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Abstract

Unsupervised object discovery aims to localize objects
in images, while removing the dependence on annotations
required by most deep learning-based methods. To address
this problem, we propose a fully unsupervised, bottom-up
approach, for multiple objects discovery. The proposed ap-
proach is a two-stage framework. First, instances of ob-
ject parts are segmented by using the intra-image similar-
ity between self-supervised local features. The second step
merges and filters the object parts to form complete ob-
ject instances. The latter is performed by two CNN models
that capture semantic information on objects from the entire
dataset. We demonstrate that the pseudo-labels generated
by our method provide a better precision-recall trade-off
than existing single and multiple objects discovery meth-
ods. In particular, we provide state-of-the-art results for
both unsupervised class-agnostic object detection and un-
supervised image segmentation.

1. Introduction

Deep learning methods have shown tremendous ad-
vances in resolving several computer vision tasks such as
object detection and image segmentation. However, mas-
sive amounts of carefully labeled images are necessary to
train reliable deep learning models that can reach high per-
formances. Due to the high cost of such manual annota-
tions, several approaches were proposed to use only limited
amounts of annotated data, such as semi-supervised learn-
ing, weakly supervised learning or few-shot learning. In
this work, we address the problem of localizing objects in
images without any supervision, called Unsupervised Ob-
ject Discovery (UOD).

UOD can be useful for other vision tasks related to ob-
ject localization. Pseudo-labels generated without supervi-
sion have been shown to provide reliable object priors for
image instance retrieval in [34]. For object detection, they
can be used either to initialize an object detector without

additional annotation [24], or in a semi-supervised setting,
when combined with few labeled data [32]. Providing ro-
bust pseudo-labels with limited noise is key to the success
of these tasks. However, this remains a major challenge,
especially in a completely unsupervised context, where no
prior knowledge is provided about the semantics and local-
ization of objects present in an image.

Many approaches solve this problem by leveraging inter-
image similarities [28, 29] between pairs of object propos-
als in different images. Without carefully designed opti-
mization mechanisms, these methods come with a compu-
tational cost and complexity that compromise their scalabil-
ity. Moreover, these methods have shown to be dependent
on supervised CNN features for the calculation of similari-
ties.

Recently, vision transformers (ViT) have achieved ex-
cellent performances, outperforming CNN architectures in
both supervised tasks [8, 7, 1] and self-supervised learn-
ing [2, 3]. Particularly, strong objects localization hints
emerge from training ViT models using a self-distillation
scheme, in DINO [2]. These self-supervised features were
so far explored only for solving single object discovery task
[24, 31]. TokenCut [31] demonstrated the effectiveness of
spectral-clustering applied on self-supervised ViT features,
for saliency detection, and significantly improved the state-
of-the-art for single object discovery.

In this work, we propose a new approach to address mul-
tiple objects discovery without any supervision. We explore
self-supervised Vision Transformer (SS-ViT) features to lo-
calize and segment multiple object instances in the image.
Discovering multiple objects in each image is not straight-
forward as it requires a clear definition of what an object
is. In fact, objects are either defined as the annotated re-
gions in the supervised setting, or as the salient region in
each image, in unsupervised single object discovery ap-
proaches. To address the localization of multiple objects
in a fully unsupervised way, we propose to recognise ob-
ject regions using a semantic information captured at the
dataset level. In other terms, an object is defined as belong-
ing to one of the discovered semantic categories, in the im-
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age collection. Concretely, the semantic categories present
in the dataset are discovered in an unsupervised way. This
information is encoded using classification models. Object
discovery is then designed as the activation of object parts
in each image using SS-ViT features, and the merging of
these object parts using the self-supervised classifiers, to
discover complete object instances. The effectiveness of
the proposed framework is demonstrated through extensive
experiments on the object detection benchmarks PASCAL
VOC [9] and MSCOCO [17]. Since by design, our method
provides pixel-wise mask proposals, we also show that the
same framework solves the unsupervised image segmenta-
tion task.

Our contributions can be formulated as follows :

• We propose a fully unsupervised, bottom-up approach,
for multiple objects discovery. We first discover ob-
ject parts using intra-image similarities. Object parts
are merged using a dataset-driven information, to form
complete object instances. Both stages exploit self-
supervised ViT features to produce instance masks. To
the best of our knowledge, this is the first work that
builds on SS-ViT features to solve the multi-object dis-
covery task.

• We generalize the saliency-based approach in Token-
Cut [31] for the discovery of local fine semantic con-
cepts (object parts) of multiple objects in an image.

• We propose a novel semantic object proposal method
for the self-supervised learning of a region classifier.
This visual model encodes the dataset-level semantic
information.

• We improve the state-of-the-art in unsupervised multi-
ple objects discovery, unsupervised class-agnostic ob-
ject detection and unsupervised image segmentation,
on challenging object detection benchmarks.

2. Related work
2.1. Unsupervised object discovery/co-localization

We can distinguish, from previous works, two distinct
tasks: object discovery and object co-localization. The for-
mer consists in localizing objects in an image without any
prior knowledge of the image content. This is the real object
discovery task, which is much more challenging than ob-
ject co-localization [29]. On the other hand, co-localization
aims at localizing common objects between images, that
share the same semantic content. Algorithms in this setting
are fed with perfect image clusters derived from the ground-
truth. It is therefore a weakly supervised version of object
discovery.

DDT [32] addresses the co-localization task and is the
first work that demonstrated the reusability of supervised

CNN features for object co-localization. In DDT, objects
are selected from regions of high correlation within a given
cluster (semantic category).

Other methods address both tasks, and many of them
leverage inter-image similarities between off-the-shelf re-
gion proposals. Cho et al. [4] formulated the problem as a
structure and objects discovery, by iterating part-matching
and object localization. Similarly, OSD [28] simultaneously
localizes objects and discovers structures of the image col-
lection. It formalizes the task as an optimization problem.
Although OSD brought a large improvement, it has shown
to be highly dependent on supervised proposals provided by
[18]. The method also suffers from overlapping region pro-
posals, which prevents it from proposing multiple objects
per image. These limitations were addressed in rOSD [29]
by providing unsupervised proposals corresponding to re-
gions of high activations around local maxima, within CNN
feature maps. rOSD also constrains the number of proposals
per local maximum, and performs non-maximum suppres-
sion (NMS) [21] post-processing, to address the problem
of overlapping proposals. Note that these methods, while
unsupervised, are built on supervised CNN features, from
the ImageNet [6] classification task. LOD [30] formalized
the task as a ranking problem, and focused on ensuring the
scalability of the proposed approach. It also demonstrated
the utility of self-supervised CNN features for single and
multiple objects discovery.

Other methods [24, 31] tackled the single object discov-
ery problem, and showed the potential of self-supervised
features, especially from ViT models, for saliency detec-
tion. LOST [24] proposed a seed expansion heuristic based
on inter-patch correlation. TokenCut [31] investigated the
use of spectral-clustering on self-supervised ViT features,
which are projected into a new space that allows for a more
accurate binary clustering [23].

In previous multi-object discovery methods, relying on
inter-image similarities in the computation of an objectness
score could favor the discovery of the most frequent ob-
jects. In our approach, even though we also use a dataset-
driven information, we overcome this issue by training vi-
sual classification models to encode the information of se-
mantic classes. This results in a better separation between
object and non-object regions, and a better detection of
under-represented classes.

2.2. Unsupervised image segmentation

Image segmentation is the task of grouping all pixels of
an image into meaningful regions, where pixels sharing the
same characteristics are assigned to the same region [16].
Due to the very high cost of such a dense annotation, weakly
supervised and fully unsupervised methods were explored.
In the weakly supervised setting, [33] takes as input the
image-level labels of the class categories present in the im-
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age, and utilizes a vision-language embedding model to cre-
ate a rough segmentation map for each class.

Other approaches do not use any kind of supervision. On
one hand, we find classic methods such as k-means [11],
that focuses on pixels clustering based on color and texture
features, and assigns each pixel to the cluster with the near-
est mean. Moreover, graph-based segmentation (GS) [10]
generates image segments, while ensuring that these seg-
ments are not being too coarse or too detailed, based on re-
gions comparison. More recently, methods based on unsu-
pervised learning for image segmentation have been intro-
duced. For example, IIC [13] learns to maximize the mu-
tual information between an image and its augmentations
on a patch-level cluster. Kim et al. [14, 16] trains a CNN
by iterating features clustering and network parameters tun-
ing. The method is based on three criteria to maximize the
features similarity between spatially continuous pixels and
pixels assigned to the same cluster, while imposing a large
number of clusters. The authors proposed two solutions for
label assignment without any supervision (i) by superpixel
extraction using simple linear iterative clustering in [14] and
(ii) by the use of a spacial continuity loss in [16] to address
the limitation of fixed segment boundaries.

These methods discover multiple objects by proposing
dense object candidates. Several other methods address the
semantic segmentation task in an unsupervised way, with-
out proposing dense object discovery. We do not consider
these approaches in our study as we solve a different task.

2.3. Self-supervised vision transformers

The self-supervised setting aims at learning useful rep-
resentations with no real label. It was first used for pre-
training CNN models [12, 19, 27], and showed a strong gen-
eralization ability to downstream tasks. More recently, the
self-attention based encoding of images using transformers
for vision [7] was proved to be effective for a large spectrum
of supervised vision tasks such as classification [7], seman-
tic segmentation [25] and dense prediction tasks [20]. ViT
has also become a reference architectural choice of neural
nets for visual representation learning. In addition to the
classic masked auto-encoding paradigm inspired from NLP,
MoCo-v3 [3] among others, demonstrated a strong potential
of training ViT with a contrastive approach.

Recently, a self-distillation scheme was used in DINO
[2] to train ViT with no labels. The choices made during
training result in effective semantic separation and local-
global alignment of the learned features. In particular, the
resulting attention maps strongly activate the object regions,
which provide clues to the localization of objects in the im-
age. SS-ViT features have been explored recently to per-
form saliency detection and single object discovery tasks
[24, 31].

To the best of our knowledge, our method is the first to

exploit self-supervised ViT features in a fully unsupervised
multiple object discovery pipeline. The method outputs ob-
ject instance masks resolving also the unsupervised image
segmentation task. Such results can be used as pseudo-
labels to initialize the training of a class-agnostic object de-
tector, without any supervision.

3. Method

3.1. Overview

Recently, SS-ViT features showed to generalize well to
saliency-based tasks [24, 31]. In this work, we aim to
demonstrate the potential of using those features for mul-
tiple objects discovery, without any supervision. We adopt
a bottom-up approach, illustrated in figure 1, starting with
an intra-image analysis, for the discovery of object parts.
At the dataset level, two CNN models are trained in a self-
supervised manner, using carefully selected, and semantic
object proposals. These models are used to merge and filter
object parts, to form complete object instances.

The intra-image analysis can be seen as a generaliza-
tion of TokenCut [31] to the multiple object discovery task.
Similar to TokenCut, we perform spectral clustering using
SS-ViT features, to decompose the image into eigen vec-
tors with useful information. Different from TokenCut: (i)
Since we focus on the localization of multiple objects, we
look for more localization clues than just saliency. Thus
we use multiple eigen vectors, as the feature space to ap-
ply local clustering, instead of only using the second eigen
vector. (ii) The number of local clusters is no longer known
as we try to solve the multi-object discovery task (2 clus-
ters in saliency detection task). To manage this, we propose
an algorithm for choosing an optimal number of clusters,
without any knowledge about the number of objects, or se-
mantic concepts, in each image. The algorithm is detailed
in section 3.2 and aims at discovering multiple object parts,
while limiting over-segmentation.

The goal of the dataset-level analysis is to build two clas-
sifiers that capture the dominant semantic classes in the im-
age collection. One classifier is used for merging object
parts, resulting from the local segmentation, and associates
a confidence score to each discovered object. The second
classifier separates foreground/background classes and is
used to filter remaining noise after the merging phase. We
perform image clustering to get pseudo-labels for training
both models. Since images may contain several seman-
tic concepts, instead of using the whole images, we ap-
ply clustering on selected object proposals from Selective
Search [26]. For proposals selection, we build an object-
ness score detailed in section 3.3. The retained top propos-
als are grouped into clusters, which are used for training the
classifiers.

Finally, the classifiers are used in cascade to merge and
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denoise the discovered object parts. Both stages use self-
supervised ViT features trained using DINO [2]. We show
in section 3.3 how these features are particularly relevant
to our approach because of some properties like semantic
separation, local-global alignment, and object regions acti-
vation.

3.2. Discovery of intra-image semantic concepts

In this step, we extend TokenCut [31] to discover mul-
tiple objects in each image, instead of solving saliency de-
tection. TokenCut constructs a weighted graph where nodes
are ViT embeddings of image patches and edges correspond
to the cosine similarity between tokens. Single object dis-
covery is then formalized as a normalized graph-cut (Ncut)
problem, which is solved using spectral clustering: features
are projected into a new space via eigen decomposition. In
this space, the second smallest eigen vector provides a so-
lution to the Ncut problem for binary clustering, as demon-
strated by Shi and Malik [23]. Likewise, we create a sim-
ilarity graph based on SS-ViT features. The image is then
decomposed into eigen vectors with useful information. We
consider N eigen vectors (N ≥ 2) for local clustering, since
we aim to capture multiple objects in the image. The choice
of N is studied in section 4.6. The selected N eigen vectors
represent the feature space where local clustering of image
pixels is performed: each pixel is represented with a new
feature vector f ′

i of size N , where i varies between 1 and
the total number of pixels per image np.

Since in a fully unsupervised setting the number of se-
mantic concepts in each image is unknown, we determine
an optimal number of clusters K using an iterative process
as detailed in algorithm 1. We apply k-means clustering to
the image pixels, in the new feature space of eigen vectors
F = {f ′

i ; 1 ≤ i ≤ np}. This partitions the image into K
groups, which we denote CK . We consider the background
cluster as the one occupying the biggest area in the image.
The background id is denoted as b id. All the remaining
clusters represent the objects area. K is incremented, start-
ing from K = 2, until no significant object area is newly
activated. The goal is to activate multiple object regions in
the image, while limiting over-segmentation. Examples of
the results of this step are provided in figure 3, first column.
In particular, we see in the last row that, in some cases, the
algorithm directly outputs an optimal segmentation of the
image. This shows its effectiveness compared to a simple
over-segmentation, where a predefined number of clusters
is used, without adapting to the content of each image.

3.3. Dataset-level semantic object proposals

As stated above, we use Selective Search [26] (SeSe)
region proposals as object priors to discover the semantic
classes in the dataset, through proposals clustering. These
proposals provide a fairly high recall. However, their rank-

Algorithm 1 Iterative clustering for intra-image discovery
of semantic concepts

1: Initialize:
K ← 2
CK ← Kmeans(F ,K)
b id← argmax

k
{area(CK(k)), 1 ≤ k ≤

K}
obj area←

∑K
k=1,k ̸=b id area(CK(k))

add semantic concepts← True
2: while add semantic concepts do
3: K ← K + 1
4: CK ← Kmeans(F ,K)

5: new obj area←
∑K

k=1,k ̸=b id area(CK(k))

6: if
new obj area

obj area
> thresh then

7: obj area← new obj area
8: else add semantic concepts← False

9: return K

ing is rather naive: given an over-segmentation of the im-
age, the regions merged first, based on color and texture
similarities, are ranked first. This makes even the top pro-
posals subject to a lot of noise. We thus propose a new rank-
ing of SeSe proposals, to select the most relevant ones. To
do this, we build an objectness score, based on assumptions
about object-like regions.

Note that the objectness score is computed within each
image, independently from all other images in the dataset.
Concretely, we use two main measures in this computation:
intersection over union (IoU) and cosine similarity between
object proposals in the same image. Given M proposals (p1,
p2, ..., pM ) in an image, we define uij as the overlap rate
and sij as the similarity between pi and pj . For the latter,
we use the cosine similarity between the CLS tokens from
the last layer of a ViT trained using DINO. Let fi and fj be
the feature vectors (CLS token) that result from passing pi
and pj respectively to the SS-ViT. The cosine similarity sij
is defined as:

sij =
fi.fj
||fi||||fj ||

(1)

The new objectness score for object proposals re-ranking is
the weighted sum of three normalized terms:

score(pi) = α
2 (SimL(pi) +DissimG(pi)) + (1− α)H(pi) (2)

Each term of this score is based on a different assumption:
Object-like regions have high local similarity. We define
local similarity for a given proposal pi as its average simi-
larity to its neighbouring proposals, i.e. proposals having an
IoU with pi above a threshold t. We notice that these pro-
posals correspond usually to parts of the same objects. We
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Figure 1. Pipeline of the method. Top left: Intra-image analysis for the discovery of local semantic concepts. Bottom: Dataset-level
analysis for the selection of semantic object proposals to train self-supervised classifiers. Top right: Using the data-driven classifiers on
each image for parts merging and denoising.

also recall that we are using SS-ViT features learned using
DINO, with a global local alignment objective. This means
that an object is close to its parts in the DINO features space.
From this we deduce that a high similarity between pi and
its neighbours increases its chance of containing an object.
Thus, we make all the neighbours of pi vote positively for
it, in the following local similarity term:

SimL(pi) =

M∑
j=1

sij , j ̸= i, uij ≥ t (3)

Object-like regions have high global dissimilarity. We
now consider the global similarity, i.e. the average simi-
larity between pi and all other proposals that do not over-
lap with pi. Given the foreground/background imbalance in
real-world images, most object proposals in an image oc-
cupy the background, and have similar visual content (e.g.
’sky’). Objects, on the contrary, occupy regions that are dis-
tinct in the image. If a proposal pi contains an object, then
it has low overall similarity, as all object proposals in the
background vote negatively for it. Thus, pi will be highly
dissimilar, hence the following global dissimilarity term:

DissimG(pi) =

M∑
j=1

1− sij , j ̸= i, uij < t (4)

Object-like regions have high entropy. The Shannon en-
tropy of a discrete random variable is defined as:

H(p) = −
∑
x

Pxlog(Px) (5)

This measure is used to quantify the randomness of a vari-
able [5]. In image processing, Px refers to the distribution
of gray levels x in image p (or colors intensities in RGB
images). The previous formula associates higher entropy to
images with more details and colors variation. Inversely,
homogeneous regions are characterized by a low entropy.
We thus associate low-entropy proposals to background, by
adding an entropy term in the final objectness score.

It can be seen from figure 2 that the proposed ranking
improves the detection rate for a fixed number of proposals,
compared to two modes of SeSe. This is especially true
when a small number of proposals are selected. We also
compare qualitatively the retained top-1 proposals with the
two rankings.

We recall that the aim of this new ranking is to reduce the
amount of noise in the top proposals, which will be retained
for clustering, as explained in section 3.4. We choose to use
SeSe proposals for its popularity. However, the proposed
ranking should be valid with other proposals, provided that
they have a similar distribution, i.e. bounding boxes that
occupy the whole image, and thus verify the background
dominance condition, discussed above.

3.4. Dataset-driven self-supervised region classifi-
cation

After re-ranking the SeSe object proposals, the goal
is to transform the top P object priors in each image into
pseudo-labels to train multi-class classifiers. These will be
used to merge and refine the discovered local semantic con-
cepts. We use a value of P large enough to make sure that
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Figure 2. Results of ranking object proposals. Left: Comparison of the detection rate given the number of retained top proposals from
two modes of SeSe, with our ranking. Right: Examples of the top1 proposal using SeSe score (top) and our score (bottom).

we do not only select objects but also object parts. This is
important since the classifier must learn to assign the same
semantic class to an object and its parts, for an accurate
merging. We use k-means clustering [11] on the SS-ViT
features of all the selected object proposals. The optimal
number of clusters is chosen by finding the best silhouette
score [22], which minimizes the mean intra-cluster distance
and maximizes the mean nearest-cluster distance. With
the semantic information contained in SS-ViT features,
similar semantic concepts are grouped together. Moreover,
each cluster contains proposals of both objects and their
parts. This is especially due to the multi-crop augmentation
technique used in DINO. The obtained clusters capture
the global semantic information of the dataset. Note that
the number of the clusters is not necessarily equal to the
number of classes annotated in the dataset. However, we
can still localize instances of undiscovered categories, such
as ‘bottle’ and ‘plant’.

Since some of the selected proposals may still belong to
background (Bg) regions, some of the discovered pseudo-
classes are Bg clusters, that we aim to identify. According
to our ranking score detailed in 3.3, the proposals having
the lowest scores are the ones representing most probably
Bg regions. Each of these proposals is passed to a SS-ViT
to extract its features. The average vector of these features
is considered as a pattern of Bg regions. The clusters
whose center has a distance below a threshold tbg with the
Bg pattern, are considered Bg clusters.

After Foreground (Fg) and Bg groups identification, we
associate to the clusters two types of labels (i) Each Fg clus-
ter is assigned an id representing one discovered semantic
class. (ii) All clusters have a binary label indicating whether
it belongs to Fg or Bg. These image clusters are used to train
two CNN-based classifiers, with the cluster id as a classifi-
cation target. The first is a multi-class classifier trained us-
ing Fg clusters to assign objects and object parts to a specific
class. The second classifier is trained using all the discov-
ered clusters, and learns to distinguish between objects and
Bg regions.

3.5. Instance segmentation using dataset-level in-
formation

In this final step, the obtained classifiers are used to
merge and refine the object parts identified in the intra-
image analysis. The multi-class classifier is first used on
each segmented region: Image crops enclosing each ob-
ject part segment are passed to the CNN-based classifier.
Nearby regions assigned to the same category are merged
to form complete object instances. The image crop around
each merged region segment is then passed to the Fg/Bg
classifier to eliminate segments classified as Bg. This binary
classification is performed second to avoid incorrect classi-
fication of small object parts as Bg, if used before merging.
The multi-class classifier also assigns to each object a con-
fidence score, which is necessary for the evaluation metrics
(AP@50, odAP). We provide in figure 3 illustrations for
each step of the proposed framework.

Figure 3. Example of results. By column: results of the discovery
of local concepts, segmentation result after parts merging, final
instance mask segmentation, final bounding boxes.
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4. Experiments
4.1. Implementation details

Following previous works [29, 30, 24] we conduct our
experiments on three detection and localization bench-
marks: VOC2007 trainval, VOC2012 trainval [9] and
COCO20k which is composed of 19817 images randomly
chosen from COCO2014 trainval dataset [24]. We spec-
ify in the following the implementation details and hyper-
parameters for each addressed task.
Unsupervised multiple objects discovery. In the intra-
image analysis, local clustering is applied on SS-ViT fea-
tures learned using the DINO training scheme. Based on
the conclusions from previous works [31, 24], we use the
variant ViT-S with a patch size of 16. Eigen decomposi-
tion is performed using the keys features of the last layer.
To find the optimal number of local clusters, we set as con-
vergence criterion a fraction of newly activated area of 2%,
(thresh = 1.02 in algorithm 1). The number of eigen vec-
tors used for clustering is studied in section 4.6, and showed
to be invariant to the dataset: 3 eigen vectors for PASCAL
VOC and COCO20k. For object proposals re-ranking, the
three terms are found to have an equivalent impact on the
final re-ranking, with α = 0.7, and t = 0.1. Proposals from
Selective Search single mode are used in this work. For the
dataset-level analysis, P = 20 top proposals in each im-
age are selected to train the classifiers. A distance threshold
tbg = 0.8 from the Bg is used to separate Fg and Bg clus-
ters. We use ResNet50 as the backbone of the two classi-
fiers, initialized with DINO pre-training.
Unsupervised class-agnostic object detection. We follow
the same configuration described in [24] for training a class-
agnostic Faster-RCNN, with our pseudo-labels. We also use
the same batch-size and the number of training iterations,
for an objective comparison with previous works.
Unsupervised image segmentation. Following [16], this
experiment is conducted on VOC2012 validation set, con-
sisting of 1446 images. Masks resulting from multi-object
discovery task are evaluated using mIOU, see section 4.2.

4.2. Metrics and evaluation settings

Different metrics are used to evaluate different tasks:
Unsupervised multiple objects discovery. Most of multi-
ple objects discovery methods are based on ranking of ob-
ject proposals. This makes them able to produce a large
number of object candidates. The question then arises as
to how many proposals to keep for computing recall, pre-
cision, or even the classical AP50 metric, since all of these
would be affected by the number of retained top proposals.
[30] addressed this issue and proposed an new version of
AP, adapted to the object discovery task, called odAP. odAP
is presented as the area under the precision-recall curve,
where each precision-recall point is computed for a num-

ber of retained proposals, starting from 1, to the maximum
number of objects in any image in the dataset. Even though
by design, our approach outputs a reduced number of pro-
posals, we use odAP to compare with previous works. We
report the odAP50 where a detection is considered correct
if its overlap rate with a ground truth bounding box is above
50%. And odAP@[50 : 95], which is the average odAP for
10 values of IoU, varying from 50% to 95%.
Class-agnostic unsupervised object detection. A classical
class agnostic Average Precision (AP@50) is calculated.
Unsupervised image segmentation. Following [16], we
use the mean intersection over union (mIoU) to evaluate un-
supervised image segmentation. mIOU is calculated as the
average IOU between each ground truth mask (along with
the background) and the detected mask that has the largest
IOU with it, without considering any class label.

4.3. Unsupervised multiple objects discovery

We follow previous works and evaluate our method using
odAP 4.2. Note that this metric is particularly adapted to the
methods that propose a large number of object candidates,
based on a ranking of object proposals. Since our approach
is built on image segmentation, a limited number of boxes
are proposed: 3 per image on average in PASCAL VOC
dataset [9]. Hence, our approach is disadvantaged by this
metric regarding the recall. Despite that, we show in table
1 the superiority of our method on both odAP@50 and the
much more demanding odAP[50-95] metric.

The higher odAP[50-95] demonstrates the accuracy of
our returned pseudo-boxes: Since these are generated from
instance masks, they better enclose objects, and thus re-
main valid for a higher IoU threshold condition. Also, our
method uses self-supervised features, which makes it fully
unsupervised, unlike previous methods, which showed to be
dependant on supervised features.

Method Features odAP@50 odAP@[50-95]

VOC07 VOC12 COCO20k VOC07 VOC12 COCO20k

Kim et al. [15, 24] Sup 9.5 11.8 3.93 2.5 3.1 0.96
DDT+ [32, 24] Sup 8.7 11.1 2.41 3.0 4.1 0.73
rOSD [29, 24] Sup 13.1 15.4 5.18 4.3 5.3 1.62
LOD [30, 24] Sup 13.9 16.1 6.63 4.5 5.3 1.98
Ours Self 15.4 17.6 5.44 6.8 8.1 2.11

Table 1. Multi-object discovery performance in odAP (Average
Precision for object discovery)

4.4. Class-agnostic unsupervised object detection

State-of-the-art multiple objects discovery methods
(MOD) usually rely on a ranking of object proposals based
on inter-image similarities. These methods output a large
number of object candidates and the question then arises
as to how many bounding boxes to keep for the initializa-
tion of an object detector. Inversely, single object discov-
ery methods (SOD) have a very limited recall. We argue
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that our method provides a better precision/recall trade-off
than the previous methods in both settings. To prove this,
we train a class-agnostic object detector using our gener-
ated pseudo-labels. Results are presented in table 2. We
notice a clear improvement with our approach compared to
MOD methods on all tested datasets. The gap however gets
smaller when comparing with the SOD methods on PAS-
CAL VOC [9] dataset. This can be explained by the pres-
ence of a dataset bias in PASCAL VOC: A large proportion
of images in this dataset contain one object, which gives a
clear advantage to SOD methods. On the more challeng-
ing COCO20k dataset, our method exceeds both categories
(MOD and SOD). This demonstrates the superiority of our
pseudo-labels, even for datasets with complex scenes.

Method VOC07 VOC12 COCO20K

Selective Search [26] 3.6 4.8 1.8
EdgeBoxes [35] 2.9 4.2 1.6

rOSD + CAD [29] 24.2 29.0 8.4
LOD + CAD [30] 22.7 28.4 8.8

LOST + CAD [24] 29.0 33.5 9.9
TokenCut + CAD [31] 26.2 35.0 10.5

Ours + CAD 27.9 36.2 13.8

Table 2. Class-agnostic unsupervised object detection in AP50%

4.5. Unsupervised image segmentation

We further evaluate the performance of our method on
VOC12 [9] validation set for unsupervised image segmen-
tation task (see Table 3). Our method significantly outper-
forms previous state-of-the-art methods for discovering ob-
ject masks in a fully unsupervised way. More qualitative
results are provided in the supplementary material.

Method VOC12

k-means clustering [11], k=2 0.3166
k-means clustering [11], k=17 0.2383
Graph-based segmentation (GS) [10], τ = 100 0.2682
Graph-based segmentation (GS) [10], τ = 500 0.3647
IIC [13], k=2 0.2729
IIC [13], k=20 0.2005
Kim et al. with superpixels [14] 0.3082
Kim et al. with continuity loss [16], ν = 5 0.3520
Ours 0.4247

Table 3. Unsupervised image segmentation results in mIOU

4.6. Ablation study

In table 4, we provide an ablation study on different
terms of the ranking score presented in 3.3. We evaluate
the recall@50 (recall at IoU=50%) for different numbers
of the retained top proposals. We compare the results of
the overall ranking score, with the ranking obtained when
one of the terms is removed from the final score. The best
results are achieved by considering all 3 terms, which sup-
ports the assumptions made in section 3.3. We also compare

our score with the original SeSe ranking of proposals from
two settings. Using this new ranking, we ensure that the top
proposals are more reliable for the classifiers training.

Method Recall@50

Number of boxes 1 4 10 20

SeSe Fast mode [26] 7.5 19.6 30.3 40.0
SeSe Single mode [26] 7.9 19.9 30.7 40.9

Ours: lSim + gDissim 13.9 23.5 34.4 44.1
Ours: lSim + E 12.8 24.9 35.9 44.6
Ours: Overall score 15.7 27.1 36.9 45.0

Table 4. Ablation study on the impact of the different terms com-
posing the re-ranking score, evaluated on VOC07 testset

We also provide a study of the number of eigen vectors to
be used in the intra-image analysis, in order to activate mul-
tiple objects, while limiting the amount of noise. In table
5, we evaluate the AP@50 of the generated pseudo-boxes,
to choose the best precision/recal trade-off. We conduct the
study on PASCAL VOC and COCO since they present dif-
ferent distributions of objects. Considering this study, the
reported results are obtained with 3 eigen vectors in the
intra-image analysis, for both datasets.

Number of eigen vectors VOC07 COCO20k

2 22.1 5.9
3 22.5 6.3
4 21.3 6.0
5 20.3 5.8

Table 5. AP@50 as a function of the number of eigen vectors used
for local analysis

5. Conclusion and future work
We presented a fully unsupervised approach for multiple

objects discovery. The aim of this work was to address some
of the limitations observed in existing methods. Namely,
low recall in saliency detection-oriented methods, and the
high amount of noise when several object candidates are
proposed. We have shown that formulating the problem as
an unsupervised segmentation is particularly suitable for re-
ducing the noise in the generated pseudo-boxes. This pro-
vides a better precision-recall trade-off, which leads to a
better initialization of an object detector. Still in this di-
rection, we can further investigate the use of these pseudo-
labels as an initial seed in a pseudo-labelling approach.
Similarly, we can investigate the use of these object can-
didates with noise handling mechanisms.
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