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Abstract

Multi-task learning promises better model generaliza-
tion on a target task by jointly optimizing it with an aux-
iliary task. However, the current practice requires addi-
tional labeling efforts for the auxiliary task, while not guar-
anteeing better model performance. In this paper, we find
that jointly training a dense prediction (target) task with a
self-supervised (auxiliary) task can consistently improve the
performance of the target task, while eliminating the need
for labeling auxiliary tasks. We refer to this joint training as
Composite Learning (CompL). Experiments of CompL on
monocular depth estimation, semantic segmentation, and
boundary detection show consistent performance improve-
ments in fully and partially labeled datasets. Further analy-
sis on depth estimation reveals that joint training with self-
supervision outperforms most labeled auxiliary tasks. We
also find that CompL can improve model robustness when
the models are evaluated in new domains. These results
demonstrate the benefits of self-supervision as an auxiliary
task, and establish the design of novel task-specific self-
supervised methods as a new axis of investigation for future
multi-task learning research.

1. Introduction
Learning robust and generalizable feature representa-

tions have enabled the utilization of Convolutional Neural
Networks (CNNs) on a wide range of tasks. This includes
tasks that require efficient learning due to limited annota-
tions. A commonly used paradigm to improve generaliza-
tion of target tasks is Multi-Task Learning (MTL), the joint
optimization of multiple tasks. MTL exploits domain in-
formation contained in the training signals of related tasks
as an inductive bias in the learning process of the target
task [8, 9]. The goal is to find joint representations that bet-
ter explain the optimized tasks. MTL has demonstrated suc-
cess in tasks such as instance segmentation [16] and depth
estimation [12], amongst others. In reality, however, such
performance improvements are not common when naively
selecting the jointly optimized tasks [42]. To complicate
things further, the relationship between tasks for MTL is
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Figure 1. The generalization of target tasks can be improved by
jointly optimizing with a related auxiliary task. (a) In traditional
multi-task learning, one uses labeled auxiliary tasks that require
manual annotation efforts. (b) In this paper, we show that jointly
training a dense task with a self-supervised task can consistently
improve the performance, while eliminating the need for addi-
tional labeling efforts.

also dependent on the learning setup, such as training set
size and network capacity [56]. As a consequence, MTL
practitioners are forced to iterate through various candidate
task combinations in search of a synergetic setting. This
empirical process is arduous and expensive since annota-
tions are required a priori for each candidate task.

In this paper, we find that the joint optimization of a
dense prediction (target) task with a self-supervised (aux-
iliary) task improves the performance on the target task,
outperforming traditional MTL practices. We refer to this
joint training as Composite Learning (CompL), inspired
by material science where two materials are merged to
form a new one with enhanced properties. The bene-
fits and intuition of CompL resemble those of traditional
MTL, however, CompL exploits the label-free supervision
of self-supervised methods. This facilitates faster iterations
through different task combinations, and eliminates manual
labeling effort for auxiliary tasks from the process.

We provide thorough evaluations of CompL on three
dense prediction target tasks with different model struc-
tures, combined with three self-supervised auxiliary tasks.
The target tasks include depth estimation, semantic segmen-
tation, and boundary detection, while self-supervised tasks
include rotations, MoCo, and DenseCL. We find that jointly
optimizing with self-supervised auxiliary tasks consistently
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outperforms ImageNet-pretrained baselines. The benefits
of CompL are most pronounced in low-data regimes, where
the importance of inductive biases increases [5]. We also
find that jointly optimizing monocular depth estimation
with a self-supervised objective can outperform most la-
beled auxiliary tasks. CompL can additionally improve se-
mantic segmentation and boundary detection model robust-
ness, when evaluated on new domains. Our experiments
demonstrate the promise of self-supervision as an auxiliary
task. We envision these findings will establish the design of
novel task-specific self-supervised methods as a new axis of
investigation for future multi-task learning research.

2. Related Work

Multi-Task Learning (MTL) MTL aims to enhance per-
formance and robustness of a predictor by jointly optimiz-
ing a shared representation between several tasks [8]. This
is accomplished by exploiting the domain-specific informa-
tion contained in the training signal of one task (e.g., seman-
tic segmentation), to more informatively select hypotheses
for other tasks (e.g., depth), and vice versa [52, 7]. For ex-
ample, pixels of class “sky” will always have a larger depth
that those of class “car” [54]. If non-related tasks are com-
bined, however, the overall performance degrades. This
is referred to as task-interference and has been well docu-
mented in the literature [47, 40]. However, no measurement
of task relations can tell us whether performance gain can be
achieved without training the final models. Although sev-
eral works have shown that while MTL can improve perfor-
mance, it requires an exhaustive manual search of task inter-
actions [56], and labeled datasets with many tasks. In this
work we also jointly optimize a network on multiple tasks,
but we instead evaluate the efficacy of self-supervision as
an auxiliary task. This enables the use of joint training in
any dataset and eliminates expensive annotation efforts that
do not guarantee performance gains. To further improve
performance of a target task, [37, 29, 4, 24] designed spe-
cialised architectures for a predefined set of tasks. These
architectures do not generalize to other tasks. On the other
end, [45] aim to learn a sub-class labelling problem as an
auxiliary task, i.e. for class dog learn the breed subclass,
however the notion of subclass does not generalize to dense
tasks like depth estimation. Instead, we conduct a system-
atic investigation using a common pipeline, applicable to
any dense target task. This enables the easy switching of
different supervised target tasks or auxiliary self-supervised
tasks, without requiring any architectural changes, enabling
the wider reach of joint training across tasks and datasets.

Transfer learning Given a large labeled dataset, neu-
ral networks can optimize for any task, whether image-
level [43], or dense [32]. In practice, however, large datasets
can be prohibitively expensive to acquire, giving rise to the

transfer learning paradigm. The most prominent example
of transfer learning is the fine-tuning of an ImageNet [17]
pre-trained model on target tasks such as semantic segmen-
tation [46], or monocular depth estimation [22]. However,
ImageNet models do not always provide the best represen-
tations for all downstream tasks, raising interest in finding
task relationships for better transfer capabilities [68]. In this
work we are not interested in learning better pre-trained net-
works for knowledge transfer. Rather, we start from strong
transfer learning baselines and improve generalization by
jointly optimizing the target and auxiliary tasks.

Self-supervised learning Learning representations that
can effectively transfer to downstream tasks, coupled with
the cost associated with the acquisition of large labeled
datasets, has given rise to self-supervised methods. These
methods can learn representations through explicit supervi-
sion on pre-text tasks [19, 27], or through contrastive meth-
ods [13, 31]. Commonly, self-supervised methods aim to
optimize a given architecture, yielding better pre-training
models for fine-tuning on the target task [19, 27, 13, 31,
25, 62, 49, 44]. We instead utilized such pre-trained mod-
els as a starting point and fine-tune on both the target and
self-superivsed auxiliary tasks jointly, rather than just the
target task, to further improve performance and robustness.
More recently, supervised tasks have been used in conjunc-
tion with self-supervised techniques by exploiting the la-
bels to guide contrastive learning. This can be seen as a
form of sampling guidance and has been utilized in classifi-
cation [41], semantic segmentation [60], and tracking [51].
These methods differ from our work as they require target
task labels to optimize the self-supervised objective, while
our self-supervised objectives are independent of the target
labels and can be applied on any set of images. Instead,
[18] jointly train a model for classification and rotation, but
utilize the rotation performance at test time as a proxy to
the classification performance. The goal of this work is in-
stead to improve the target task’s performance and robust-
ness. More closely to our work, [26] and [69] jointly train
classification and self-supervised objectives under a semi-
supervised training protocol. We also perform joint train-
ing with a self-supervised task, however, we follow a more
general MTL methodology, and investigate whether self-
supervised tasks can provide inductive bias to dense tasks.

Robustness Robust predictors are important to ensure their
performance under various conditions during deployment.
Recent works have focused on improving different aspects
of robustness, such as image corruption [35], adversarial
samples [70], and domain shifts [65]. More related to our
work, [36] jointly train classification and self-supervised ro-
tation, demonstrating that the strong regularization of the
rotations improves model robustness to adversarial exam-
ples, and label or input corruptions. [61] similarly used
joint training but employed both image and video-level self-
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supervised tasks and found them to improve the model’s
robustness to domain shifts for object detection. We also
evaluate the effect of joint training on robustness to unseen
datasets, but focus on dense prediction tasks.

3. Composite Learning
In this section, we introduce and motivate Compos-

ite Learning (CompL). Specifically, Sec. 3.1 formalizes
the problem setting, Sec. 3.2 describes the self-supervised
methods investigated, and Sec. 3.3 lists the network struc-
ture choices in our study.

3.1. Joint Learning with Supervised and Self-
Supervised Tasks

Multi-task learning may improve the model robustness
and generalizability. We aim to investigate the efficacy
of joint training with self-supervision on dense prediction
tasks as the targets. The shared representation between the
target task t and an auxiliary task a may be more effective
than training on t alone.

In the traditional MTL setup, the label sets Yt, and Ya,
are manually labeled. In contrast, the auxiliary labels Ya
in CompL are implicitly created in the self-supervised task.
Formally, CompL aims to produce the two predictive func-
tions ft(θs, θt) : Xt → Yt and fa(θs, θa) : Xa → Ya,
where ft and fa share parameters θs and have disjoint pa-
rameters θ{t,a}. During inference we are only interested in
ft, however, we hypothesize that we can learn a more ef-
fective parameterization through the above weight sharing
scheme. In our investigation, ft and fa are trained jointly
using samples (Xt, yt) and (Xa, ya).

The overall optimization objective therefore becomes

min
θs,θt,θa

Lt((Xt, yt); θs, θt) + λLa((Xa, ya); θs, θa), (1)

where Lt and La are the losses for the supervised and
self-supervised tasks respectively, and λ is a scaling fac-
tor controlling the magnitude and importance of the self-
supervised task.

The experiments in this paper use the same dataset for
both the target and auxiliary tasks. We additionally train
our models using different-sized subsets (X ′t, y

′
t) for the

target task, where X ′t ⊆ Xt = Xa. However, the above
is not a necessary condition for CompL, meaning the self-
supervised task could be trained on an independent dataset.
Training method We jointly optimize two objectives. We
construct a minibatch by sampling at random independently
from the two training sets. For simplicity, we sample an
identical number of images from each training set. The
input images Xt and Xa are treated independently. This
enables us to apply task/method-specific augmentations to
each task input without causing task conflicts. We apply the
baseline augmentations to Xt, ensuring a fair comparison

with our single-task baselines. Xa used for self-supervised
training is instead processed with the proposed task-specific
augmentations for each method investigated. These aug-
mentations include Gaussian blur and rotation. They can
significantly degrade performance for dense tasks if ap-
plied on the target task, but they are important for self-
supervision. Therefore, by using distinct augmentations
on two tasks, we can minimize performance degradation
brought by training the auxiliary tasks.

3.2. Self-Supervised Methods in Our Study

Rotation (Rot) [27] proposed to utilize 2-dimensional ro-
tations on the input images to learn feature representations.
Specifically, they optimize a classification model to predict
the rotation angles, equally spaced in [0◦, 360◦). Joint op-
timization with self-supervised rotation has demonstrated
success in semi-supervised image classification [26, 69],
and enhanced robustness to input/output corruptions [36],
making it a prime candidate for further investigation in a
dense prediction setting.

Global contrastive Global contrastive methods treat every
image as its own class, while artificially creating novel in-
stances of said class through random data augmentations. In
this work, we evaluate contrastive methods using Momen-
tum Contrast (MoCo) [31], and specifically MoCo v2 [14].
These methods formulate contrastive learning as dictionary
look-up, enabling for the construction of a large and con-
sistent dictionary of size |Z| without the need for large
batch sizes, a common challenge amongst dense prediction
tasks [11]. MoCo is optimized using InfoNCE [50], a con-
trastive loss function defined as

L = − log
exp (z+/τ)∑
z∈Z

exp (z/τ)
. (2)

InfoNCE is a softmax-based classifier that optimizes for
distinguishing the positive representation z+ from the |Z|−
1 negative representations. The temperature τ is used to
control the smoothness of the probability distribution, with
higher values resulting in softer distributions.

Local contrastive In dense predictions tasks, we desire
a fine-grained pixel wise prediction rather than a global
one. As such, we further investigate the difference be-
tween global contrastive MoCo v2 [14], and its variant
DenseCL [62], that includes an additional contrastive loss
acting on local representations.

3.3. Network Structures

Dense prediction networks are initially pre-trained on
classification, and then modified according to the down-
stream task of interest, e.g., by introducing dilations [66]. In
our investigation, we jointly optimize heterogeneous tasks
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Table 1. Monocular depth estimation performance in RMSE on NYUD-v2. ‘→’ denote transfer learning methods, while ‘+’ denote joint
training (CompL). Initialization with DenseCL coupled with DenseCL joint training outperforms all other methods.

Model Labeled Data

5% 10% 20% 50% 100%

Depth 0.8871 0.8120 0.7471 0.6655 0.6223

Rot → Depth 1.0830 1.0120 0.9114 0.8322 0.7822
MoCo → Depth 0.8758 0.7708 0.7113 0.6311 0.5890
DenseCL → Depth 0.8736 0.7726 0.7152 0.6321 0.5982

Depth + Rot 0.8762 0.8071 0.7298 0.6460 0.6107
Depth + MoCo 0.8501 0.7955 0.7206 0.6434 0.6000
Depth + DenseCL 0.8479 0.7866 0.7131 0.6420 0.5990

MoCo → MoCo + Depth 0.8614 0.7732 0.7008 0.6220 0.5773
DenseCL → DenseCL + Depth 0.8468 0.7641 0.6989 0.6157 0.5690
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Figure 2. Monocular depth estimation performance in RMSE on different ResNet encoders. Use of CompL (orange) denotes the addition
of the best performing self-supervised objective (DenseCL). CompL consistently outperforms the baselines in all experiments.

such as a dense prediction task and image rotations. There-
fore, our networks call for special structure considerations.
This section presents the details.

Dense prediction networks Common dense prediction
networks use an encoder-decoder structure [53, 3], maintain
a constant resolution past a certain network depth [67], or
even utilize both high and low representation resolutions in
multiple layers of the network [59]. Due to the large differ-
ences among networks, we opt to treat the entire network as
a single unit, and only utilize the last feature representation
of the networks for the task-specific predictions. In other
words, we branch out at the last layer and employ a single
task-specific module for the predictions. This ensures that
our findings do not depend on network structures, and it is
easy to generalize to new network designs.

We perform our experiments on DeepLabv3+ [11] based
on ResNets [33]. The networks demonstrated competitive
performance on a large number of dense prediction tasks,
such as semantic segmentation, and depth estimation and
has been used extensively when jointly learning multiple
tasks [47, 6]. Our investigation is primarily on the smaller
ResNet-26 architecture for easy comparison with existing
MTL results. As it is a common practice in dense prediction
tasks, we initialize the ResNet encoder with ImageNet pre-
trained weights, unless stated otherwise.

Task-specific heads The final representation of the dense
prediction networks is utilized in two task-specific modules.
The first module, consisting of a 1×1 convolutional layer,
generates the predictions of the supervised task, with the

output dimension being task dependent, such as the number
of classes. The second prediction head is specific for self-
supervised tasks. Unlike the supervised prediction head,
the self-supervised prediction head is utilized only during
network optimization, and is discarded at test time. The
features for Rot and MoCo are first pooled with a global
average pooling layer. Rot is then processed by an fully
connected layer with output dimensions equal to 4, number
of potential rotations, while MoCo is processed by 2-layer
MLP head with output dimensions equal to 128, feature em-
bedding dimension. DenseCL, on the other hand, gener-
ates two outputs. The first one is identical to MoCo for the
global representation, while for the second representation,
the initial dense features are pooled to a smaller grid size,
and then processed with two 1×1 convolutional layer to get
the local feature representations.

Normalization Large CNNs are often challenging to train,
and thus utilize Batch Normalization (BN) to accelerate
training [38]. In self-supervised training, BNs often degrade
performance due to intra-batch knowledge transfer among
samples. Workarounds include shuffling BNs [31, 14], us-
ing significantly larger batch sizes [13], or even replacing
BNs altogether [34]. To ensure BNs will not affect our
study, and findings can be attributed to the jointly trained
tasks, we replace BNs with group normalization (GN) [63].
We chose GN as it yielded the best performance when
trained on ImageNet [63]. However, other normalization
layers that are not affected by batch statistics can also be
utilized, such as layer [2] and instance [57] normalizations.
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(a) Monocular depth estimation. (b) Semantic segmentation.
Figure 3. t-SNE visualization of the DenseCL local representations. The representations are depicted using their ground-truth maps.
Specifically, (a) depth values for monocular depth estimation and (b) semantic patches for semantic segmentation. The local representations
adapt to the target task, i.e., (a) smooth depth variation for the regression task while (b) clusters are formed for the classification task.
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Figure 4. Monocular depth estimation performance in RMSE on
NYUD-v2 when trained with additional auxiliary tasks. CompL
can improve depth more than training with boundary or normal
predictions. Semantic segmentation can improve the depth predic-
tion more, but it requires expensive manual annotations.

4. Experiments
In this section we investigate the effects of jointly train-

ing dense predictions and self-supervised tasks. To system-
atically assess the effect of joint learning in label-deficient
cases, we use different-sized subsets (X ′T , y

′
t) of the full

target task data (XT , yt), i.e., (X ′T , y
′
t) ⊆ (XT , yt). To en-

sure consistent contribution from the auxiliary task, we al-
ways use the full data split (XA, ya) for the self-supervised
task. The supplementary material includes additional ex-
periments using the same subsets for both tasks.
Implementation details We sample 8 images at random
from each of the target and auxiliary training sets. We apply
the baseline augmentations to target samples, namely, ran-
dom horizontal flipping, random image scaling in the range
[0.5, 2.0] in 0.25 increments, and then crop or pad the image
to ensure a consistent size. The auxiliary loss is scaled by
λ. We found 0.2 works best for MoCo and DenseCL, while
0.05 for Rot. The model is optimized using stochastic gra-
dient decent with momentum 0.9, weight decay 0.0001, and
the “poly” learning rate schedule [10].

4.1. Monocular Depth Estimation

We first evaluate CompL on monocular depth estimation.
Monocular depth estimation is a widely used dense predic-
tion task, and is typically casted as a regression problem.
Experimental protocol Monocular depth estimation is ex-
plored on NYUD-v2 [55], comprised of 795 train and 654

test images from indoor scenes, and evaluated using the root
mean squared error (RMSE) metric. All models are trained
for 20k iterations, corresponding to 200 epochs of the fully
labeled dataset, with an input image size of 425×560, and
are optimized with the L1 loss.

Joint optimization Table 1 presents the performance of
the single-task baseline, “Depth”, and the models trained
jointly with different self-supervised tasks, “Depth + Task
name”. We find that joint training with any self-supervised
task consistently improves the performance of the target
task, even in the fully labeled dataset. In particular, joint
training with self-supervision yields the biggest perfor-
mance improvements on the lower labeled percentages,
where the importance of inductive bias increases [5]. These
findings are consistent also when utilizing stronger ResNet
encoders, as depicted in Fig. 2 for the best performing self-
supervised DenseCL method.

DenseCL contrasts both local and global representations,
yielding richer representations for dense task pre-training,
as compared to the image-level self-supervised tasks. We
find this to also be the case in our joint-training setup,
where richer local representations help guide the optimiza-
tion of depth. To better understand the benefit of utilizing
DenseCL for joint training with depth, we visualize the rep-
resentations in Fig. 3a using a t-SNE plot [58]. Specifi-
cally, we depict the latent representations of DenseCL using
their corresponding ground-truth depth measurements. The
depth values smoothly transition from larger distances (in
red) to smaller distances (in blue). This indicates that the
DenseCL objective, which is discriminative by construc-
tion, promotes a smooth variation in the representations
when combined with a regression target objective.

Traditional MTL In order to determine how CompL com-
pares to traditional MTL, we evaluate and compare the ef-
fect of using labeled auxiliary tasks. Specifically, we in-
vestigate the effect of the remaining three tasks of NYUD-
v2, that is, boundaries, normals, and semantic segmenta-
tion, in Fig. 4. For fair comparisons to CompL, the auxil-
iary tasks also use the entire dataset. CompL consistently
outperforms the use of labeled boundaries and normals as
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Table 2. Semantic segmentation performance in mIoU on the PASCAL VOC dataset. ‘→’ denote transfer learning methods, while ‘+’
denote joint training (CompL). Joint training with DenseCL significantly outperforms the “Semseg” baselines.

Model Labeled Data

1% 2% 5% 10% 20% 50% 100%

Semseg 30.82 37.66 49.95 55.17 61.30 67.38 70.42

Rot → Semseg 10.35 12.43 18.29 24.71 29.21 35.43 39.46
MoCo → Semseg 31.55 37.55 48.60 53.27 58.74 64.04 68.09
DenseCL → Semseg 34.89 39.72 50.96 55.60 61.13 65.71 69.56

Semseg + Rot 28.75 36.81 50.46 56.21 62.17 67.96 70.52
Semseg + MoCo 32.90 40.31 52.18 56.50 62.49 68.40 71.15
Semseg + DenseCL 33.51 40.91 52.76 57.33 63.22 68.81 71.16

DenseCL → Semseg + DenseCL 36.32 41.24 52.94 56.87 62.71 65.89 69.81
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Figure 5. Semantic segmentation performance in mIoU on different ResNet encoders. Use of CompL (orange) denotes the addition of the
best performing self-supervised objective (DenseCL). CompL consistently outperforms the baselines in all experiments.

auxiliary tasks. This is particularly pronounced in the lower
data splits where the contribution of CompL becomes more
prominent, while boundaries and normals contribute less.
Surface normals, derivatives of depth maps, could be ex-
pected to boost depth prediction due to their close relation-
ship. However, we find it to help only marginally. On the
other hand, joint training with semantic segmentation con-
sistently improves the baseline performance, which aligns
with findings in the previous works [12, 28, 39]. These re-
sults exemplify the importance of an arduous iteration pro-
cess in search of a synergistic auxiliary task, where knowl-
edge of label interactions are not necessarily helpful. This
process is further complicated when additional auxiliary
task annotations are needed. Therefore, eliminating man-
ual labeling from auxiliary tasks opens up a new axis of
investigation for the future of multi-task learning research
as it can enable faster iterations in task interaction research.

Transfer learning The experiments have so far shown
that joint training with self-supervision can enhance per-
formance, and in most cases outperforms traditional MTL
practices. Notably, outperforming the baselines even
when all models are initialized with ImageNet pre-trained
weights, a strong transfer learning baseline. However, is
ImageNet pre-training the best initialization for Depth, and
how does it compare to self-supervised pre-training? In
Table 1 we repeat the baseline experiments starting from
self-supervised pre-training, (“Initial task → Depth”). In
depth estimation, the contrastive methods gain the advan-
tage and outperform the joint training methods. However,
our proposed method is not limited by the initialization

used. We find that initialization with MoCo or DenseCL
weights coupled with joint training (“Initial task → Initial
task + Depth”) can increase the performance even further,
giving the best performing models.

4.2. Semantic Segmentation

We additionally evaluate semantic segmentation. Se-
mantic segmentation is representative for discrete labeling
dense predictions.
Experimental protocol Semantic segmentation (Semseg)
experiments are conducted on PASCAL VOC 2012 [21],
and specifically the augmented version (aug.) from [30],
that provides 10,582 train and 1,449 test images. We eval-
uate performance in terms of mean Intersection-over-Union
(mIoU) across the classes. All models are trained for 80k
iterations, accounting for 60 epochs of the fully labeled
dataset, and are optimized with the cross-entropy loss with
image input size of 512×512.
Joint optimization Table 2 present the performance of the
single-task baseline and the models trained jointly with dif-
ferent self-supervised tasks. In contrast to findings from
classification literature [26, 69], joint training with Rot min-
imally affects the performance in most cases, with lower
labeled percentages even incurring a performance degrada-
tion. On the other hand, the contrastive methods increase
performance on all labeled splits, with lower labeled per-
centages incurring the biggest performance improvement.
These findings are once again consistent when utilizing
stronger ResNet encoders, as depicted in Fig. 5 for the
best performing self-supervised method DenseCL. Similar
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Figure 6. Semantic segmentation performance in mIoU trained on
PASCAL VOC and evaluated on BDD100K. The local contrastive
loss of DenseCL provides significant robustness improvements.

to depth, we further visualize in Fig. 3b the latent represen-
tations contrasted by DenseCL, and depict them with their
ground-truth semantic maps. Unlike in depth regression,
where the representations were smooth due to the continu-
ous nature of the problem, the DenseCL representations for
semantic segmentation form clusters given the discrimina-
tive nature of semantic segmentation.

Robustness to zero-shot dataset transfer So far we have
only evaluated on the same distribution as that used for
training, however, distribution shifts during deployment are
common. We therefore investigate the generalization ca-
pabilities to new and unseen datasets. We evaluate the
zero-shot capabilities of the models on the challenging
BDD100K [65] dataset in Fig. 6, a diverse driving dataset.
The test frames from BDD100K are therefore significantly
different to those observed during training, making zero-
shot transfer particularly interesting due to the large domain
shift. We report the mIoU with respect to the shared classes
between the two datasets. Please refer to the supplementary
for the table of the BDD100K experiments.

We find that Rot often performs worse than the baseline
model. This yields dissimilar findings to classification [36]
that observed increased robustness, attributed to the strong
regularization induced by the joint training. For Semseg,
such regularizations degrade the fine-grained precision re-
quired. Joint training with DenseCL significantly outper-
forms all other self-supervised methods. While MoCo was
comparable to DenseCL on VOC (Table 2), we find that
local contrastive plays a big role in improving robustness.
Interestingly, when using 100% of the data points, perfor-
mance on all methods utilizing self-supervision is lower
than when using 50% of the labels. We conjecture that,
using the fully labeled split decreases the influence of self-
supervision, making the model more prone to overfit to the
training dataset and loose generalizability.

Transfer learning Table 2 additionally reports the base-
line experiments starting from self-supervised pre-training
(indicated by “Initial task→ Semseg”), or additionally op-

Table 3. Boundary detection performance in ODS F-score on
the BSDS500 dataset. ‘→’ denote transfer learning methods,
while ‘+’ denotes joint training. Performance improvements are
marginal, in contrast to the findings for other target tasks.

Model Labeled Data

10% 20% 50% 100%

Boundaries 71.10 73.50 75.90 76.80

Rot → Boundaries 60.20 62.80 66.00 67.70
MoCo → Boundaries 71.00 73.40 75.60 76.40
DenseCL → Boundaries 68.90 71.70 75.40 75.90

Boundaries + Semseg 70.60 73.30 75.60 76.90

Boundaries + Rot 69.70 73.00 75.70 76.60
Boundaries + MoCo 71.30 73.80 76.20 76.90
Boundaries + DenseCL 71.30 73.90 76.00 76.20

timized with the best performing DenseCL method, as in
the Depth experiments. Joint training with self-supervision
consistently outperforms the sequential training counter-
part, and in the majority of the cases by a significant margin.
In other words, CompL consistently reports performance
gains when initializing with either ImageNet or DenseCL.

4.3. Boundary Detection

Boundary detection is another common dense prediction
tasks. Unlike depth prediction and semantic segmentation,
the target boundary pixels only account for a small percent-
age of the overall pixels. We find that CompL significantly
improves the model robustness for boundary detection.

Experimental protocol We study boundary detection on
the BSDS500 [1] dataset, consisting of 300 train and 200
test images. Since the ground truth labels of BSDS500 are
provided by multiple annotators, we follow the approach
of [64] and only count a pixel as positive if it was annotated
as positive by at least three annotators. Performance is eval-
uated using the Optimal-Dataset-Scale F-measure (ODS F-
score) [48]. All models are trained for 10k iterations on
input images of size 481×481. Following [64], we use a
cross-entropy loss with a weight of 0.95 for the positive and
0.05 for the negative pixels.

Joint optimization Table 3 presents the performance of
the single-task baseline and the models trained jointly with
different self-supervised tasks. Compared to the previous
two tasks, boundary detection is marginally improved by
CompL. Since convolutional networks are biased towards
recognising texture rather than shape [23], we hypothesize
that the supervisory signal of contrastive learning interferes
with the learning of edge / shape filters essential for bound-
ary detection. To investigate this hypothesis further, we
jointly train boundary detection with a labeled high-level
semantic task. Specifically, we jointly train boundary detec-
tion with the ground-truth foreground-background segmen-
tation maps for BSDS500 [1] from [20]. As seen in Table 3,
the incorporation of semantic information once again does
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Table 4. Performance of a multi-task model for monocular depth estimation in RMSE and semantic segmentation in mIoU on NYUD-v2.
‘+’ denote joint training. The multi-task model combined with CompL yields consistent improvements in both tasks.

Model Depth Labeled Data ↓ Semseg Labeled Data ↑

5% 10% 20% 50% 100% 5% 10% 20% 50% 100%

Depth + Semseg 0.997 0.904 0.794 0.665 0.606 10.46 14.99 19.41 26.24 31.66

Depth + Semseg + DenseCL 0.902 0.806 0.744 0.641 0.590 10.72 15.29 20.08 28.18 33.48
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Figure 7. Boundary detection performance in ODS F-score trained
on BSDS and evaluated on NYUD. The additional local contrast
of DenseCL increases robustness to zero-shot dataset transfer.

not enhance the single-task performance of boundaries, and
even slightly degrades at lower percentage splits.

While CompL yielded performance improvements for
monocular depth estimation and semantic segmentation as
target tasks, boundary estimation does not observe the same
benefits. This further demonstrates the complexity of iden-
tifying a universal auxiliary task for all target tasks. In-
stead, it demonstrates the importance of co-designed self-
supervised tasks alongside the downstream task.

Robustness to zero-shot dataset transfer We evaluate the
zero-shot dataset transfer capabilities of the BSDS500 [1]
models from Table 3 on NYUD-v2 [55]. Interestingly, even
though CompL did not significantly improve the perfor-
mance in Table 3, we find that the robustness experiments
in Fig. 7 paint a different picture. While MoCo often out-
performed DenseCL in Table 3, and most methods perform
comparatively to the baseline, the additional local constrast
of DenseCL significantly improves the robustness experi-
ments. This can be seen from DenseCL consistently out-
performing the baseline, as well as all other methods.

Transfer learning Table 3 also reports the performance
of the boundary detection transfer learning experiments.
All three transfer learning approaches fare worse than
ImageNet initialization, corroborating our hypothesis that
boundary detection requires representations which are fairly
unrelated to the features learned through self-supervision.

4.4. Multi-Task Model (Semseg and Depth)

Both semantic segmentation (Semseg) and monocular
depth estimation (Depth) observed improvements when
trained under CompL. In this section, we further investi-

gate the applicability of CompL on MTL models optimized
jointly for Depth and Semseg (Depth + Semseg).

Experimental protocol We explore joint training on
NYUD-v2 [55], which provides ground-truth labels for both
tasks. We maintain the exact same hyperparameters as the
models in Sec. 4.1, however, we expect an explicit search
could yield additional improvements. No additional task-
specific scaling of the losses is used, following [47]. For
self-supervised tasks, we only evaluate DenseCL [62], as it
performed the best for both tasks independently.

Joint optimization Table 4 presents the performance of
the baseline multi-task model (Depth + Semseg) and the
model trained jointly with DenseCL (Depth + Semseg +
DenseCL). As in the single-task settings, training under
CompL enhances the performance of both Semseg and
Depth. Specifically, we again observe a performance gain
in every labeled percentage. This demonstrates that, even
in the traditional multi-task setting, the additional use of
CompL has the potential of yielding further performance
gains. In the current setting, Depth observes a noticeable
gain over Semseg in low data regimes. This can be at-
tributed to the DenseCL hyperparameters being optimized
directly for the improvement of Depth. More advanced loss
balancing schemes [15] could yield a redistribution of the
performance gains, however, such investigation is beyond
the scope of our work.

5. Conclusion
In this paper we introduced CompL, a method that ex-

ploits the inductive bias provided by a self-supervised task
to enhance the performance of a target task. CompL ex-
ploits the label-free supervision of self-supervised methods,
facilitating faster iterations through different task combi-
nations. We show consistent performance improvements
in fully and partially labeled datasets for both semantic
segmentation and monocular depth estimation. While our
method eliminated the need for labeling the auxiliary task,
it commonly outperforms the traditional MTL with la-
beled auxiliary tasks on monocular depth estimation. Ad-
ditionally, the semantic segmentation models trained under
CompL yield better robustness on zero-shot cross dataset
transfer. We envision our contribution to spark interest in
the explicit design of self-supervised tasks for their use in
joint training, opening up a new axis of investigation for
future multi-task learning research.
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