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Abstract

Temporal Action Localization (TAL) is a significant and
challenging task that searches for subtle human activities
in an untrimmed video. To extract snippet-level video fea-
tures, existing TAL methods commonly use video encoders
pre-trained on short-video classification datasets. However,
the snippet-level features can incur ambiguity between con-
secutive frames due to short and poor temporal information,
disrupting the precise prediction of action instances. Sev-
eral methods incorporating temporal relations have been
proposed to mitigate this problem; however, they still suf-
fer from poor video features. To address this issue, we
propose a novel temporal action localization framework
called an Action-aware Masking Network (AMNet). Our
method simultaneously refines video features using action-
aware attention and considers inherent temporal relations
using self-attention and cross-attention mechanisms. First,
we present an Action Masking Encoder (AME) that gener-
ates an action-aware mask to represent positive character-
istics, which is then used to refine snippet-level features to
be more salient around actions. Second, we design a Group
Attention Module (GAM), which models relations of tempo-
ral information and exchanges mutual information by divid-
ing the features into two groups, i.e., long and short-groups.
Extensive experiments and ablation studies on two primary
benchmark datasets demonstrate the effectiveness of AM-
Net, and our method achieves state-of-the-art performances
on THUMOS-14 and ActivityNet1.3.

1. Introduction
Temporal Action Localization (TAL) is a core task in

video understanding. TAL has attracted attention recently,
which can be extended to various video-related studies [45],
e.g., video retrieval [16, 11], video surveillance [46, 7], and

video summarization [43, 10]. Given an untrimmed video,
TAL aims to predict start time, end time, and category of
actions. It is a challenging task because classification and
localization are conducted simultaneously to find complex
and vague action instances in the long untrimmed video.

In TAL, various suitable methods have recently been
proposed, with most approaches [35, 39, 14, 48, 17] com-
monly relying on pre-trained video encoders. Specifically,
an untrimmed video is split into snippets and features are
extracted from every snippet. Then, with the extracted fea-
tures, the proposed action detection model is used to predict
action boundaries and categories.

Existing methods are diverse and have remarkable per-
formances but do not fully utilize inherent semantic infor-
mation due to limited feature representation. In particu-
lar, the video encoders, pre-trained for video-level classi-
fication, are not optimized in TAL, and so, the extracted
features with snippet-level videos do not provide sufficient
contextual information. This is because the snippet-level
video contains around 8 to 32 frames. Assuming that
the video is 30 fps, it is approximately 0.27 to 1.07 sec-
onds. This limitation causes ambiguity between consec-
utive frames resulting in the TAL model not being able
to distinguish clearly between frames of action and back-
ground, which can hinder subsequent detection and classi-
fication processes. This ambiguity not only interrupts the
precise prediction of action boundaries but also results in
inconsistency between classification and localization. Even
if the predicted temporal action boundary is exact, inaccu-
rate classification scores can negatively affect the detection
performance by non-maximum suppression (NMS) [4].

In this paper, we propose an Action-aware Masking
Network (AMNet) to address the scene ambiguity through
action-aware attention and self-attention. We first charac-
terize original snippet-level features with positive and neg-
ative components based on the ground truth in the training
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stage. Here, positive and negative parts denote the areas
of actions and background, respectively. We then train an
action-aware attention mask to represent a positive compo-
nent by maintaining a considerable embedded distance from
the negative. Using this mask, we refine the original repre-
sentation to make it more pronounced in the action areas,
considering inherent semantic information. Furthermore, to
utilize the refined feature, we divide the feature into multi-
scale features and apply a self and cross-attention mecha-
nism.

Our proposed framework consists of three main compo-
nents: (i) an Action Masking Encoder (AME), (ii) a Group
Attention Module (GAM), and (iii) prediction heads such as
class, boundary, and matching score heads. The AME gen-
erates the action-aware mask from the video feature, mask-
ing it as a residual-alike approach. The masked feature
benefits temporal action information, maintaining existing
feature information. The GAM contains a feature pyramid
network that generates multi-scale features to cover action
detection of various lengths. Existing methods [25, 42] pro-
cess each multi-scale feature independently. However, this
approach cannot fully utilize a multi-scale structure with
different inherent temporal information. As the feature with
a long temporal dimension tends to focus on the local con-
text and the feature with a short temporal dimension tends to
focus on the global context, we combine the multi-scale fea-
tures into two groups, i.e., long and short groups. We then
conduct cross-attention between the two groups to compen-
sate for the lack of knowledge. Our prediction heads consist
of class, boundary, and matching score heads. The match-
ing score head generates matching scores, which are further
multiplied by the classification scores.

Our proposed AMNet demonstrates effectiveness by
conducting extensive experiments on two benchmark
datasets: THUMOS-14 [18] and ActivityNet1.3 [5]. As
a result, we achieve state-of-the-art performance, and our
contributions can be summarized as follows:

• We propose an AMNet, in which the AME gener-
ates an action-aware mask that refines the snippet-level
video feature by applying action-aware attention to ad-
dress the scene ambiguity. It emphasizes the action
area of the feature by masking the original video fea-
ture.

• We design a GAM, which models the inherent tempo-
ral relation by combining multi-scale features into two
groups and applying cross-attention.

• We conduct extensive experiments, and our method
outperforms other state-of-the-art methods on two pri-
mary datasets, i.e., THUMOS-14 and ActivityNet1.3.
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Figure 1. The overall pipeline of the typical TAL. After an video
encoder extracts a video feature, the TAL model generates the pro-
posals that consist of the temporal action boundaries and classifi-
cation scores. In the post-processing stage (right of the figure),
NMS suppresses proposals with a lower classification score or
overlapping with other proposals over the threshold.

2. Related Work
2.1. Action Recognition

Action recognition [1, 37] has been actively studied for
a long time as an area of pattern recognition [36, 23, 22,
24, 15] and a fundamental task for TAL. The traditional
action recognition methods can be divided into skeleton-
based methods (Shift-GCN [9]), and video-based methods
(TSN [41] and I3D [6]). The I3D model, which is a two-
stream inflated 3D convolutional network utilizing RGB
and optical flow, is most prevalent in TAL. The I3D in-
creases the receptive fields of 2D CNN by inflating the con-
volution filters and kernel sizes of pooling, thereby con-
sidering temporal dimensions. We adopted the I3D model
pre-trained on the Kinetics dataset [21] because of its supe-
rior ability for action recognition. However, the snippet-
level video features extracted by the video encoder can
have limited temporal information because of the short-term
snippet-level videos. Our proposed method focuses on mit-
igating this problem.

2.2. Temporal Action Localization

Unlike action recognition, the datasets for TAL are
untrimmed long videos. Furthermore, TAL conducts two
tasks simultaneously, namely classification and localization
of actions. Overall TAL process can be divided into three
steps: (i) feature extraction, (ii) prediction using the TAL
model, and (iii) post-processing using Soft-NMS [4], as
shown in Fig. 1. Most TAL methods [39, 20, 44] utilize
the pre-trained action recognition model as the backbone
architecture to extract video features. With these extracted
features, the TAL methods focus on the prediction stage.
However, we argue that offline snippet-level features can
be sub-optimal for localization actions because of insuffi-
cient temporal knowledge. To address this issue, we refine
the snippet-level video features by conducting action-aware
attention with an action-aware mask generated by the pro-
posed AME.
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Figure 2. Action-aware Masking Network (AMNet): Our training process can be divided into mask representation learning (left) and
action detector learning (right). In mask representation learning, we first divide the snippet-level features into positive and negative
components, where the positives are inside, and the negatives are outside of the ground truth’s temporal boundary. Then, an Action
Masking Encoder (AME) is trained to represent the positive parts using a triplet loss. Next, the Group Attention Module (GAM) and
predictors generate the final outputs using masked features. Finally, each loss is calculated, i.e., class, boundary, and matching losses.
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Figure 3. Action Masking Encoder (AME) generates an action-
aware mask from the video feature. Each feature in the figure de-
notes a mean of the channels. As shown in this figure, the masked
feature is more salient around the action than the video feature.

2.3. Transformer

Since the emergence of the transformer [40] in the
area of Natural Language Processing (NLP), transformer-
based architectures have been actively studied in computer
vision for tasks such as image [12] and video process-
ing [3, 19, 31]. The receptive field of typical convolu-
tional networks is limited due to filter sizes. In contrast, the
transformer effectively utilizes global dependencies with
multi-head self-attention, thus demonstrating superior per-
formance. Considering this, we also adopt the encoder of
the transformer to model the relation between temporal lo-
cations. Furthermore, we combine multi-scale features into
long and short groups and conduct cross-attention to model
the dependency on each group.

3. Proposed Method
In this section, we present a novel TAL framework called

an Action-aware Masking Network (AMNet), which con-
sists of three main components: an Action Masking En-
coder (AME), a Group Attention Module (GAM), and
prediction heads. Specifically, we refine video features with
an action-aware mask generated through AME and model
each relation of multi-scale features by grouping through
GAM. In training, our method is asynchronously processed
in two steps; therefore we first explain (i) mask representa-
tion learning. We then introduce (ii) action detector learn-
ing. The overall pipeline of our method is shown in Fig. 2.

3.1. Problem Settings and Feature Extraction

Given an untrimmed video, TAL aims to predict the ac-
tions’ start time, end time, and confidence score. As a first
step, we extract the video feature F for each snippet-level
video, which contains a few frames (e.g., 16 frames), us-
ing the pre-trained video encoder [6]. The extracted video
feature can be denoted as F ∈ RT×C , where T and C are
temporal dimension and channels.

3.2. Mask Representation Learning

In mask representation learning, we train the AME, gen-
erating an action-aware mask to refine the video feature
F through action-aware attention. Specifically, according
to the ground truth, we divide the video feature into pos-
itive (Action) and negative (Background) components as
shown in Fig. 2. Then, we collect and concatenate the corre-
sponding snippet-level features along the temporal dimen-
sion. The positive Fpos ∈ RTP×C and negative features
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Fneg ∈ RTN×C have TP and TN lengths of which the sum
equals T . Next, AME generates the mask, positive and neg-
ative attention from the video feature, respectively. We can
formulate it as:

AME(x) = Conv1d({σ(ε(Conv1d(x)))}×K),
Fmask = AME(F )

F̂pos = AME(Fpos)

F̂neg = AME(Fneg),

(1)

where σ, ε, and K denote an activation, normalization func-
tion, and the number of layers, respectively. We note that
the positive and negative features must have orthogonal
properties. Furthermore, the mask must be able to repre-
sent each attention. To this end, we adopt a triplet loss [38]
widely used for feature representation learning or cluster-
ing. To briefly explain it, we set the mask Fmask to anchor
and find the Euclidean distance of the embedded anchor,
positive and negative, as follows:

dpos =
∥∥∥Fmask − F̂pos

∥∥∥2
2
,

dneg =
∥∥∥Fmask − F̂neg

∥∥∥2
2
.

(2)

Here, we intend to minimize dpos and maximize dneg . So,
the triplet loss Ltrip can be formulated as:

Ltrip = [dpos − dneg + α]+, (3)

where α denotes a margin enforced between positive and
negative pairs. With this loss, we can obtain the action-
aware mask with AME that encodes the feature salient to
the positive one.

3.3. Action Detector Learning

In action detector learning, we start to train our AM-
Net in earnest. First, we introduce a detailed refinement of
the video feature process using AME. Next, we present the
structure of the GAM for modeling inherent temporal rela-
tions between long and short groups. Finally, we explain
about three prediction heads: (i) class head, (ii) boundary
head, and (iii) matching score head. The details are ex-
plained below.
Refinement of Video Feature To obtain the optimal fea-
ture for TAL that has salient values around the action area,
we first generate an action-aware mask using the AME.
Next, we obtain a masked feature by action-aware attention,
conducting the residual-alike operation as follows:

Fmask = AME(F ),

F̂ = F + Fmask,
(4)

where F ∈ RT×C and Fmask ∈ RT×C denote the video
feature and the action-aware mask, respectively. After con-
ducting action-aware attention, we can observe that the
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Figure 4. Group Attention Module (GAM) consists of three
components: (i) feature pyramid network, (ii) self-attention mod-
ules, and (iii) cross-attention modules. We combine the multi-
scale features generated from the feature pyramid network into two
groups, i.e., large and short groups based on the temporal dimen-
sion.

masked feature is refined to be salient around the action
area, as shown in Fig. 3. Afterward, the masked feature
F̂ ∈ RT×C is used for input of GAM.
Group Attention Module (GAM) To fully utilize the
inherent semantic knowledge of the masked feature F̂ , we
build a GAM that models the temporal relations of each
time step, as shown in Fig. 4. To obtain temporal action
boundaries of various lengths, the masked feature F̂ is di-
vided into K multi-scale features {F i

m ∈ RTi×C}Ki=1 by
the feature pyramid network, which consists of 1D CNNs.
Each multi-scale feature has different temporal dimensions,
reduced by half, respectively. Afterward, we conduct self-
attention on each multi-scale feature (F 1

m, F 2
m, · · · , FK

m ) to
model the relation between each temporal location. First,
the multi-scale features are projected into query Q, key K,
and value V, respectively as follows:

Qi = W i
q · F i

m

Ki = W i
k · F i

m i ∈ {1, 2, · · · ,K},
Vi = W i

v · F i
m

(5)

where W denotes a learnable weight that projects the fea-
ture into query, key, and value. With these projected fea-
tures, we conduct a self-attention operation, which is for-
mulated as follows:

atti = softmax(
QiK

T
i√

D
)Vi, (6)

where D denotes the channel of each attention head. The
channel D is calculated as C

Nh
where Nh is the number of

attention heads.
After conducting the self-attention operation, we com-

bine the multi-scale features into two groups: long and short
groups, based on the length of the temporal dimension as
follows:
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Gshort = [g(F 1
m), · · · , g(F

K
2

m )],

Glong = [g(F
K
2 +1

m ), · · · , g(FK
m )],

(7)

where [·] and g(·) denote temporal-wise concatenation and
self-attention, respectively. Note that the features with vari-
ous temporal dimensions benefit from generating proposals
of various lengths. Specifically, the feature with a longer
temporal dimension, which focuses on local context, tends
to generate relatively short action boundaries. In contrast,
the feature with a shorter temporal dimension, which fo-
cuses on the global context, tends to generate relatively long
action boundaries. It is because the predicted absolute dis-
tance values of start and end from specific time steps have
a lower percentage in the long temporal dimension than in
the short temporal dimension, and vice versa. So, we con-
duct cross-attention between two groups (long and short) to
compensate for the lack of semantic knowledge as follows:

QS = Wcq ·Gshort, QL = Wcq ·Glong,
KS = Wck ·Gshort, KL = Wck ·Glong,
VS = Wcv ·Gshort, VL = Wcv ·Glong,

GL→S = MLP(ϵ(MCA(KS ,VS ,QL))),

GS→L = MLP(ϵ(MCA(KL,VL,QS))),

(8)

where ϵ, MLP and MCA denote layer normalization, multi-
layer perceptron, and multi-head cross-attention, respec-
tively. We then reshape each GL→S and GS→L as the
shape of the original multi-scale features denoted as {F̂i ∈
RTi×C}Ki=1 before predicting the final outputs.
Prediction Heads General TAL methods predict two
outputs: temporal boundary and action category. However,
these methods unfortunately often neglect the inconsistency
between classification and localization derived from scene
ambiguity, which is one of the main factors that cause per-
formance degradation. Therefore, we add auxiliary output,
the matching score, to make the confidence scores robust
against incorrect suppression by Soft-NMS [4] in inference
time.

Our prediction heads (i.e., class, boundary, and matching
score heads) are composed with 1D convolutional layers.
They use the main block of the same structure as follows:

Block(x) = {σ(ϵ(Conv1d(x)))}×K , (9)

where σ, ϵ, and K denote an activation function, layer nor-
malization, and the number of layers, respectively. The final
outputs, such as the temporal boundaries, confidence scores,
and matching score, are generated as follows:

ŷi = FC(Block(F̂i)),

B̂i = σ(FC(Block(F̂i))× ωB),

m̂i = FC(Block(F̂i))× ωM ,

(10)

where ŷi ∈ RTi×NC , B̂ ∈ RTi×2, and m̂ ∈ RTi×1 denote
the predicted confidence score with NC classes, temporal
boundary, and matching score, respectively. In addition, we
adjust the scales of boundaries and matching scores through
the learnable weights ωB and ωM , respectively.

3.4. Loss Function

In this section, we introduce the loss functions of our
proposed method. As mentioned above, we train our model
in two phases: (i) mask representation learning and (ii) ac-
tion detector learning. The triplet loss Ltrip in the mask rep-
resentation learning first processes back-propagation. And
then, we conduct back-propagation of the losses in the ac-
tion detector learning.

The losses of the action detector consist of class Lcls,
boundary Lreg , and matching score Lmat losses. We adopt
a focal loss [28] for classification, which alleviates the
class imbalance problem. Also, we use an tIoU loss for
the boundary regression, which calculates the percentage
of overlapping the predicted boundaries B̂ = (t̂s, t̂e) and
ground truths, where t̂s and t̂e denote the action’s start time
and end time, respectively. Furthermore, we use the mean
squared error between the matching score m̂ and the tIoU
value of the predicted boundary for the matching loss. Here,
we normalize the matching score using a hyperbolic tangent
function, which enriches the output range and slightly in-
creases the performance than using a sigmoid function, as
shown in Tab. 4. These losses can be formulated as follows:

Lcls =
∑
k

(FL(ŷk, yk)),

Lreg =
∑
k

(1− tIoU(B̂k,Bk)),

Lmat =
∑
k

(tanh(m̂k)− tIoU(B̂k,Bk))
2,

(11)

where y, ŷ, and FL denote the ground truth of class, pre-
dicted confidence score, and the focal loss, respectively.

The total loss can be formulated as:

L = Lcls + λ1(Lreg + Lmat) + λ2Ltrip, (12)

where λ1 and λ2 denote the weights balancing between the
losses.

3.5. Inference

Given an untrimmed video X , our method outputs the
distances from each time steps {(dsi , dei )}Ti=1, confidence
score ŷ, and matching score m̂, where i denotes the time
steps. From the distances, we calculate the boundaries
B̂i = (t̂si , t̂

e
i ) as follows:

t̂si = i− dsi ,

t̂ei = i+ dei .
(13)
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Method Feature
THUMOS14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.

BSN (ECCV’18) [27] TSN [41] 53.5 45.0 36.9 28.4 20.0 36.8 46.5 30.0 8.0 30.0
BMN (ICCV’19) [26] TSN [41] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9
G-TAD (CVPR’20) [44] TSN [41] 54.5 47.6 40.3 30.8 23.4 39.3 50.4 34.6 9.0 34.1
TCA-Net (CVPR’21) [34] TSN [41] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5
RTD-Net (ICCV’21) [39] I3D [6] 68.3 62.3 51.9 38.8 23.7 - 47.2 30.6 8.6 30.8
ContextLoc (ICCV’21) [48] I3D [6] 68.3 63.8 54.3 41.8 26.2 - 56.0 35.2 3.6 34.2
AFSD (CVPR’21) [25] I3D [6] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4
MUSES (CVPR’21) [30] I3D [6] 68.9 64.0 56.9 46.3 31.0 - 50.0 35.0 6.6 34.0
DCAN (AAAI’22) [8] TSN [41] 68.2 62.7 54.1 43.9 32.6 52.3 51.2 35.9 9.4 35.3
Zhu et al. (AAAI’22) [49] I3D [6] 72.1 65.9 57.0 44.2 28.5 53.5 58.1 36.3 6.2 35.2
Liu et al. (CVPR’22) [29] SlowFast [13] 69.4 64.3 56.0 46.4 34.9 54.2 50.5 36.0 10.8 35.1

Ours I3D [6] 76.7 73.1 66.8 57.2 42.7 63.3 54.3 37.7 8.5 36.4

Table 1. Comparison of our method with other state-of-the-art methods on THUMOS14 and ActivityNet datasets. The results are measured
by mAP (%) at different tIoU thresholds. The second column (Feature) denotes each method’s video encoder.

We normalize the confidence and matching scores using
the sigmoid and hyperbolic tangent functions in the same
manner as training. Then, we obtain a refined confidence ȳ
score by multiplying each other as follows:

ȳ = sigmoid(ŷ) · tanh(m̂). (14)

Finally, we can obtain the final outputs after conducting the
soft-NMS [4] to suppress redundant proposals based on the
refined confidence score.

4. Experiments
In this section, we provide extensive experiments on two

primary datasets: THUMOS14 [18] and ActivityNet1.3 [5].
First, we introduce the two datasets, implementation details,
and evaluation metrics used for our experiments. Next, we
compare our method with previous state-of-the-art meth-
ods, and our overall results show high precision in local-
ization and classification. Furthermore, we conduct various
ablation studies to verify the effectiveness of our method.
Finally, we provide an error profiling [2] that allows us to
analyze our result’s false positive ratios.

4.1. Datasets

In this section, we introduce two primary datasets used
for our experiments:
THUMOS14 [18] contains 413 untrimmed videos with 20
action classes and temporal annotations. According to the
public regulation, we split them into 200 videos for training
and 213 videos for testing.
ActivityNet1.3 [5] contains 19,994 untrimmed videos with
200 action classes and temporal annotations, which is much
larger than THUMOS14. According to the setting of prior
works [27, 26, 44], we split the videos into 10,024 videos
for training, 4,926 videos for validation, and 5,044 videos
for testing by a 2:1:1 ratio.

4.2. Implementation Details

For the THUMOS14 dataset, we train our model for 45
epochs using AdamW [33] optimizer. The batch size is 4
and weight decay is set to 5 × 10−2. We set a learning
rate to 10−4 and adopt a cosine annealing [32] manner. We
use the I3D [6] model, pre-trained on Kinetics dataset [21],
to extract the video features from the video using a sliding
window covering 16 frames with 4 strides. The loss weight
parameters λ1 and λ2 are set to 1, which performed best in
the ablation study in Tab. 5.

For the ActivityNet1.3 dataset, we train our model for 10
epochs using AdamW optimizer. The batch size is 16 and
weight decay is set to 5 × 10−2. We set a learning rate to
10−3 and adopt a cosine annealing manner. We use the I3D
model, pre-trained on Kinetics dataset, to extract the video
features from the video using a sliding window covering 16
frames without overlapping, i.e., 16 strides. The loss weight
parameters λ1 and λ2 are set to 1 as same as THUMOS14
settings. Furthermore, following [27, 44], we utilize the
score fusion manner for reliable results. The video clas-
sification scores from [47] are multiplied by the confidence
score in the inference time.

4.3. Evaluation Metrics

In our experiments, we use mean Average Precision
(mAP) to evaluate TAL performance, which is the mean
value for the average precision of each action class. Fol-
lowing traditional practice, the temporal Intersection over
Union (tIoU) thresholds are set to [0.3:0.1:0.7] for THU-
MOS14 and [0.5:0.05:0.95] for ActivityNet1.3.

4.4. Main Results

In this section, we demonstrate the effectiveness of our
method by comparing it with other state-of-the-art methods
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Figure 5. Per-class performance comparison on THUMOS14. The results are measured by AP@Avg on different tIoU thresholds.

AME GAM MS THUMOS-14
0.3 0.4 0.5 0.6 0.7 Avg.

72.2 66.5 58.5 45.6 29.2 54.4
✓ 73.9 68.1 61.3 48.2 32.1 56.7

✓ ✓ 75.5 71.2 64.5 52.8 36.8 60.2
✓ ✓ 76.4 72.2 65.9 54.7 39.6 61.8

✓ ✓ ✓ 76.7 73.1 66.8 57.2 42.7 63.3

Table 2. Ablation study of the proposed modules such as AME,
GAM, and matching score head (MS) on THUMOS14.

Type THUMOS14
0.5 0.7 Avg.

Baseline 61.3 32.1 56.7
+ Action-aware attention 62.9 (+1.6) 36.1 (+4.0) 59.1 (+2.4)
+ Self-attention 63.8 (+2.5) 38.0 (+5.9) 60.4 (+3.7)
+ Group-based attention 65.3 (+4.0) 39.1 (+7.0) 61.5 (+4.8)

Table 3. Ablation study of different attention on THUMOS14. The
baseline model is the same as 2nd row in Tab. 2, which consists of
the matching score head.

on THUMOS14 and ActivityNet1.3, as shown in Tab. 1.

THUMOS14 We compare our method with other state-
of-the-art methods on THUMOS14 in Tab. 1. Our method
noticeably achieves the superior mAP at all thresholds,
reaching 63.3%. In particular, our method surpasses the
Zhu et al. [49] method by +4.6% mAP@0.3 absolute im-
provement, reaching 76.7%. Furthermore, our method
outperforms the previous state-of-the-art method (Liu et
al. [29]) by +7.8% mAP@0.7 absolute improvement.

ActivityNet1.3 We compare our method with other
state-of-the-art methods on ActivityNet1.3 in Tab. 1. At
tIoU=0.75, we achieve the highest mAP, which surpasses
the TCA-Net [34] method by 1.0% absolute improvement,
reaching 37.7%. Furthermore, although our method does
not achieve the highest mAP@0.5 and mAP@0.95, we out-
perform other methods with a 0.9% gap at mAP@Avg. We
guess two reasons for weaker performance improvement

Confidence Score THUMOS14
0.3 0.5 0.7 Avg.

sigmoid(ŷ) 75.9 63.8 35.6 59.8
sigmoid(ŷ) · sigmoid(m̂) 76.5 (+0.6) 65.4 (+1.6) 40.7 (+5.1) 62.1 (+2.3)
sigmoid(ŷ) · tanh(m̂) 76.7 (+0.8) 66.8 (+3.0) 42.7 (+7.1) 63.3 (+3.5)

Table 4. Ablation study of different designs of confidence score on
THUMOS14.

λ1 λ2
THUMOS14

0.3 0.4 0.5 0.6 0.7 Avg.

0.5 0.5 76.7 72.7 66.3 55.4 41.0 62.4
1 0.5 76.0 72.6 64.4 55.1 41.7 62.0

0.5 1 76.7 72.5 65.8 55.6 41.4 62.4
1 1 76.7 73.1 66.8 57.2 42.7 63.3
2 1 76.0 72.1 65.1 54.5 41.1 61.8
1 2 75.8 71.9 65.0 55.6 41.6 62.0
2 2 76.5 72.6 64.9 55.1 40.0 61.8

Table 5. Ablation study of the balanced weight between the differ-
ent losses on THUMOS14.

than on THUMOS14: First, it is more challenging to clas-
sify because ActivityNet1.3 has more action categories (200
classes) than THUMOS14 (20 classes). Second, because
the temporal locations of ground truths are not diverse, the
action detector is overfitted on the biased situations.

4.5. Ablation Study

Effectiveness of Proposed Modules We evaluate the ef-
fectiveness of our key modules, such as AME, GAM, and
the matching score head (MS), as shown in Tab. 2. We adopt
the anchor-free method [25] as the baseline model (1st row),
which is improved through various training techniques such
as cosine annealing and label smoothing with optimal pa-
rameter choices. In 2nd row, the result shows that the match-
ing score head mitigates the inconsistency problem by re-
fining the confidence score, improving +2.3% mAP@Avg
compared to the baseline. Furthermore, in 3rd and 4th rows,
we can observe that our key modules AME and GAM con-
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Figure 6. The ablation study of different matching loss designs on
THUMOS14, measured by mAP (%) at different tIoU thresholds.

siderably improve the performance with +3.5% and +5.1%
mAP@Avg compared to 2nd row. Finally, our complete
model improves the performance by +8.9% mAP@Avg
compared to the baseline. We also conduct the ablation
study of each attention effect in Tab. 3, where the baseline
(1st row) is the same as 2nd row in Tab. 2. Each row (2nd-4th

rows) results from the baseline added the corresponding at-
tention. The results show that group-based attention carries
the highest gain by +4.8 mAP@Avg compared to the base-
line. These ablation studies demonstrate that the AME and
GAM contribute significantly to performance improvement.
Additionally, we provide the detailed comparison (Fig. 5)
of per-class between the baseline (1st row in Tab. 2), the
baseline with GAM and MS (3rd row in Tab. 2), and our
complete model.

Refinement of Confidence Score To verify the effec-
tiveness of refining the confidence score with matching
score, we conduct an ablation study by changing the design
of confidence score, as shown in Tab. 4. 1st row denotes
the result when our model infers using the vanilla confi-
dence score trained without the matching score head. 2nd

and 3rd rows denote the refined confidence scores by dif-
ferent matching scores. The results show that the hyper-
bolic tangent function slightly improves performance than
the sigmoid function. We conjecture it is because the hy-
perbolic tangent function widens the matching score range.

Matching Loss To choose the suitable loss of the match-
ing score, we experiment with the different designs of the
matching losses Lmat on THUMOS14 dataset, as shown in
Fig. 6. In the case of binary cross entropy (BCE), we re-
place the hyperbolic tangent function (eq. 11) with the sig-
moid function, as the input of BCE must be positive values.
The results show that L2 loss is the most stable and robust
for predicting tIoU values of temporal boundaries.

Balancing Weights between Losses To find the opti-
mal balancing weights, we conduct a grid search on THU-
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Figure 7. Error chart of our detection result, drawn up using DE-
TAD [2]. There are error rates of 5 types on top-10G predictions,
where G denotes the number of ground truths. Detailed instruc-
tions about the chart are in DETAD [2].

MOS14 dataset, as shown in Tab. 5. First, we set the two
hyper-parameters: λ1 for regression losses and λ2 for the
triplet loss, considering the weight for classification loss to
1, and we set the weight range to [0.5:0.5:2]. As a result, we
can observe that the setting when all weights are equivalent
yields the best performance.

Errors of Our Result To analyze the limitations of our
model, we provide the false positive error chart [2] of our
detection results. The experiment results are reported at the
fixed 0.5 tIoU threshold on THUMOS14 dataset. As shown
in Fig. 7, we can observe that the impact of localization and
background errors is significant. We expect a more precise
regression loss design to mitigate them in further works.

5. Conclusion
In this paper, we propose a novel temporal action lo-

calization framework called AMNet, to address the ambi-
guity between consecutive frames caused by poor tempo-
ral information of video features. In particular, we present
an AME to represent semantic action features and explic-
itly apply action-aware attention to video features extracted
from a pre-trained video encoder. Furthermore, we propose
a GAM to model temporal semantic knowledge by group-
ing multi-scale features. The extensive experimental results
on THUMOS14 and ActivityNet1.3 demonstrated that our
AMNet has high fidelity of localization and classification
and can therefore achieve state-of-the-art performance.
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