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Abstract

Graph convolutional networks (GCNs) have brought re-
markable progress in skeleton-based action recognition.
However, high computational cost and large model size
make models difficult to be applied in real-world embed-
ded system. Specifically, GCN that is applied in automated
surveillance system pre-require models such as pedestrian
detection and human pose estimation. Therefore, each
model should be computationally lightweight and whole
process should be operated in real-time. In this paper, we
propose two different joint-mapping modules to reduce the
number of joint representations, alleviating a total compu-
tational cost and model size. Our models achieve better
accuracy-latency trade-off compared to previous state-of-
the-arts on two datasets, namely NTU RGB+D and NTU
RGB+D 120, demonstrating the suitability for practical ap-
plications. Furthermore, we measure the latency of the
models by using TensorRT framework to compare the mod-
els from a practical perspective.

1. Introduction
Recently, reliable automatic surveillance systems attract

much interest where emergent situations such as swooning,
fighting, and kidnapping situations take place occasionally
at any time. The system should notice surveillance person-
nel immediately and reliably at the moment when emergent
situations take place. Video-based action recognition has
achieved remarkable performance improvements recently
due to large datasets [1, 2, 3] and large models [4, 5]. In
particular, transformer models break records of CNN-based
models in performance [6, 7, 8], but they are too heavy
for practical applications. Furthermore, video-based action
recognition methods require large amount of training data to
deal with a variety of scenes and cluttered backgrounds, but
a lot of efforts are required to collect refined video dataset.
On the other hand, skeleton-based action recognition can
shed light on fast and reliable surveillance system in real-
world for many superior points compared to the video-based

action recognition methods. First, it can reduce an impact of
noises such as complicated backgrounds in dynamic scenes
with the aid of pedestrian detector and human pose estima-
tor, which are trained on large-scale datasets. Second, the
inputs of model consume much less memory footprint than
the video counterpart. Third, the skeleton data can be diver-
sified easily with data augmentations (such as rotating the
arms, adjusting human height, giving some perturbation on
coordinates, etc). As a result, skeleton based action recog-
nition can yield more reliable and generalized results in a
variety of scenes.

Skeleton-based action recognition use skeleton data,
which can be represented as a vector sequence of 2D or
3D coordinates. Early approaches for skeleton-based action
recognition use RNNs or CNNs [9, 10, 11, 12] for process-
ing joint representations. Afterwards, Yan et al. first intro-
duce a Graph Convolutional Network (GCN) for skeleton-
based action recognition called ST-GCN and it has been a
strong baseline for most of the skeleton-based action recog-
nitions up to the present. They utilize graph structure of
skeleton where the joints and the connections of human
body are represented as vertexes and edges, respectively.
In order to learn spatio-temporal representations of human
joints, they add temporal edges to a spatial graph to con-
nect the same joints across consecutive frames. Early GCN-
based approaches use heuristically initialized topology and
a same untrainable topology throughout layers. However,
they show suboptimal performance in action recognition
task, since it is difficult to model the dependencies between
distant joints and the semantics of joint features are differ-
ent between layers. To mitigate the issues, Shi et al. [13, 14]
first introduce a flexible design of graph topology by divid-
ing the fixed graph into two trainable graphs, i.e., global
graph and and individual graph. The global graph, which
is shared by all the data samples, is initialized with the
topology reflecting the physical connections. The individ-
ual graph, which represents a unique graph for each data
sample, is calculated through self-attention mechanism. Re-
cently, most of the works adopt the similar form of adaptive
topologies to enhance the adaptability and flexibility.
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GCNs basically employ the coordinates of human joints,
but there are some studies introducing additional features to
improve the model performance. Shi et al. [13] firstly in-
troduce a bone feature that is a vector between two joints.
The bone can be informative to capture the meaningful joint
representations, since it represents the lengths and direc-
tions of joints. Zhang et al. [15] exploit some additional
features such as joint type, frame index, and velocity to
incorporate the semantics of spatial, temporal and motion
information to the GCN. Song et al. [16, 17] introduce
multi-branch structure that fuses three different input fea-
tures such as joint, bone, and velocity to capture richer in-
formation of the complicated joint sequences. Some re-
cent works employ ensemble learning of different modal-
ities such as joint, bone, velocity, and velocity of bone to
boost performance [18, 19, 20, 21]. However, it can signif-
icantly increase training and inference time that can make
models impractical in real-world applications.

For real world applications, pedestrian detection and hu-
man pose estimation are pre-requisites of GCN and the
whole pipeline should be operated in real-time with making
reliable decision. The recent developments of lightweight
pedestrian detection [22, 23, 24] and human pose estima-
tion [25, 26, 27] models shed positive light on real-time and
embedded surveillance system, while many GCNs still in-
troduce non-negligible latency overhead in the pipeline. Es-
pecially in crowd scenes, as the number of people increases
in a scene, additional inference steps by the GCNs are re-
quired. Therefore, the smaller model size for ensuring suffi-
cient batch-size and the faster inference speed are necessary.
Recent GCN works have made efforts to lighten the mod-
els considering the number of parameters and floating-point
operations (FLOPs). However, we empirically found that
the latency can be more crucial factor to action recognition
models since minimum throughput should be guaranteed to
recognize some action classes, especially the fast actions
such as punching, standing, etc. We also found that larger
free memory is available for GCNs, since they use 2D or
3D coordinates instead of RGB frames, which are the in-
puts of pre-requisite models such as pedestrian detector and
human pose estimator. Therefore, we focus on minimiz-
ing the latency to apply skeleton-based action recognition
in real-world system.

Many neural networks have hierarchical structure where
the semantics of features in different layers are different.
That is, the abstract features are processed in higher lay-
ers. To reflect the hierarchical traits, most of the CNNs for
classification tasks typically compress representations into
low spatial dimension, but GCNs generally keep the num-
ber of joints throughout layers. Accordingly, the models
can suffer from computational burden and the performance
can be suboptimal. Our work has arisen from the question
of whether whole joints are necessary for recognizing hu-

man action. Moreover, GCNs have to capture the joints that
are located apart, since they can be strongly correlated in
distinguishing actions. For example, strong correlation be-
tween hand and toe, which are distant in spatial domain,
should be captured to distinguish “cross toe touch”. GCNs
generally enlarge the joint receptive field with powering the
topologies throughout layers and make topology adaptive.
Consequently, more layers can be required to capture effec-
tive receptive field. In this work, we solve this problem by
decreasing the dimension of joint space manually and adap-
tively to make distant joints reachable.

Overall, our work focus on building a lightweight and
low latency GCN that can run on resource-constrained de-
vices. Although recent GCNs are becoming smaller and
faster, they still do not satisfy the low-latency requirements
with limited computational resources. As a step towards ef-
ficient skeleton-based action recognition, our contributions
are summarized as follows:

1. Inspired by the hierarchical structure of CNNs that re-
duce the spatial dimension of feature maps throughout
layers, we explore two types of joint-mapping mod-
ules (manual and adaptive mappings) for GCN to re-
duce the number of nodes in the middle of the layers.
Together with multiple-branch structure, our models
achieve competitive performance with lower compu-
tational cost compared to state-of-the-art models.

2. The ablations of the proposed joint-mappings and ex-
tensive experiments across two public datasets, NTU
RGB+D [28] and NTU RGB+D 120 [29] demonstrate
the effectiveness of our work. In particular, we mea-
sure latency of the state-of-the-art models and ours
with TensorRT framework to show the efficiency of the
proposed joint-mapping modules.

3. To demonstrate real-world deployment and applica-
tions, we measure the latency of our models on some
mobile devices such as Jetson AGX Xavier and iPhone
XR. The experimental results demonstrate that our
model can provide inspiring insight of GCN-based ac-
tion recognition in practical application.

2. Related Works
2.1. GCN-based Action Recognition

GCN-based methods have been proved to successfully
capture motion of human skeleton data. They can process
dynamically structured graphs and it is straightforward to
design a graph of human joints as an adjacency matrix. ST-
GCN [30] is a strong baseline for many recent works, which
is the first to adopt the GCN in action recognition with un-
trainable topology of skeleton. They make efforts to de-
sign a graph topology heuristically to have physical struc-
ture of human body and use the same graphs over all the
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layers, keeping it fixed throughout layers. However, using a
same graph topology throughout layers of GCN shows lim-
ited performance, since the semantics of different layers are
different. Furthermore, it is difficult to model the compli-
cated dependencies between joints for recognizing various
actions with untrainable topology. To mitigate the issues,
subsequent works introduce adaptive topology that is not
shared with different layers to improve the flexibility of the
models. Lei et al. [13] introduce 2S-AGCN with an adap-
tive topology that can deal with variants of data samples and
the distant joint modeling. Specifically, they divide the fixed
graph into two trainable graphs, i.e. global and individual
graphs. The global graph is initialized as in ST-GCN, but
it is updated during training process. The individual graph
is the output of self-attention module to capture the correla-
tion between two joint features so that it reflects an unique
topology for each data sample. Shi et al. [14] introduce a
directed acyclic graph to model the dependencies between
joints and bones. Liu et al. [18] design a model called
MS-G3D, which disentangle the scales of graph convolu-
tions to remove redundant dependencies of neighbor joints
and capture the relations of distant joints effectively. They
also decouple temporal convolution into multiple branches
to aggregate the multiple temporal contexts and introduce
the motion modality to boost the performance. Cheng et
al. [31] divide channels of joint features into several groups
and allocate different topology for each group to learn a rich
representation. They also introduce new dropout skill for
GCN, which drop random nodes and their neighbor nodes
together. Ye et al. [32] introduce static and dynamic graph
topologies that are the pre-defined topology of physical con-
nections and the unique topology varying on data samples,
respectively. They combine the two topologies throughout
layers to add complementary information to physical infor-
mation of static graph. Qin et al. [21] introduce angular
modality to provide complementary information to model
for differentiating actions. Overall, recent designs of graph
topology become trainable and dynamically changed de-
pending on data samples. Also, they are optimized indi-
vidually across different layers to consider the hierarchical
structure of GCN models.

There are some previous works that are similar to our
proposed manual joint-mapping module in the sense that
they partition full joints into several body parts, but their
roles are totally different. Some of the LSTM-based meth-
ods divide joints into several parts to process each part with
different LSTM encoders [33, 28]. Some GCN-based works
employ joint-partitioning to complement part-wise features
to joint-wise features with feature concatenation [34] or
summation [35]. Song et al. [16] employ joint partitioning
for an attention module that is located at the classification
step to give attention to the critical body parts for classi-
fying actions. Yang et al. [36] introduce joint-partitioning

by averaging heatmaps corresponding to each part for hand
gesture recognition. This work, on the other hand, tries to
map the joints into smaller number of nodes manually or
adaptively to reflect the hierarchical structure of deep learn-
ing models and decrease the model complexity. To our best
knowledge, our work is the first to decrease the number of
nodes in the middle of the layers of GCN for the sake of
model efficiency and practical applications.

2.2. Lightweight GCN models

Early GCNs tend to be over-parameterized without con-
sidering of applications, but recent works increasingly fo-
cus on developing computationally efficient networks [37,
15, 17, 20]. Peng et al. [37] introduce Neural Architecture
Search (NAS) to build a memory-efficient GCN architecture
consuming low cost of computational resources. Zhang et
al. [15] introduce a lightweight network and leverage se-
mantics of joint type with frame index as inputs to improve
model performance. Cheng et al. [38] introduce shift opera-
tions along the joint-axis to mingle information across joint
and channel dimensions efficiently. Song et al. [17] aims to
construct an efficient GCN baseline, so that they employ
compound scaling strategy to regulate hyper-parameters,
depth, and width of the models. Shi et al. [39] intro-
duce policy network for GCN to adaptively select joints and
channels to adjust the accuracy-efficiency trade-off. Chen et
al. [20] introduce channel-specific topology calculated from
the correlation between joint representations to enhance the
flexibility of feature extraction. Though those works suc-
cessfully lighten the memory footprint and reduce the com-
putational cost, they lack the consideration of latency. In
this work, we convert GCNs with TensorRT, which is a SDK
for high-performance deep learning inference, to measure
the inference speed and discover hardware-friendly models.
With the aid of TensorRT, we demonstrate the efficiency of
our proposed joint-mapping modules and our network de-
sign on Nvidia GPU.

3. Preliminaries
In this section, we define notations of our work and

briefly describe about ST-GCN, which is the most popular
baseline model.

3.1. Notations

A skeleton graph is denoted as G = (V,E), where V =
{v1, ..., vJ} is a representation set of J joints, and E is the
edge set. The graph can be represented by a graph topol-
ogy A ∈ RN×N , which is initialized by an adjacency matrix
where A(i, j) = 1 if vi and vj are connected and 0 other-
wise. Since G is undirected graph, A is symmetric and we
set A(i, i) = 1 to keep identity feature throughout layers.

Âp = D−
1
2

p ApD
1
2
p is a normalized adjacency matrix, where
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Dp(i, i) = ∑
S
i=1 +ϵ and p is the channel index of topology

matrix. ϵ is set to an arbitrary small number to avoid divide-
by-zero. GCN process joint representations Xl ∈ RT×J×C ,
where T, J , C are the number of frames, joints, and chan-
nels of joint feature at layer l, respectively.

3.2. Graph Convolutional Network (GCN)

Most of the works of skeleton-based action recognition
built upon a base block of ST-GCN, which is alternating
between graph convolution and temporal convolution. We
explain the basic concept of module used in ST-GCN in this
subsection.

3.2.1 Graph Convolution

Graph convolution (GC) can be divided into two steps :
feature embedding and application of joint connections.
Feature embedding transforms joint representation X into
higher-dimensional feature Ẋ as follows:

Ẋl = Conv2D[1 × 1](Xl), (1)

where l denotes the index of layer. Then the topologies are
applied to aggregate joint features from neighbors as fol-
lows:

Ẍl =

S

∑

s=1

ÂpẊl, (2)

where S is the number of topologies following a spatial con-
figuration introduced in ST-GCN [30], and Â reflects a con-
nection of joints in a feature space of X. Recent works make
topologies trainable to extract useful information for spe-
cific actions and capture the relations between distant joints
effectively. Likewise, we employ adaptive topology, so that
Âi,j represents correlation between vi and vj .

3.2.2 Temporal Convolution

Temporal convolution (TC) is a convolution with a 1D ker-
nel striding along time axis as follows:

X′ = Conv2D[Kt × 1](Ẍ), (3)

where Kt denotes a kernel size along time axis. We
adopt multi-scale temporal convolution that decouples TC
branches to learn multiple temporal context. The multi-
scale temporal convolution is firstly introduced in [18], and
has been a common practice to employ multi-scale tempo-
ral convolutions for temporal modeling in GCNs, since it
is computationally efficient but helps improve performance.
Specifically, we follow the design of multi-scale temporal
convolution introduced in [20], which decreases the num-
ber of branches for efficiency’s sake.

Figure 1. Overview of our skeleton-based action recognition ap-
proach. GC and TC denote graph convolution and temporal con-
volution, respectively.

4. Proposed Methods

We refer to a multi-branch design introduced in [17] and
employ CTR-GC block as a base module. In particular, we
calculate two additional modalities such as bone and ve-
locity with the methods introduced in [15] to make three
input branches. CTR-GC contains GC with channel-wise
topologies for spatial modeling with increased flexibility
and multi-scale TC for temporal modeling. Based on the
structure and the module, we introduce mapping strategies
to decrease the number of joints in the middle of the lay-
ers, inspired by the hierarchical structures of CNN models
that decrease the spatial size of feature maps throughout lay-
ers. There are several benefits with the proposed mapping
modules. First, the impact of redundant joints and model
complexity decrease with the number of joints. Second, it
can make distant joints easily reachable, so the model can
effectively capture long-range spatial dependency.

Overall, our proposed pipeline can be divided into three
steps: (1) GCs and TCs for joint embedding, (2) joint map-
ping to decrease the number of joints, (3) performing cross-
correlation between the decreased joints and classifying ac-
tions. Overview of our method is illustrated in Fig. 1.

4.1. First step : Joint embedding in original joint
space

First, we need to encode joint inputs in original joint
space with GC-TC modules. We employ CTR-GC [20]
as a base module and multi-branch structure used in [17]
that process three different modalities. CTR-GC employs
channel-wise topologies that are unique to data samples
resulting in increased flexibility with wider channels of
topologies. We employ a few CTR-GCs before the pro-
posed joint-mapping modules to process joint representa-
tions in an original joint space.
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(a) Manual Mapping (MM) (b) Adaptive Mapping (AM)
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Figure 2. Overview of our two different joint-mapping strategies : (a) Manual Mapping (MM) and (b) Adaptive Mapping (AM). Q, K, V,
and Cross-Att are referred to as query, key, value, and cross attention, respectively. Pool and Concat are referred to a joint-wise average
pooling and joint-wise concatenation, respectively. After mapping module, the number of joints decrease to J ′, resulting in computational
and model complexity reduction.

4.2. Second step : Joint mapping modules

We propose manual and adaptive joint-mapping strate-
gies to decrease the number of joints from J to J ′. The
manual mapping module maps the J joints to 5 nodes
(J ′ = 5) based on the prior knowledge of the physical con-
nections. The adaptive mapping, on the other hand, learn
to map the J joints to J ′ nodes (J ′ can be varied) with-
out any prior knowledge. The corresponding figures of two
mapping modules are illustrated in Fig. 2.

4.2.1 Manual Mapping

We divide joint representations in original joint space into
five parts based on the prior knowledge of human body: two
arms (left and right), two legs (left and right), and main
body. A key motivation of this method is to learn discrimi-
native part with removing redundant joint dependencies for
classifying action classes.
Manual Mapping (MM) employs bottleneck fusion used
in [40, 41, 8] to transfer information from original joint
space to the decreased one using a simple cross-attention
module. Specifically, a bottleneck fusion fb maps input fea-
ture X′p ∈ RJp×C to a randomly initialized vector O ∈ R1×C ,
which is a joint representation in decreased joint manifold.
Note that Jp is the number of joints of part p, and C is the
number of channels. The equation can be formulated as:

fb(X′p,O) = Softmax
⎛

⎝

WqOWkX′p
T

√

dk

⎞

⎠

WvX′p, (4)

where Wq , Wk, and Wv are the query, key, and value pro-
jection matrices, respectively. dk is the dimension of query
and key. MM module consists of three bottleneck fusion
blocks, i.e. arm, leg, and body encoders. Each encoder
processes corresponding joints to yield a single joint repre-
sentation. Specifically, arm and leg encoders process each
side (left or right) independently with the same weights. We
also add residual connection with joint-wise pooling layer
to keep channel-wise activations from previous layer. To
sum up, we divide X′ into five parts X′p(1 ≤ p ≤ 5) and
process each part independently as follows:

X′′p = f
p
b (X

′
[ip],O) + Pool(X′[ip]), (5)

where Pool denotes joint-wise pooling. fp
b is a bottleneck

fusion for body part p, and ip denotes the set of joint indices
in original joint space that is belong to part p. X′′p are then
concatenated along joint dimension for 1 ≤ p ≤ 5 into X′′.

4.2.2 Adaptive Mapping

We try to map the joint representations to a lower dimen-
sional space without using any prior knowledge. That is,
we try to train a mapping matrix to map the joints to the
decreased number of nodes that can not be represented in
a human sense, but can be trained to classify action classes
well.
Adaptive Mapping (AM) module uses an adaptive map-
ping matrix MG ∈ RJ×J ′ that can be trained to map J joints
to J ′ nodes. It has a residual connection with joint-wise
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pooling layer. The process in AM module can be formu-
lated as follows:

X′′ =MG ×X′ + Pool(X′), (6)

where × denotes matrix multiplication.

4.3. Third step : 2D Convolution through time with
joint-sized kernel

We employ a single 2D convolutional layer with J ′-sized
kernel to model the relations of decreased nodes as follows:

X′′′ = Conv2D[J ′ ×K ′t](X
′′
). (7)

As above, J ′ ×K ′t sized kernel stride along the time-axis to
perform a cross-correlation between J ′ nodes. In this work,
we set K ′t = J

′ throughout experiments for convenience.

5. Experiments
5.1. Datasets

NTU RGB+D. (NTU60) [28] contains 56880 video clips
captured by three Kinect V2 cameras concurrently. It also
provides the estimated 3D skeletons with 25 joints of maxi-
mum two people from the clips. There are two benchmarks
for this dataset: 1) cross-subject (X-sub) that the training
and evaluation data are divided by subjects, and 2) cross-
view (X-view) that the training and evaluation data are di-
vided by camera views.
NTU RGB+D 120. (NTU120) [29] is an extended version
of the NTU RGB+D 60, containing 114480 video clips with
120 action classes. There are also two benchmarks for this
dataset: 1) cross-subject (X-sub) that the training and eval-
uation data are divided by subjects, and 2) cross-setup (X-
set) that the training and evaluation data are separated de-
pending on camera setups.

5.2. Implementation Details

Implementation of our networks is based on PyTorch.
We train our models on a single Nvidia-Tesla V100
throughout experiments. We follow the same hyperparame-
ter settings of CTR-GCN [20] for fair comparison. Con-
cretely, we employ the SGD with momentum 0.9 and a
weight decay of 0.0004. An initial learning rate, total epoch,
batch size, and the number of frames are set to 0.1, 65, 64,
and 64, respectively. A warmup strategy is utilized at the
first 5 epochs and learning rate decays with a factor 0.1
at 35th and 55th epochs. Since the NTU60 and NTU120
datasets have 25 joints per person, J is 25. J ′ is set to 5 for
both MM and AM modules, and the ablations on the differ-
ent settings of J ′ are provided in supplementary. We follow
the data preprocessing introduced in [15]. Furthermore, we
use TensorRT 8.2.1.8 on Nvidia T4 GPU and Coremltools
5.2.0 for measuring latency.

Type Pos. Acc. (%) #Params (M) FLOPs (G)

MM
5 90.4 0.79 0.69
6 90.8 0.89 0.84
7 90.6 0.98 0.99

AM
5 89.8 0.70 0.66
6 90.3 0.74 0.78
7 90.1 0.84 0.93

Table 1. Ablation studies on different positions of MM and AM,
conducted on NTU60 (X-sub). The best results are highlighted
in bold, whose position will be set by default throughout experi-
ments.

Type
Inputs

Acc. FLOPs Latency
J B V (%) (G) (ms)

MM
✓ 89.4 0.64 8.5
✓ ✓ 89.2 0.73 10.7
✓ ✓ ✓ 90.8 0.84 13.2

AM
✓ 89.4 0.58 7.6
✓ ✓ 89.1 0.67 9.8
✓ ✓ ✓ 90.3 0.78 12.5

Table 2. Ablation studies on the number of input branches. J, B,
and V denote joint, bone, and velocity, respectively. Latency for
processing 8 batches is measured using a Nvidia T4 GPU.

Type
NTU60 (%) NTU120 (%)

FLOPs Lat.
X-sub X-view X-sub X-set (G) (ms)

MM 90.8 95.2 86.3 87.5 0.84 13.2
AM 90.3 95.2 86.4 88.2 0.78 12.5

X-6 89.7 94.6 85.7 87.0 0.66 11.2
X-7 89.8 94.7 85.9 87.2 0.81 12.5

Table 3. Ablation studies on with (MM, AM) and without (X-6, X-
7) the proposed joint-mapping modules. Lat. denotes the latency
that is measured using a Nvidia T4 GPU.

5.3. Ablation Studies

5.3.1 Position of two mapping modules

We experiment with varying position of the MM and AM,
while the number of channels at the joint-mapping modules
remain fixed. As in Table 1, we observe that placing the
joint-mapping modules at 6th layer yields the best results,
so we fix the position of the modules at layer 6 throughout
experiments. The detailed parameter settings are given in
the supplementary.

5.3.2 Ablations on the number of inputs

Considering the fact that recent GCNs consume less GPU
memory than pre-requisite models (pedestrian detector and
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Model Ens.
NTU60 (%) NTU120 (%)

#Params FLOPs Latency
X-sub X-view X-sub X-set (M) (G) (ms)

ST-GCN [30] 81.5 88.3 - - 3.08 16.32 46.4
MS-G3D [18] 89.4 - - - 3.20 24.44 147.5
MS-G3D [18] ✓2 91.5 96.2 86.9 88.4 6.40 48.88 -

MST-GCN [19] 89.0 95.1 82.8 84.5 2.82 16.03 82.8
MST-GCN [19] ✓4 91.5 96.6 87.5 88.8 11.29 64.14 -

Eff-GCN-B0 [17] 90.2 94.9 86.6 85.0 0.29 2.73 30.4
CTR-GCN [20] 90.2⋆ 95.2⋆ 84.9⋆ 86.6⋆ 1.43 1.79 14.1
CTR-GCN [20] ✓4 92.4 96.8 88.9 90.6 5.72 7.16 -

MM-GCN 90.8 95.2 86.3 87.5 0.89 0.84 13.2
AM-GCN 90.3 95.2 86.4 88.2 0.74 0.78 12.5

Table 4. Comparisons against state-of-the-art methods evaluated on the NTU RGB+D 60 and 120 datasets, abbreviated as NTU60 and
NTU120, respectively. Latency for processing 8 batches is measured using a Nvidia T4 GPU. Ens denotes whether the model employ
ensemble learning, and the suffix of the check marks denotes the number of input modalities. The results with star marks are obtained from
the author’s released code. The results of our proposed models are highlighted in bold.

human pose estimator) regarding their size of the model
and input, we mainly focus on discovering good accuracy-
latency trade-off models. To find a better model, we per-
form ablations of the number of input branches. As in Ta-
ble 2, the models with three inputs provide the best accu-
racy with some latency overhead. We use the models with
three branches by default, since they still provide lower la-
tency with competitive performance compared to the recent
GCNs. The comparisons against recent GCNs will be given
in 5.3.4.

5.3.3 Effectiveness of the joint-mapping modules

We conduct ablation study on the joint-mapping modules
to demonstrate the effectiveness. Specifically, the models
without the joint-mapping modules are not plausible to ap-
ply joint-sized kernels (since the size of the kernels are
too large to be well optimized), so we replace them with
a single (X-6) or two CTR-GC blocks (X-7) just before
the final classier to make comparisons fair in computational
cost. As in the experimental results in Table 3, the pro-
posed joint-mapping modules bring performance improve-
ment with about 1∼2 ms latency overhead compared to the
model without any mapping modules. Further details of the
parameter settings are given in the supplementary.

5.3.4 Comparison with SOTA methods

As shown in Table 4, we compare the performance of our
two models with others. Some models employ ensemble
learning of some different input modalities such as joint,
bone, motion, and motion of bone, since they can benefit
the model performance in terms of accuracy. However, the
ensemble learning can significantly increases training and

inference time that can make models impractical in appli-
cations. Our models achieve competitive or superior per-
formance on four benchmarks with lower latency compared
to the SOTA methods that are not using ensemble learning.
We obtain the results in Table 4 from the authors’ source
codes (#Params, FLOPs, Latency, and Accuracy with ⋆) or
papers.

6. Discussion

6.1. Discussion on Model Interpretability

We illustrate the joint-mapping results of the two mod-
ules and pie charts indicating which nodes are more acti-
vated depending on action classes in Figure 3. The pie
charts are derived from Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [42]. Specifically, we calculate
Grad-CAM of every data sample on time-node space and
find the index of the maximum value (e.g. second node at
frame 13). Then, we count the maximum node (e.g. sec-
ond node) for every data sample on each class across NTU
RGB+D dataset. The mapping result of MM illustrated in
Figure 3-(a) shows straightforward results, since we divide
five parts manually with our prior knowledge. For example,
a pie chart of “hand waving” explain that the trained model
determine ”hand waving” by concentrating on right or left
arm. Also, we can guess that there are more right-handed
subjects than left-handed in NTU RGB+D. For another ex-
ample, the model determine “rub two hands” with similar
contribution of left and right hands. On the other hand, the
mapping result of the adaptive mapping illustrated in Fig-
ure 3-(b) is the approximations for clarity. In detail, the
elements of MG ∈ RJ×J ′ are highlighted if they are greater
than the mean value of MG. Since every joint affects every
decreased node in AM module, the mapping result and the
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”hand waving” ” rub two hands ” ” sit down” ”kicking something”

(a) Manual Mapping (MM)

(b) Adaptive Mapping (AM)

” rub two hands ” ” sit down” ”kicking something””hand waving”

Figure 3. Illustration of mapping results and the pie charts derived from Grad-CAM results across NTU RGB+D dataset. The figures on
the left demonstrate what the mapping results of the two joint-mappings look like. Besides, the pie charts on the right indicate which part
is more activated for recognizing different action categories. (Best viewed in color and zoomed images).

pie charts are more complicated. For instance, pie charts in
Figure 3-(b) explains that the model determine ”sit down”
by concentrating on the movements of body and legs, but
other nodes corresponding to legs, hands, and head are acti-
vated the most for some data samples. Further discussion on
the visualization results are available in the supplementary.

6.2. Discussion on Applications

We measure the latency of our models and compare the
results with CTR-GCN [20]. Careful adjustment of batch
size is important for both low latency and high through-
put, by taking into account environmental conditions of the
camera (e.g. crowded or uncrowded) and the hardware for
model inference. If the number of detected people present
more than the batch size, more inference steps are needed
for the current frame. In this experiment, we calculate
the latency for processing 64 joint sequences (frames) with
different batch size depending on hardware capacity. The
batch size is set to 4 and 16 for iPhone XR and Jetson AGX
Xavier, respectively. We convert the trained models based
on Pytorch into TensorRT model for Jetson AGX Xavier
and into CoreML for iPhone XR. As reported in Table 4
and Table 5, our models surpass the CTR-GCN in terms of
both accuracy and latency.

7. Conclusion
In this work, we have proposed two different joint-

mapping modules to decrease the number of joints for ef-

Model
Latency (ms)

XR (4 batches) AGX (16 batches)

CTR-GCN 170.2 54.9
MM-GCN 94.1 52.1
AM-GCN 82.6 50.0

Table 5. Latency for processing 64 sequences of 16 people for
iPhone XR) with 25 joints on different devices.

ficiency’s sake. Extensive experiments have shown that
the proposed modules with multi-branch structure show no-
table results with regards to accuracy-latency trade-off. Be-
sides, we have demonstrated how our joint-mapping mod-
ules work by visualizing the mapping results and analyzing
the Grad-CAM results across NTU-RGB+D. We hope that
our work can be extended to future research on skeleton-
based action recognition and be applied in real-world appli-
cations.
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