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Abstract

Multi-view photometric stereo (MVPS) is a preferred
method for detailed and precise 3D acquisition of an ob-
ject from images. Although popular methods for MVPS
can provide outstanding results, they are often complex to
execute and limited to isotropic material objects. To ad-
dress such limitations, we present a simple, practical ap-
proach to MVPS, which works well for isotropic as well as
other object material types such as anisotropic and glossy.
The proposed approach in this paper exploits the benefit of
uncertainty modeling in a deep neural network for a reli-
able fusion of photometric stereo (PS) and multi-view stereo
(MVS) network predictions. Yet, contrary to the recently
proposed state-of-the-art, we introduce neural volume ren-
dering methodology for a trustworthy fusion of MVS and
PS measurements. The advantage of introducing neural
volume rendering is that it helps in the reliable modeling
of objects with diverse material types, where existing MVS
methods, PS methods, or both may fail. Furthermore, it al-
lows us to work on neural 3D shape representation, which
has recently shown outstanding results for many geomet-
ric processing tasks. Our suggested new loss function aims
to fit the zero level set of the implicit neural function using
the most certain MVS and PS network predictions coupled
with weighted neural volume rendering cost. The proposed
approach shows state-of-the-art results when tested exten-
sively on several benchmark datasets.

1. Introduction
Multi-view photometric stereo (MVPS) aims at recov-

ering accurate and complete 3D reconstruction of an ob-
ject using multi-view stereo (MVS) and photometric stereo
(PS) images [16]. While PS is exemplary in recovering an
object’s high-frequency surface details, MVS helps in re-
taining the global consistency of the object’s 3D shape and
assists in correcting overall low-frequency distortion due to
PS [10, 23, 34]. Hence, MVPS inherits the complemen-
tary output response of PS and MVS methods. Contrary
to the active range scanning methods [4, 34, 40], it provides
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an efficient, low-cost, and effective alternative for trustwor-
thy 3D data acquisition. And therefore, it is widely pre-
ferred in architectural restoration [34], machine vision in-
dustry [16, 23, 41], etc.

State-of-the-art geometric methods to solve MVPS in-
deed provide accurate results but are composed of mul-
tiple optimizations and filtering steps applied in sequel
[16, 29, 36]. Further, these steps are intricate and require
the manual intervention of an expert for precise execution,
thereby limiting its automation [29, 36]. Moreover, these
approaches cannot meet modern industrial requirements of
scalability and low-memory footprint for efficient storage of
recovered 3D models. Lately, neural network-based learn-
ing methods to solve MVPS have shown few critical advan-
tages over geometric methods [22, 23]. These methods are
simpler, effective, and can provide a high-quality 3D model
with a lower memory footprint. Yet, they depend on spe-
cific assumptions about the material type, which limits their
application to anisotropic and glossy material objects.

In this paper, we present a general yet simple and effec-
tive approach to the MVPS problem. Inspired by the recent
MVPS method [23], we introduce uncertainty modeling in
multi-view stereo and photometric stereo neural networks
for reliable inference of the 3D position and surface nor-
mals, respectively. Although uncertainty estimation helps
us filter wrong predictions, it can lead to incomplete recov-
ery of an object’s 3D shape. To this end, Kaya et al. [23] re-
cently proposed Eikonal regularization to recover the miss-
ing details due to filtering. On the contrary, we introduce
neural volume rendering of the implicit 3D shape represen-
tation. It has couple of key advantage over [23] pipeline: (i)
It helps extending the application of MVPS to a wider class
of object with different material type (see Fig.1(b)). (ii) It
further enhances the performance and use of implicit neu-
ral shape representation in MVPS leading to state-of-the-art
results on benchmark datasets.

Meanwhile, recent multi-view stereo approaches have
shown that neural volume rendering using the implicit neu-
ral 3D shape representation can effectively model a diverse
set of objects via multi-view image rendering techniques
[20, 28, 33, 48, 49]. Therefore, introducing it to MVPS can
assist in handling challenging objects’ material types. In-
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tuitively, rendering-based geometry modeling can succeed
where both the MVS and PS methods fail to estimate the
surface geometry [29, 34, 36]. Further, contrary to the stan-
dard practice in MVPS of performing optimization or filter-
ing on explicit geometric primitives [29, 34, 36], i.e., mesh,
neural volume rendering relies on neural implicit shape rep-
resentation, which is memory efficient and is scalable [48].
In summary, our paper makes the following contributions:

• We present a simple, efficient, scalable, and effective
MVPS method for the detailed and complete recovery of
the object’s 3D shape.

• Our proposed uncertainty-aware neural volume rendering
uses confident priors from deep-MVS and deep-PS net-
works and encapsulates them with an implicit geometric
regularizer to solve MVPS demonstrating state-of-the-art
reconstruction results on the benchmark dataset [29].

• Contrary to the current state-of-the-art methods, our
method applies to a broader class of object material types,
including anisotropic and glossy materials. Hence, widen
the use of MVPS for 3D data acquisition.

2. Related Work

Classical MVPS. Early MVPS methods assume a particu-
lar analytic BRDF model, which may not be apt for real-
world objects whose reflectance differs from the assumed
BRDF model [13, 16, 30]. Later, Park et al. [36, 37] pro-
posed a piece-wise planar mesh parameterization approach
for recovering an object’s fine surface details via displace-
ment texture maps. Nevertheless, their work was not aimed
at modeling surface reflectance properties. Other methods
such as [8, 39] model the BRDF, yet restricted to near-flat
surface modeling assuming the surface normal is known.

Other classical MVPS methods that have been proposed
in the last couple of years do provide decent results [29,51];
yet, their introduced pipeline composes of several com-
plex optimization algorithms such as iso-depth contour esti-
mation, contour tracing, structure-from-motion, multi-view
depth propagation, point sorting, mesh optimization using
[34], and ACLS algorithm [9]. Moreover, some of these
steps require an expert’s intervention for parameter fine-
tuning; hence challenging to re-implement, automate and
execute. Additionally, the method’s reflectance modeling is
built on Alldrin et al. [2] and Tan et al. [42] work, and there-
fore, its application is limited to isotropic material objects.

Deep MVPS. In recent years, deep learning-based ap-
proaches to MVPS have been proposed as alternatives to
classical methods. Not long ago, Kaya et al. [24] intro-
duced a neural radiance fields-based MVPS approach (NR-
MVPS). The proposed pipeline predicts the object’s sur-
face normals using a deep-PS network and blends them in
a multi-view volume rendering formulation to solve MVPS.
Regardless of its simplicity, it fails to provide a high-quality

3D reconstruction of the object. Further, [22] proposed
neural inverse rendering idea to recover an object’s shape
and material properties. Among all the deep MVPS meth-
ods, the recently introduced uncertainty-based MVPS ap-
proach [23] (UA-MVPS) provides better 3D reconstruction
results. However, it fails on anisotropic and glossy ob-
jects (see Fig.1(b)). On the contrary, this paper proposes
a method that can successfully make MVPS 3D acquisi-
tion setup work for isotropic, anisotropic, and glossy objects
with magnificent results.

3. Preliminaries

MVPS Setup. Hernández et al. [16] proposed the introduc-
tory MVPS acquisition setup1. It is composed of a turntable
arrangement, where light-varying images (PS images) of
the object placed on the table are captured from a given
viewpoint. Note that the camera and light sources’ posi-
tion remains fixed, and only the table rotates, providing a
new viewpoint (v) of the object per rotation. For every ta-
ble rotation, PS images for each light source are captured
and stored (see Fig.1(a)).

Notation and Definition. Denoting L as the total num-
ber of point light sources and V as the total number of
viewpoints (corresponds to each table rotation), we de-
fine X v

ps = {Xv
1 , X

v
2 ..., X

v
L} as the set of photomet-

ric stereo images from each viewpoint v ∈ [1, V ], and
Ymv = {Y 1, Y 2..., Y V } as the set of multi-view images
constructed using Y v = median(X v

ps) as performed in [29].
The goal of an MVPS algorithm under calibrated setting
is to recover the precise and complete geometry of the ob-
ject. The motivation for using MVS and PS is due to the
observation elaborated in [34]. As alluded to above, despite
PS can provide reliable high-frequency geometric details,
it generally contributes to low-frequency surface distortion
at coarse scale [34]. We can correct such distortions using
geometric constraints with object’s MVS images.

Using the basic MVPS experimental setup, it is easy to
recover two types of surface priors: (i) 3D position per pixel
(pi ∈ R3×1) of the object using multi-view stereo images
(ii) surface normal for each surface point (npsi ∈ R3×1)
using light varying images [10, 15, 27, 44]2. Hence, by de-
sign, the problem boils down to effective use MVS and PS
surface priors, light varying images, light and camera cali-
bration data for high-quality dense 3D surface recovery. To
have the 3D position prior, most methods resort to structure
from motion method or its variation [29, 37]. For surface
normal prior, one of the popular image formation model is:

1Refer Nehab et al. [34] 2005 work, which uses active range scanning
sensor to solve a similar problem.

2Note that MVS reconstruction may not provide reliable per pixel 3D
reconstruction. Hence, bad 3D estimates are filtered which leads to sparse
set of object 3D points.

3127



(a) MVPS Setup

OursUA-MVPS

Anisotropic Material

Glossy Material

(b) Benefit of our approach

Figure 1. (a) The classical MVPS setup as outlined in Hernández et al. [16] work. (b) The advantage of our method over current state-of-
the-art deep-MVPS method i.e., UA-MVPS [23]. It can be observed that our method is able to correctly recover the fine object’s details for
anisotropic and glossy material object. The 3D model used for the above illustration is taken from [33] dataset.

Xv
j (pi) = ej · ρ

(
ni(pi), lj ,v

)
· ζa

(
ni(pi), lj

)
· ζc(pi)

(1)
Here, the function ρ() denotes the BRDF, ζa(ni(pi), lj) =
max(ni(pi)

T lj , 0) accounts for the attached shadow, and
ζc(pi) ∈ {0, 1} assigns 0 or 1 value to pi depending on
whether it lies in the cast shadow region or not. lj is the light
source direction and ej ∈ R+ is the scalar for light intensity
value due to jth light source. Although surface normal can
be estimated with reasonable accuracy using Eq.(1) image
formation model [5], modeling BRDF using it can be chal-
lenging. Therefore, we propose a neural network-based im-
age rendering approach to overcome such a limitation. Ex-
perimental results show that using our approach help MVPS
work for a broader class of object material. Next, we de-
scribe our approach to the MVPS problem in detail.

4. Our Approach
As mentioned in Sec.2, on the one hand, we have the

state-of-the-art geometric method that is composed of sev-
eral complex steps, hence not suitable for automation. Fur-
ther, it cannot meet the modern demand of scalability, and
thus, less convincing for the current challenge of handling a
large set of object data. On the other hand, UA-MVPS [23]
recent work on deep MVPS is simple and scalable but works
well only for isotropic material objects.

This paper proposes a simple, scalable, and effective ap-
proach that can handle a much broader range of objects.
We first recover the 3D position and surface normal priors
from MVS and PS images (MVPS setup) using uncertainty-
aware deep multi-view stereo [43] and deep photometric
stereo networks [19, 23], respectively. The uncertainty-
aware network measures the suitability of the predicted sur-
face measurements for its reliable fusion. However, the
filtering of unreliable predictions based on the uncertainty

measures leads to the loss of local surface geometry. Thus,
we introduce a geometric regularization term in the overall
loss function to recover the complete 3D geometry of the
object. To that end, we represent the object’s shape as level
sets of a neural network and recover it by optimizing the
parameters of a multi-layer perceptron (MLP). The MLP
approximates a signed-distance-function (SDF) to a plausi-
ble surface based on the point cloud, surface normals, and
an implicit geometric regularization term developed on the
Eikonal partial differential equation [6].

The above pipeline is inspired by UA-MVPS [23], which
generally works well but cannot model anisotropic or glossy
surfaces. Hence, not a general solution and is unsuitable
for large applications. On a different note, we observed
that representing the light fields and density of the object
as a neural network in a multi-view volume rendering al-
gorithm improves the 3D reconstruction of general objects.
Further, as well-studied, volume rendering generalizes well
to diverse objects with different material types. Such an
observation leads us to introduce an uncertainty-aware vol-
ume rendering approach to the MVPS problem. As we will
show, it not only helps achieve state-of-the-art results on
isotropic material objects but also provides accurate 3D sur-
face reconstruction on challenging subjects such as glossy
texture-less surface objects. Next, we describe each com-
ponent of our approach in detail, leading to the final loss.

4.1. Uncertainty-Aware Deep-MVS Network

Given a set of multi-view images Ymv , {Kv,Rv, tv}Vv=1

the set of camera intrinsics, rotations, and translations for
each camera view, the goal is to recover the 3D position
of the object corresponding to each pixel with a measure
of its reconstruction quality. For that, we use PatchMatch-
Net [43] architecture due to its state-of-the-art (SOTA) per-
formance on large-scale images. Further, it provides dense
depth maps with per-pixel confidence values. Such an in-
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herent property allows the filtering of unreliable depth pre-
dictions without having to add an extra uncertainty estima-
tion module into the network.

Built on the idea of classical PatchMatch [3] algorithm,
it starts by generating random depth hypotheses. Then, the
network repeatedly propagates and evaluates existing depth
hypotheses at different image scales in a coarse-to-fine man-
ner. Specifically, feature maps are extracted from each in-
put image and the extracted features are used to generate
new depth hypotheses. Subsequently, generated hypotheses
are evaluated to compute the matching cost. For that, sim-
ilarities between warped feature maps are calculated using
group-wise correlation [45]. Finally, the depth di and the
confidence Ci value at pixel i are computed as follows:

di =

H∑
j=1

dji · softmax(Jji ), Ci = softmax(Jj
∗

i ) (2)

Here, dji is the jth depth hypothesis at pixel i and Jji is
the computed matching cost of corresponding depth hy-
pothesis. H is the total number of depth hypotheses, and
j∗ is the most likely depth hypothesis at a pixel. After
PatchMatchNet is applied at the finest image scale, we ob-
tain the position estimate at pixel coordinates oi by pi =
Rv

(
diK

−1
v oi

)
+tv . Further, we introduce per-pixel binary

variable cmvs
i to indicate highly confident estimates. We as-

sign cmvs
i = 1 when Ci > τmvs and keep cmvs

i = 0 for the
rest [23]. For more details on deep-MVS network’s train
and test time specifics refer supplementary or [43].

4.2. Uncertainty-Aware Deep-PS Network

To predict surface normals per view from PS images X v
ps,

and light source directions {lj}Lj=1, we use the network ar-
chitecture presented in [19]. Instead of having a parametric
BRDF model assumption, the network learns from training
data to map an input observation map to a surface normal.
An observation map is a 2D matrix-based representation ob-
tained by storing the intensity values at a pixel due to dif-
ferent light sources. Experiments suggest that observation
map based representation facilitates accurate estimation of
surface normals for general isotropic BRDFs [47, 50]. For
more details on the network architecture and observation
map refer to Ikehata’s work [19] or supplementary material.

Despite the PS network architecture can predict the ob-
ject’s surface normals, it cannot measure uncertainty in the
predicted value, which is one of the critical components
of our approach. Following [23], we adopt the Monte
Carlo (MC) dropout approach [11, 12] and build up an
uncertainty-aware deep-PS architecture. In a nutshell, we
introduce a dropout layer with probability pmc after all
convolution and fully connected layers. With this adjust-
ment, the network can be treated as a Bayesian neural net-
work, whose parameters approximate a Bernoulli distribu-

tion. Thus, we can train the network with an additional
weight decay term scaled by λw on network parameters:

Lps =
1

Nmc

Nmc∑
j=1

∥ñj − ngt∥22 + λw

K∑
k=1

∥Wk∥22 (3)

In Eq.(3) ñj , ngt denotes the network’s predicted and
ground-truth surface normal, respectively. Nmc is the num-
ber of MC samples and Wk stands for the network weights
at layer k = 1, ...,K. We train the network on CyclesPS
dataset [19] once, and used the same network for testing.

At test time, we keep dropout layers active to have a
non-deterministic network and we run the network multi-
ple times on the same input. This allows us to capture the
fluctuation on the surface normal predictions. We average
out all predictions at pixel i to compute the output normal
npsi ∈ R3×1 and the variance σ̃2

i ∈ R3×1. Since we are in-
terested in highly confident predictions, we assign cps

i = 1 if
∥σ̃2

i ∥1 < τps and keep cps
i = 0 for the remaining pixels [23].

Here, cps
i is a binary variable to indicate the selection of

confident normal prediction.

4.3. Shape Representation and Regularization

Using deep-MVS and deep-PS networks —as described
above, we filter confident 3D positions and surface normals
{pi,npsi }Ii=1 ⊂ R3 prediction ∀i ∈ [1, . . . , I]. Our goal
is to recover object’s dense 3D reconstruction combining
those reliable intermediate priors. To this end, we propose
to learn the signed distance function (SDF) of the object
surface defined by a implicit function fθ(x) : R3 → R us-
ing the reliable prediction estimates. We model the function
using an MLP parameterized by θ, assuming its zero level
set approximates the object surface.

To find the optimal θ, we consider the Eikonal equation
(||∇xfθ(x)|| = 1). It establishes a constraint on fθ(x) to
represent a true SDF. Note that even if the boundary con-
ditions imposed by the given surface estimates are satisfied
(i.e., fθ(pi) = 0, ∇xfθ(pi) = npsi ), a unique solution to
the zero level set surface may not exist. Nevertheless, de-
scribing an incomplete set of surface 3D estimates using
Eikonal condition as a regularizer favors smooth and plau-
sible surfaces [14]. Hence, we consider the following regu-
larization term in our optimization:

LEikonal = λeEx(∥∇xfθ(x)∥ − 1)2 (4)
where the expectation is computed w.r.t. a probability dis-
tribution x ∼ D. Note that recent work [23] has considered
the Eikonal regularization to interpolate the surface from
MVS and PS network predictions. However, the question
we ask in the paper, did utilize all the imaging prior pro-
vided by MVPS well or can we do better?. In this work, we
show that by cleverly using multi-view image prior, we can
perform better than UA-MVPS [23]. To accomplish that,
we introduce neural volume rendering method to MVPS.
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Figure 2. Method overview (Left to Right): We obtain highly confident 3D position and surface normal predictions of the object via
uncertainty-aware deep-MVS and deep-PS networks, respectively. Then, we learn the signed distance function representation of the object
surface. Finally, our optimization uses the volume rendering technique to recover the missing details of the surface, providing high-quality
3D reconstructions of challenging material types.

4.4. Neural Volume Rendering

Recent work on volume rendering techniques has shown
outstanding results in learning scene representations from
multi-view images [33]. Although such techniques are im-
pressive with novel view synthesis, they can not faithfully
provide the object’s geometry from the learned volume den-
sity, leading to inaccurate and noisy reconstructions. There-
fore, for our work, we use SDF-based volume rendering ap-
proach [48] which models volume density as a function of
the signed distance value as follows:

σ(x) = αΦβ(−fθ(x)),

where Φβ(s) =

{
1
2exp

(
s
β

)
, if s ≤ 0

1− 1
2exp

(
− s

β

)
, if s > 0

(5)

Here, α, β > 0 are trainable parameters and Φβ(.) is the cu-
mulative distribution function of a zero-mean Laplace dis-
tribution. Eq:(5) ensures a smooth transition of density val-
ues near the object boundary, and at the same time allows
a suitable extraction of zero level set after optimization for
surface recovery. Inspired by the classical volume rendering
techniques [21, 32], the expected color I(ci,vi) of a cam-
era ray xi(t) = ci + tvi with camera center ci ∈ R3 and
viewing direction vector vi ∈ R3 can be modeled as:

I(ci,vi) =

∫ tf

tn

T
(
xi(t)

)
σ
(
xi(t)

)
rψ

(
xi(t),ni(t),vi

)
dt,

(6)
where T

(
xi(t)

)
= exp

(
−

∫ t
0
σ(xi(s))ds

)
is the trans-

parency, ni(t) = ∇xfθ(xi(t)) is the level set’s normal at
xi(t), rψ is the radiance field function and (tn, tf ) are the
bounds of the ray. Using the quadrature rule for numerical
integration [32] and the ray sampling strategy in [49], we

approximate the expected color as :

Î(ci,vi) =
∑
j∈Si

Tj
(
1− exp(−σjδj)

)
rψ

(
xj ,nj ,v

)
(7)

Here, Si is the set of samples along the ray, δj is the distance
between each adjacent samples and Tj is the approximated
transparency [49]. To realize rψ , we introduce a second
MLP with learnable parameters ψ. The radiance fields net-
work rψ is placed subsequent to the signed distance field
network fθ (see Fig. 2). Furthermore, we introduce a fea-
ture vector z ∈ R256 that is extracted from fθ using a fully
connected layer. This feature vector is fed to the radiance
field network rψ to account for global illumination effects.
We optimize fθ and rψ network on the test subject together.
After optimization, we extract the zero level set of fθ and re-
cover the shape mesh using marching cubes algorithm [31].
For more details, refer to Sec.§5.1 and [48].
Optimization. Our overall training loss is as follows:

Lmvps =
1

I

I∑
i=1

( MVS Loss︷ ︸︸ ︷
cmvs
i |fθ(pi)|+

PS Loss︷ ︸︸ ︷
cps
i ∥n

r
i − npsi ∥

+

Rendering Loss︷ ︸︸ ︷
(1− cmvs

i cps
i )∥Ii − Î(ci,vi)∥1

)
+
λm
|M|

∑
i∈M

Mask Loss︷ ︸︸ ︷
CE

(
max
j∈Si

(σj/α), 0
)
+

Eikonal Regularization︷ ︸︸ ︷
λeEx(∥∇xfθ(x)∥ − 1)2

(8)
Eq.(8) consists of five terms. Here, the first term forces
the signed distance to vanish on the high fidelity posi-
tion predictions of deep-MVS network. Similarly, the sec-
ond term encourages the expected surface normal on a ray
nri =

∑
j∈Si

Tj(1 − exp(−σjδj))ni(t) to align with the
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highly confident deep-PS predictions. The third term intro-
duces an uncertainty-aware rendering loss to the optimiza-
tion for the pixels where either MVS or PS fails. Intuitively,
this allows the optimization to recover the missing surface
details using rendering. We further improve the geometry
using the object masks. For that, we first find the maxi-
mum density on rays outside the object mask (i.e. i ∈ M).
Then, we apply cross-entropy loss (CE) to minimize ray and
geometry intersections as in [49]. The final term applies
Eikonal regularization for plausible surface recovery as dis-
cussed in Sec.§4.3. Fig.(2) shows the overall pipeline of our
proposed approach.

5. Experiment and Results

Datasets. First, we evaluated our approach on the
DiLiGenT-MV [29]. DiLiGenT-MV is a standard bench-
mark for the MVPS setup, consisting of five real-world ob-
jects. The images are acquired using a turntable setup where
the object is placed ∼ 1.5m away from the camera. The
turntable is rotated with 20 uniform rotations for each ob-
ject, and 96 distinct light sources are used to capture light-
varying images at each rotation. Although the DiLiGenT-
MV benchmark consists of challenging objects with non-
Lambertian surfaces, all provided objects satisfy isotropic
BRDF property. Therefore, we simulated a new dataset con-
sisting for objects with anisotropic and glossy surfaces.

Similar to classical setup, we simulated our dataset us-
ing a turntable setup with 36 angle rotations. We place 72
light sources in a concentric way around the camera (see
Fig.1(a)) and rendered images corresponding to each light
source. We use licensed Houdini software to simulate our
setup and render MVPS images of a single object 3D model
taken from NeRF synthetic dataset [33] with three differ-
ent material types (Wood, Gray, Red)3. The Wood cate-
gory is rendered to study anisotropic material behavior and
the other two categories to analyse our method’s perfor-
mance on texture-less glossy objects. We rendered images
at 1280×720 resolution to better capture the object details4.

5.1. Implementation Details

We implemented our method in Python 3.8 using Py-
Torch 1.7.1 [38] and conducted all our experiments on a
single NVIDIA GPU with 11GB of RAM. We first train
uncertainty-aware deep-MVS and deep-PS networks under
a supervised setting. Then, we use these networks to have
3D position and surface normal predictions at test time. Fi-
nally, MVS images, along with the network predictions and
their per-pixel confidence values, are used to optimize the
proposed loss function (Eq.(8)).

3CC-BY-3.0 license.
4Our dataset and further details related to it will be available soon.

BUDDHA 0.935 0.934 0.690 0.922 0.993

POT2 0.458 0.984 0.858 0.907 0.991

READING 0.869 0.975 0.720 0.970 0.975

R-MVPS B-MVPS NR-MVPS UA-MVPS Ours Ground-truth

Figure 3. Comparison of MVPS reconstructions on DiLiGenT-MV
benchmark [29]. We report F-score metric results for numerical
comparison. We can observe that our method recovers fine details
and provides high-quality reconstructions of challenging objects.

(a) Deep-MVS Network. The deep-MVS network is
trained on DTU’s train set [1]. The training takes 8 epochs
using the learning rate 0.001 and Adam optimizer [25]. We
use the MVS trained model at three coarser stages at test
time to predict depth with coarse-to-fine approach. The
depth di and the confidence Ci at each pixel i are computed
using Eq:(2). The predicted depth is further enhanced us-
ing [18] work and converted to a set of 3D points {pi}Ii=1

by back-projecting the depth values to 3D space. Finally,
we obtain binary confidences cmvs

i by setting τmvs = 0.9 for
reliable fusion of confident position predictions.
(b) Deep-PS Network. We train the deep-PS network
on CyclesPS dataset [19] for 10 epochs using Adam opti-
mizer [25] and learning rate of 0.1. We use probability of
pmc = 0.2 in every dropout layer of the architecture. For
training, we set Nmc = 10 and λw = 10−4 (see Eq:(3)).
At test time, we first create observation map per-pixel using
MVPS images. We then run the network on each observa-
tion map 100 times to have the output surface normal nps

i

and the prediction variance σ̃2
i [11, 12]. Finally, we obtain

the confidence value cps
i at ith pixel by setting τps = 0.03.

(c) Overall Shape Optimization. As described in §Sec.4.4,
we optimize two networks during optimization: signed dis-
tance field network (fθ) and radiance field network (rψ).
fθ consists of 8 MLP layers with a skip connection con-
necting the first layer to the 4th. On the other hand, rψ
has four MLP layers (see Fig.2). All the layers of both
networks have 256 units. We apply Fourier feature encod-
ing to the inputs (position x and view direction v) to im-
prove the networks’ ability to represent high-frequency de-
tails [33]. For the loss function in Eq:(8), we set λm = 0.1
and λe = 1. We use a set of multi-view images which
are captured under the illumination of the same randomly
chosen light source to compute the rendering loss. We use
Adam optimizer [25] with learning rate 10−4 and train for
104 epochs. In each epoch, we use batches of 1024 rays
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Method Category → Deep Multi-View Stereo Photometric Stereo View-Synthesis
Dataset↓ | Method → MVSNet [46] PM-Net [43] Robust PS [35] SDPS-Net [5] CNN-PS [19] NeRF [33] VolSDF [48] Ours

BEAR 0.135 0.672 0.266 0.239 0.293 0.865 0.962 0.965
BUDDHA 0.147 0.799 0.367 0.298 0.363 0.713 0.786 0.993

COW 0.095 0.734 0.245 0.447 0.511 0.810 0.985 0.987
POT2 0.126 0.666 0.231 0.464 0.632 0.859 0.946 0.991

READING 0.115 0.834 0.242 0.188 0.508 0.673 0.683 0.975
AVERAGE 0.124 0.741 0.270 0.327 0.461 0.784 0.873 0.982

Table 1. F-score comparison of standalone method reconstructions on DiLiGenT-MV benchmark [29]. Our method outperforms stan-
dalone multi-view stereo, photometric stereo and view synthesis methods in all of the object categories.

from each view and sample 64 points along each ray [48].
To compute the Eikonal regularization as in Eq:(4), we also
uniformly sample points globally. So, the distribution D
stands for the collection of these ray samples and global
samples. After the optimization, we extract zero level set of
the learned SDF representation by fθ and recover the shape
mesh using marching cubes algorithm [31] on a 5123 grid.

5.2. Statistical Analysis

We performed comparative analysis on the DiLiGenT-
MV dataset [29]. To evaluate the quality of the shape re-
constructions, we use well-known Chamfer-L2 and F-score
[26] metric. For better understanding, we present the per-
formance comparison result in two different categories de-
pending on the method type.

(a) Standalone Method Comparison. By the standalone
method, we refer to the approaches that use only one modal-
ity i.e., either MVS or PS images for 3D reconstruction. We
consider SOTA MVS, PS, and view-synthesis methods for
this comparison. Note that we use Horn and Brooks algo-
rithm [17] for normal integration to recover depth maps. We
then back-project the recovered depths to 3D space to eval-
uate reconstruction performance. Table 1 presents the F-
score comparison of these methods on DiLiGenT-MV [29].
The statistics show that our method consistently outper-
forms the standalone approaches. Further, we observed that
none of the standalone methods could reliably recover the
object’s 3D shape. On the contrary, our method gives ac-
curate reconstruction by effectively exploiting the comple-
mentary surface and image priors.

(b) MVPS Methods Comparison. Table 2 provides the
F-score comparison results with SOTA MVPS methods on
the DiLiGenT-MV benchmark dataset. For our comparison,
we consider both explicit geometry modeling-based classi-
cal approaches [29, 36], and neural implicit representation
based deep approaches [23,24]. The numerical results show
that our method provides the highest scores on three objects
categories. Moreover, it outperforms all the existing MVPS
methods on average. Some important point to note is that
(i) Our approach provides a scalable and easy-to-execute
implementation, without requiring tedious sequential steps
as in classical methods [29], (ii) Our MLP based shape rep-

Dataset↓ | Method → R-MVPS [36] B-MVPS [29] NR-MVPS [24] UA-MVPS [23] Ours
BEAR 0.504 0.986 0.856 0.895 0.965

BUDDHA 0.935 0.934 0.690 0.922 0.993
COW 0.915 0.989 0.844 0.979 0.987
POT2 0.458 0.984 0.858 0.907 0.991

READING 0.869 0.975 0.720 0.970 0.975
AVERAGE 0.736 0.974 0.794 0.935 0.982

Table 2. F-score comparison of MVPS reconstructions on
DiLiGenT-MV benchmark [29]. Our method performs consis-
tently well on various objects and is better than others on average.

resentation requires only 3.07MB of memory, while explicit
geometric methods may require up to 90MB. Such advan-
tages make our method an efficient and effective algorith-
mic choice for solving MVPS.

5.3. Further Analysis

(a) Anisotropic and Textureless Glossy Surfaces. We per-
form evaluations on our synthetic dataset to analyze the
efficiency of our approach on anisotropic and texture-less
glossy surfaces. In Fig.4(a), we provide Chamfer L2 metric
comparison of our method with the recent UA-MVPS [23].
The results show that our method performs much better than
its competitor on glossy (Gray, Red) and anisotropic sur-
faces (Wood). In Fig.4(b), we show qualitative results of
the uncertainty-aware deep-MVS and deep-PS networks on
the Gray category. It can be observed from visual results
that deep-MVS cannot provide reliable position estimates
on texture-less glossy surfaces. For this reason, methods re-
lying on the fusion of only MVS and PS priors (such as UA-
MVPS) cannot handle all kinds of surfaces. On the other
hand, our method can recover the missing surface informa-
tion by effectively utilizing volume rendering; hence, it can
suitably work for anisotropic and glossy surface profiles.

(b) Optimization. Here, we investigate the effectiveness
of our proposed optimization loss in Eq:(8) with an abla-
tion study. For that, we compare the reconstruction quality
of our method by removing (i) MVS loss term, (ii) PS loss
term, (iii) rendering loss term and (iv) uncertainty modeling
(cmvs
i and cps

i ) from the overall loss. In Table 3, we pro-
vide Chamfer L2 metric comparison of the reconstruction
quality achieved under each of these configurations. The
numerical results verify that uncertainty modeling based in-
tegration of MVS, PS and rendering loss terms provides best
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Figure 4. (a) Chamfer L2 comparison of our method with UA-MVPS [23] on our synthetic dataset (lower is better). (b) We show depth and
surface normal predictions on texture-less object. Pixels marked with yellow color indicate confident MVS or PS predictions (cmvs

i and cps
i ).

Note that MVS cannot predict depth reliably on texture-less surface, which leads to inferior results in UA-MVPS [23]. On the other hand,
our uncertainty-aware volume rendering approach can recover missing surface information, and therefore, provides better reconstructions.
(c) Comparison of our method with TSDF Fusion algorithm [7]. We report F-score metric for numerical comparison.

Figure 5. Surface profile of our reconstructions on a randomly cho-
sen path. Clearly, our surface profile overlaps with the ground-
truth(GT), which indicates the high quality of our reconstructions.

results on DiLiGenT-MV [29].

(c) Surface Profile. To show the quality of our recovered
3D reconstructions, we study the surface topology across
an arbitrarily chosen curve on the surface. Fig.5 shows
a couple of examples of such surface profile on Buddha
and Cow sequences. Clearly, our recovered surface profiles
align well with the ground truth.

(d) Volumetric Fusion Approach. Of course, one can use
robust 3D fusion method such as TSDF fusion [7] to re-
cover the object’s 3D reconstruction. And therefore, we
conducted this experiment to study the results that can be
recovered using such fusion techniques. Accordingly, we
fuse deep-MVS depth and the depth from deep-PS normal
integration [17] using the TSDF fusion. Fig.4(c) shows that
TSDF fusion provide inferior results compared to ours.

(e) Limitations. Although our method works well on
glossy objects, it may fail on materials with mirror reflec-
tion. Furthermore, SDF representation of the object shape
restricts our approach to solid and opaque materials. Fi-
nally, our work considers a calibrated setting for MVPS
setup, and it would be interesting to further investigate our

Settings↓ | Dataset → BEAR BUDDHA COW POT2 READING AVERAGE
w/o MVS Loss 0.189 0.089 0.202 0.156 0.353 0.198

w/o PS Loss 0.301 0.572 0.184 0.262 0.428 0.349
w/o Rendering Loss 0.154 0.471 0.269 0.235 0.374 0.301

w/o Uncertainty-Aware. 0.267 0.085 0.313 0.137 0.251 0.211
Ours 0.213 0.088 0.176 0.198 0.253 0.186

Table 3. Contribution of MVS, PS, rendering loss terms and un-
certainty modeling to our reconstruction quality. We report Cham-
fer L2 metric for comparison (lower is better). Clearly, our pro-
posed loss in Eq:(8) produces best results on average.

approach in an uncalibrated setup. For more results and ex-
haustive analysis of our method refer to our supplementary.

6. Conclusion

The proposed method addresses the current limitations
of well-known MVPS methods and makes it work well
for diverse object material types. Experimental studies on
anisotropic and texture-less glossy objects show that exist-
ing MVS and PS modeling techniques may not always ex-
tract essential cues for accurate 3D reconstructions. How-
ever, by integrating incomplete yet reliable MVS and PS in-
formation into a rendering pipeline and leveraging the gen-
eralization ability of the modern view synthesis approach to
model complex BRDFs, it is possible to make MVPS setup
work well for anisotropic materials and glossy texture-less
objects with better accuracy. Finally, the performance on
the standard benchmark shows that our method outperforms
existing methods providing exemplary 3D reconstruction
results. To conclude, we believe that our approach will open
up new avenues for applying MVPS to real-world applica-
tions such as metrology, forensics, etc.
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