponent is partially polarized but the diffuse reflection com-
ponent is unpolarized. However, the diffuse reflection com-
ponent is partially polarized in fact. This is because the
diffuse reflectance, i.e. the Fresnel transmittance coefficient
from inside the object, is maximal when the polarization di-
rection is parallel to the outgoing plane spanned by a view-
ing direction and a surface normal [8]. Therefore, the ac-
curacy of the diffuse-specular separation assuming unpolar-
ized diffuse reflection components is limited.

Accordingly, we propose a method for separating diffuse
and specular reflection components on the basis of the po-
larimetric and color clues under the assumption that both
the diffuse and specular reflection components are partially
polarized. Our proposed method achieves diffuse-specular
separation from a single image taken by using a color po-
larization camera. Specifically, we formulate the diffuse-
specular separation on the basis of the polarization reflec-
tion model and the dichromatic reflection model, and esti-
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mate the unknowns of the model: the light source color, the
diffuse reflection colors, the phase angles, and the degrees
of linear polarization (DoLP) for diffuse and specular reflec-
tion components. Thus, our method can not only separate
diffuse and specular reflection components but also estimate
the polarimetric properties of the object surface.

To show the effectiveness of our proposed method, we
conducted a number of experiments using both synthetic
and real images. We confirmed that our method works well
on real images as well as synthetic images, and performs
better than the method assuming unpolarized diffuse reflec-
tion components.

The main contributions of this study are twofold. First,
we propose a novel method for separating partially polar-
ized diffuse and specular reflection components from a sin-
gle image taken under unpolarized light sources. Compared
with the existing methods [26, 43] for diffuse-specular sep-
aration based on the polarimetric and color clues, we take
partially-polarized diffuse reflection components into con-
sideration. Second, we experimentally confirmed that the
proposed method works well for real images and performs
better than the method assuming unpolarized diffuse reflec-
tion components. In particular, our method enables us not
only to separate diffuse and specular reflection components
but also to estimate the polarimetric properties of the object
surface.

2. Related Work
2.1. Utilizing Color Information

While the color is quite strong information for single-
image separation of reflection components, it is insuffi-
cient for pixel-wise analytical solution. To overcome this
ill-posed problem, various methods with prior knowledge
such as the sparsity of specular reflection components have
been proposed over the decades since the dichromatic re-
flection model approach [32] first appeared. Yang et al. [47]
and Akashi and Okatani [2] designed color-based spec-
ular removal as the optimization problems with spatial
prior knowledge. Some methods transform the color space
in order to use the color information of the entire im-
age [30, 7, 46]. Also as an extended concept, there are
methods utilizing specular-free image [38, 37, 48, 33, 34].
Tan et al. [38] transformed the image into the maximum
chromaticity-intensity space to separate the specular reflec-
tion component by using the surrounding diffuse pixels.
Although such color space-focused methods are valuable,
many of them assume a white light source for robust esti-
mation, and their accuracy is also limited.

2.2. Utilizing Polarimetric Information

Polarization images provide an additional clue to the re-
flection component separation. Especially in the case that

specularly reflected light is fully polarized, the separation
becomes quite simple. Thus, the use of fully polarized light
sources or a well-tuned setting of incidence and reflection
angles can robustly extract the specular reflection compo-
nent [45, 11, 24, 15, 28, 17, 27, 3]. Realistically, however,
the polarization state of the light source is randomly dis-
tributed and the specularly reflected light is partially polar-
ized.

Assuming such unpolarized light sources, Nayar et
al. [26] proposed a method to remove partially polarized
specular components by utilizing both color and polariza-
tion information. In addition, the color of the light source is
estimated from the intensity change of multiple pixels with
rotating a linear polarizer in front of the camera. For more
robust estimation, Wen et al. [43] introduce PCA-based
color clustering and optimization with the specular sparsity
regularization and implicit function representation of dif-
fuse components. Some other approaches utilize color and
polarization information for independent component anal-
ysis (ICA) [9, 40, 49, 41]. These studies exploit the dif-
ference in polarization states between specular and diffuse
reflection components to achieve blind separation by maxi-
mizing the independence of those signals.

However, all of the above methods are based on the as-
sumption that diffuse reflection components are unpolar-
ized, which limits their separation accuracy. Moreover, if
the separation of the mixtured-polarization state of reflected
light is achieved, it would contribute to a number of shape-
from-polarization methods [4, 35, 50]. Interestingly, since
partially-polarized diffuse reflectance can be modeled as the
Fresnel transmittance, the polarization state of the reflected
light can be formulated in the same way as those of re-
flected and transmitted light on transparent surfaces such as
glass [29, 20, 44]. On the other hand, these methods differ
from ours in the problem setting itself, i.e. light sources dif-
fer for reflected and transmitted light, and prior information
is given for the normals of the transparent surfaces.

Recently, deep learning-based methods using polariza-
tion [23, 21, 22, 13] show effective results, but they rely
on supervised learning and require large datasets. In con-
trast, our method achieves the separation of reflection com-
ponents from a single input image, and also achieves the
estimation of the polarimetric properties of the object sur-
face.

3. Reflection Model

Let us consider an object illuminated by a single unpo-
larized light source. In general, the reflected light observed
on the object surface consists of specular and diffuse reflec-
tion components.

It is well known that the specular reflection component
is partially polarized under an unpolarized light source be-
cause the specular reflectance depends on the polarization
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direction [8]. When we observe the specular reflection com-
ponent at a surface point through a linear polarizer, the in-
tensity i, (¢) is represented as

is(¢) = ds + as cos[2(¢ — ¢s)]. (1)

Here, d, and a4 are the DC component and the amplitude of
the specular reflection component, and ¢ and ¢, are the an-
gle of the linear polarizer and the phase angle of the specular
reflection. The intensity of the specular reflection compo-
nent is maximal when ¢ = ¢, ¢s + 7. Note that the DoLLP
for specular reflection p; is given by
as
Ps= g 2
It is often assumed that the diffuse reflection component
is unpolarized, but it is weakly polarized in fact, because the
diffuse reflectance also depends on the polarization direc-
tion [8, 5, 6]. In a similar manner to the specular reflection
component, the intensity of the partially polarized diffuse
reflection component i4(¢) is represented as

i4(¢) = dg + aq cos[2(¢ — dq)]- 3)

Here, dg4 and a4 are the DC component and the amplitude of
the diffuse reflection component, and ¢4 is the phase angle
of the diffuse reflection. The intensity of the diffuse reflec-
tion component is maximal when ¢ = ¢4, ¢4+ 7. Note that
the DoLP for diffuse reflection pg4 is given by

ad

- @)

Pd
The specular reflectance, i.e. the Fresnel reflectance
coefficient, is maximal when the polarization direction is
perpendicular to the incoming plane spanned by the light
source direction and the surface normal at the point. On
the other hand, the diffuse reflectance, i.e. the Fresnel
transmittance coefficient from inside the object, is maxi-
mal when the polarization direction is parallel to the out-
going plane spanned by the viewing direction and the sur-
face normal. For specular reflection components observed
on smooth surfaces, the light source direction, the (macro-
scopic) surface normal, and the viewing direction are copla-
nar, and then the incoming plane is equal to the outgoing
plane. Hence, we assume

bqg = ¢ps /2. (5)

According to the dichromatic reflection model [32], the
color of a specular reflection component is independent of
an object surface and is equal to the color of a light source.
On the other hand, the color of a diffuse reflection compo-
nent depends not only on the light source color but also on
the spectral reflectance of the object surface. We denote the

Figure 1. The estimation of a light source color: the intersection
of two planes.

colors (RGB values) of the specular and diffuse reflection
components by using 3-D vectors ¢; and ¢, respectively.
Combining those colors and the polarimetric properties in
eq.(1), eq.(3), and eq.(5), we can represent the pixel values
1(¢) observed through the linear polarizer with the angle ¢
as

i(¢) = {di—aqcos2(¢ — ¢s)|}ca
+ {ds + as COS[2(¢ - ¢s)]}cs- (6)
4. Proposed Method

4.1. Overview

We consider objects illuminated by a single unpolarized
light source or multiple unpolarized light sources with the
same color. We assume that the object surfaces are smooth,
i.e. their surface roughness values are small.

Our proposed method uses a single image taken by us-
ing a color polarization camera as input. Such a camera
captures scene radiance values through color and linear po-
larization filters in front of each pixel, and yields 12 radi-
ance values per pixel, i.e. 3 color channels (RGB) x 4 po-
larization angles (0°, 45°, 90°, and 135°). We denote the
polarization angle of the camera by ¢. (¢ = 1,2,3,4), and
rewrite eq.(6) at the p-th pixel as

ip(Pe) {dap — aqpcos2(pe — dsp)l}cap
+ {dsp + asypcos2(de — s p)ltes.  (7)

Note that the light source color ¢, is uniform across the
image and therefore independent of the pixel p. We explain
the details on each step for estimating the unknowns in the
following subsections.

4.2. Estimation of Light Source Color

We can see from eq.(7) that the 4 colors observed at
each pixel, i.e. 4,(¢c) (c = 1,2,3,4), are on the plane II,
spanned by the light source color ¢ and the diffuse reflec-
tion color ¢q,;, in the RGB color space. Because we assume
that the light source color is uniform across the image, the
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Figure 2. The estimation of a phase angle; the pixel values oscillate
around the center m along the direction v.

planes obtained at each pixel share the common light source
color. Therefore, we can estimate the light source color c,
as the intersection of those planes as shown in Figure 1.

In order to robustly estimate the light source color, we
make use of RANdom SAmple Consensus (RANSAC) [14]
as follows. First, we compute each plane I, spanned by the
light source color ¢, and the diffuse reflection color ¢4 4, by
using SVD. Specifically, we construct 3 x 4 matrix C), as

Cp = (ip(¢1)7ip(¢2)7ip(¢3)77:p(¢4))7 (3

and consider the eigen vector with the smallest eigen value
as the normal mn,, of the plane IL,.

Second, we randomly pick up two pixels p’ and p”,
and then compute the candidate of the light source color
cs(p',p"). Since the light source color is perpendicular to
the both normals mn,, and n,, the candidate of the light
source color is given by the outer product of those normals
as

cs(pp") =my X ny. 9)

Then, we count the number of inliers; if the angle between
the candidate of the light source color and the plane II,, is
less than a threshold ¢, we consider the plane as an inlier.

Third, we repeat the above step, and find the candidate of
the light source color with the maximal number of inliers.
Finally, we re-compute the light source color from those
inlier planes by using SVD.

4.3. Estimation of Phase Angle

It is easy to estimate the phase angle from gray-scale po-
larization images. We can fit a cosine curve to the pixel
values observed through three polarization angles, e.g. 0°,
45°, and 90°, and then estimate the phase angle up to the
ambiguity of . However, the way of estimating the phase
angle from color polarization images is not self-evident!.
For example, the cosine curves fitted to the pixel values of
each color channel could have different phase angles due to
the noises in pixel values.

'The conventional method can be used by converting color images to
gray-scale images. However, such estimation is not robust as v, in eq.(10)
is getting perpendicular to (1,1,1)T

Accordingly, we investigate how the colors observed at
each pixel vary according to the polarization angle ¢., and
estimate the phase angle ¢, ,. We can rewrite eq.(7) as

ip(de) = [dspes +dapcap)

[aspCs — aapcap] cos2(de — ¢s,p)]
= my + cos[2(pc — ¢sp)|Up. (10)

As shown in Figure 2, this equation means that the pixel
values oscillate around the center m,, = ds ,¢s + dg pCa,p
along the direction v, = a, ,Cs — Aq,pCy,p-

Therefore, we first estimate the direction v,, by fitting a
line to the 4 observed colors via least squares. Second, we
project the 4 observed colors to the line. Finally, we esti-
mate the phase angle ¢, , on the basis of the distance be-
tween the projected points and the center in a similar man-
ner to the gray-scale polarization image. Note that the esti-
mated phase angle also has the ambiguity of 7.

_|_

4.4. Estimation of Remaining Unknowns

Since the light source color ¢, and the phase angle ¢,
are estimated in Sections 4.2 and 4.3, we estimate the
remaining unknowns in eq.(10). Specifically, combining
eq.(10) and eq.(2) and eq.(4), we estimate the 6 unknowns,
ie. cdmz, ds p, ddp, Ps,p> and pg p, from

my, = dspCs+dapCap, (11)
Ps,pds,pCs — Pd,pdd,pCd,p- (12)

Up

Note that we can easily obtain the center of oscillation, i.e.
the DC component m,, by average and the oscillation direc-
tion v, as described in Section 4.3 from the color polariza-
tion image.

The number of equations in eq.(11) and eq.(12) is 6 (=
3 x 2). However, the number of linearly independent equa-
tions is only 4 (= 2 x 2) in general, because those equations
hold on the 2-D plane spanned by c, and cq,,. Since the
number of the unknowns is 6, it is clear that the problem
of estimating the remaining unknowns is underdetermined,
and therefore it is impossible to estimate those unknowns
per pixel.

Accordingly, we assume that an object of interest has
piece-wise constant albedo and shares the common diffuse
reflection color in each region. Specifically, we estimate the
remaining unknowns in a region-based manner by nonlinear
minimization:

Z { f(ea,ds p, ddw)]

+[vp - Q(Cd, ds,p; dd,p7 Ps,ps pd,p)] + vapd,pH} .
(13)

2The degree of freedom of C4,p is 2, because we normalize it so that
Cd,p1 + €d,p2 + cap3 = 1.

{ca,ds, p1dd p7P€ piPd, p}
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input

42.50/0.997 41.44/0.995 38.08/0.989

speCU|ar . . . .

42.83/0.942 41.17/0.918 38.08/0.937
phase ‘

angle

25.35/0.972 34.12/0.993

40. 88/0 968

(d)
Figure 3. The results on the synthetlc image of the 1st scene (a
sphere under a single white light source): (a) the ground truth, (b)
our proposed method (the polarized diffuse), (c) the unpolarized
diffuse, and (d) the only color.

Here, the functions f and g in the first and second terms are
the right-hand sides of eq.(11) and eq.(12) respectively, and
w is the weight for balancing the first and second terms and
the third term. Since the DoLP of diffuse reflection com-
ponents varies smoothly on an object surface, we add the
third term, i.e. the total variation regularization with respect
to the DoLP of diffuse reflection components. Please see
Appendix for the details on the optimization.

5. Experiments

To confirm the effectiveness of our proposed method, we
conducted a number of experiments using both synthetic
and real images. We compared the performance of the fol-
lowing three methods:

e Polarized Diffuse: our proposed method assuming
partially-polarized diffuse reflection components.

e Unpolarized Diffuse: the method assuming the un-
polarized diffuse reflection components. It assumes
aq,p, = 01in eq.(7), and then estimates the unknowns
other than aq ;, in a similar manner to our method for
direct comparison.

input

38.06/0.989 36.95/0.988 33.85/0.975

e . . . .

41.87/0.928 39.03/0.857 36.53/0.901

phase

angle
ps ' . .
38.50/0.989 22.43/0.942

38. 65/0 976
(d)
Figure 4. The results on the synthetlc image of the 2nd scene (a
sphere under two white light sources): (a) the ground truth, (b)
our proposed method (the polarized diffuse), (c) the unpolarized
diffuse, and (d) the only color.

e Only Color: the existing method [2] for diffuse-
specular separation from a single color image for ref-
erence. The input color image is given by averaging a
color polarization image with respect to the polariza-
tion angles.

We used the trust-region algorithm [10] implemented as
Isqcurvefit in MATLAB for solving the constrained non-
linear minimization problem of eq.(13). In order to com-
pute the initial values as described in Appendix, we used
the SLIC superpixel segmentation [1] implemented as su-
perpixels in MATLAB. We empirically set the threshold for
classifying inliers in Section 4.2 as ¢t = 3°, and the weight
in eq.(13) as w = 10~%. The computational cost of the
RANSAC-based estimation of a light source color is low; it
took about 1 sec for 3,000 random samples (iterations) on
an ordinary PC.

5.1. Synthetic Images

We conducted a number of experiments using synthetic
images for which all the ground truths are available. We
tested four cases: an object with a simple shape (sphere)
illuminated by (i) a single white light source and (ii) two
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input

44.03/0.997  39.07/0.996  32.19/0.954
e - - -
32.19/0.894

44.27/0.967

44.18/0.976

phase
angle %“%

31.75/0.982

39. 49/0 954

39.23/0.996

(d)
Figure 5. The results on the synthetlc image of the 3rd scene (the
Stanford Bunny under a single white light source): (a) the ground
truth, (b) our proposed method (the polarized diffuse), (c) the un-
polarized diffuse, and (d) the only color.

Table 1. The light source colors: the ground truths, the colors esti-
mated by using our method, and the angular errors in degree.

case H ground truth ‘ estimated ‘ error
) (1/3,1/3,1/3) (0.334,0.333,0.333) | 0.06°
(ii) (1/3,1/3,1/3) (0.333,0.334,0.333) | 0.09°

(iii) (1/3,1/3,1/3)
(iv) (0.301,0.321,0.378)

(0.334,0.333,0.333) | 0.03°
(0.301,0.321,0.378) | 0.07°

white light sources, and an object with a complex shape
(the Stanford Bunny) illuminated by (iii) a single white light
source and (iv) a single bluish light source. We added ran-
dom noises to the synthesized images; we assume photon
shot noises, i.e. Gaussian noises whose variance o2 is pro-
portional to a pixel value [39]. We determined the propor-
tional coefficient so that the total amount of noises is equal
to that of the zero-mean Gaussian noises with o = 0.01 for
pixel values normalized to [0,1].

First, Figure 3 shows the result for (i) a sphere under
a single white light source: the input image, the diffuse
and specular reflection components, the phase angle, and
the DoLPs for specular and diffuse reflection components

input

44.11/0.997

SpeCU|ar - -

44, 40/0 968
phase
angle %‘:\@

Ps

43.19/0.996

34.18/0.966

44.45/0.977  34.18/0.927

32.84/0.985

40. 28/0 959

40.04/0.996

Pd

(d)
Figure 6. The results on the synthetlc image of the 4th scene (the
Stanford Bunny under a single bluish light source): (a) the ground
truth, (b) our proposed method (the polarized diffuse), (c) the un-
polarized diffuse, and (d) the only color.

from top to bottom. We show the ground truths in (a), and
the results obtained by using the polarized diffuse, the un-
polarized diffuse, and the only color in (b), (c), and (d)
respectively. The numerical values under each result im-
age show the PSNRs (Peak Signal-to-Noise Ratios)/SSIMs
(Structural Similarity Index Measure) [42]; the higher the
better. The color bar shows the phase angle [—7/2, 7/2].
Comparing the results of the diffuse-specular separation,
we can see that our proposed method (the polarized diffuse)
performs better than the unpolarized diffuse and the only
color both qualitatively and quantitatively. Both the polar-
ized diffuse and the unpolarized diffuse enable us to esti-
mate the polarimetric properties of the object surface. We
can see that the phase angle ¢4(= ¢4 £ 7/2) estimated by
using the unpolarized diffuse flip when the dominant po-
larization component changes from specular reflection to
diffuse reflection. This is because the unpolarized diffuse
considers the observed polarized components as specular
reflection components. On the other hand, the phase an-
gle estimated by using the polarized diffuse is almost the
same as the ground truth, although the results are a little
noisy when DoLP is small. We can also see that the polar-
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input

diffuse

specular

phase
angle

(b) (c)

Figure 7. The results on the real image of the scene (A) (a plastic
pumpkin and a plastic cup): (a) our proposed method (the polar-
ized diffuse), (b) the unpolarized diffuse, and (c) the only color.

ized diffuse works well for estimating the DoLPs for dif-
fuse and specular reflection components. The unpolarized
diffuse performs better for estimating p,, but it cannot esti-
mate pg by definition.

Second, we show the result for (ii) a sphere under two
white light sources in Figure 4. We can see from the ground
truths of p, and pg4 that both the DoLPs for diffuse and spec-
ular reflection components have large values at the same lo-
cation, i.e. the upper right area of the sphere under those
light sources. Similar to the first case, we can see that
our proposed method (the polarized diffuse) performs better
than the unpolarized diffuse and the only color. In particu-
lar, our method works better than the unpolarized diffuse
when both the DoLPs for diffuse and specular reflection
components have large values at the same location.

Third, we show the result for (iii) the Stanford Bunny
under a single white light source in Figure 5. Similar to the
first and second cases, we can see that our proposed method
(the polarized diffuse) performs better than the unpolarized
diffuse and the only color also for an object with a complex
shape.

Forth, we show the result for (iv) the Stanford Bunny
under a single bluish light source in Figure 6. Similar to
the previous cases, we can see that our proposed method
(the polarized diffuse) performs better than the unpolarized
diffuse and the only color also for a non-white light source.

Table 1 summarizes the light source colors: the ground
truths, the colors estimated by using our method, and the
angular errors between them in degree. We can see that our

(b) (c)

Figure 8. The results on the real image of the scene (B) (ceramic
figurines): (a) our proposed method (the polarized diffuse), (b) the
unpolarized diffuse, and (c) the only color.

method can accurately estimate the light source colors.

5.2. Real Images

We conducted a number of experiments using real im-
ages. We tested three scenes: (A) a plastic pumpkin and a
plastic cup, (B) ceramic figurines, and (C) a plastic sphere
and a plastic holder. The images of those scenes were
captured by using a color polarization camera BFS-U3-
51S5PC-C from FLIR. Here, the ground truths other than
the light source colors are unknown?®; we measured the light
source color by directly capturing the emitted light with the
same camera and considered it as the ground truth.

Figure 7, Figure 8, and Figure 9 show the results for the
scenes (A), (B), and (C). We show the results obtained by
using our proposed method (the polarized diffuse), the un-
polarized diffuse, and the only color in (a), (b), and (c) re-
spectively. Comparing the results of the diffuse-specular
separation, we can see that our method performs better than
the unpolarized diffuse and the only color qualitatively. We
can see that the phase angles estimated by using the polar-
ized diffuse and the unpolarized diffuse are noisy in dark
areas, but our method performs better than the unpolarized
diffuse because most of the estimated phase angles flip due

3In contrast to conventional evaluation, we cannot consider the vari-
able components observed through a rotating linear polarizer as specular
components because diffuse components are also partially-polarized and
variable.
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input

diffuse

specular

(c)

Figure 9. The results on the real image of the scene (C) (a plastic
sphere and a plastic holder): (a) our proposed method (the polar-
ized diffuse), (b) the unpolarized diffuse, and (c) the only color.

Table 2. The light source colors: the ground truths, the colors esti-
mated by using our method, and the angular errors in degree.

scene H ground truth estimated \ error
(A) (0.308,0.360,0.331) | (0.310,0.360,0.330) | 0.23°
(B) (0.308,0.360,0.331) | (0.307,0.361,0.332) | 0.16°
© (0.308,0.360,0.331) | (0.319,0.349,0.332) | 1.52°

to the assumption of unpolarized diffuse reflection compo-
nents. In addition, similar to the experimental results on
synthetic images we can see that our method can recover the
DoLP for diffuse reflection components near the occluding
contours of objects.

Table 2 summarizes the light source colors: the ground
truths, the colors estimated by using our method, and the
angular errors between them in degree. We can see that our
method can accurately estimate the light source colors.

6. Conclusion and Future Work

In this paper, we proposed a method for separating dif-
fuse and specular reflection components on the basis of the
polarization reflection model and the dichromatic reflection
model. In particular, we assume that both the diffuse and
specular reflection components are partially polarized un-
der unpolarized light sources, and achieve the estimation of
the polarimetric properties of the object surface as well as
the diffuse-specular separation from a single color polariza-
tion image. We experimentally confirmed that our proposed
method performs better than the method assuming unpolar-

ized diffuse reflection components.

The extension to fully or partially polarized light sources
is one of the directions of our future study. Another direc-
tion is the CV applications such as shape from polarization
and image-based material editing.
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KAKENHI Grant Numbers JP20H00612 and JP21K21319.

A. Optimization

We optimize eq.(13) via alternative least squares. Specif-
ically, we segment the input image into the regions with ap-
proximately the same diffuse reflection colors, and estimate
the initial values for cq per region and those for ds 5, dg p,
Ps,p> and pq p, per pixel as follow. Then, we repeatedly up-
date cq and {ds p, da p; Ps,ps pd,p} in turn until convergence.

First, we compute a rough specular-free image by assum-
ing that the diffuse reflection components are unpolarized
and the specular reflection components are fully polarized.
Then, we segment the input color image on the basis of the
normalized colors of the specular-free image by using one
of the existing methods for image segmentation. We con-
sider the median of the diffuse reflection components over
each region as cg.

Second, we compute the initial values for d; j, and dg
on the basis of eq.(11). Specifically, we assume that both ¢,
and ¢4 are given, we compute the initial values by solving

my, = d, pcs + dgpcq (14)

via least squares. Here, we impose the non-negative con-
straints: d,, > 0 and dg, > 0, because the DC compo-
nents of the diffuse and specular reflection components are
non-negative.

Third, in a similar manner to the above, we compute the
initial values for p, , and pq, on the basis of eq.(12). Be-
cause the phase angle estimated in Section 4.3 has the ambi-
guity of 7, we compute the initial values of a ;, and a4 ,by
solving

:tvp = Qs,pCs — Ad,pCq (15)

via least squares subject to the non-negative constraints:
asp > 0and aq, > 0. Then, we select the solution with
the smaller squared errors as the initial values for a ;, and
aq,p. Finally, we convert them to p, ;, and pg ;, from eq.(2)
and eq.(4).
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