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Abstract

Automated cellular instance segmentation is a pro-

cess utilized for accelerating biological research for the

past two decades, and recent advancements have pro-

duced higher quality results with less e�ort from the

biologist. Most current endeavors focus on completely

cutting the researcher out of the picture by generating

highly generalized models. However, these models in-

variably fail when faced with novel data, distributed dif-

ferently than the ones used for training. Rather than

approaching the problem with methods that presume the

availability of large amounts of target data and comput-

ing power for retraining, in this work we address the

even greater challenge of designing an approach that

requires minimal amounts of new annotated data as

well as training time. We do so by designing special-

ized contrastive losses that leverage the few annotated

samples very e�ciently. A large set of results show

that 3 to 5 annotations lead to models with accuracy

that: 1) significantly mitigate the covariate shift e�ects;

2) matches or surpasses other adaptation methods; 3)

even approaches methods that have been fully retrained

on the target distribution. The adaptation training is

only a few minutes, paving a path towards a balance be-

tween model performance, computing requirements and

expert-level annotation needs.

1. Introduction
Automating the analysis of scientific imaging data

via computer vision techniques is becoming increas-
ingly convincing as our field matures. In order to
accelerate scientific discovery, neural network-based
methods have recently been developed to automati-
cally segment and count individual instances of cells
in laboratory-produced imaging data [44, 51, 14]. Such
type of data acquisitions exhibit a remarkable variabil-

ity, which is due to the large variety of imaging modal-
ities being used, the di�erent types of tissues and how
they are processed.

Current approaches for the specific task of cell in-
stance segmentation are mainly based on supervised
learning. They are trained on large datasets in an at-
tempt to compensate for the diversity of the new data
they are meant to be used on. However, new data
to process will very likely not be distributed in the
same way as the data used for training the models, so,
they will perform the task, often with disappointing
accuracy. To adress this covariate shift problem [42]
the obvious solution is retraining the models, which is
costly and time consuming because it requires manual
annotation of large amounts of the new target data we
are seeking to automatically process. An alternative is
to use domain adaptation methods, which attempt to
adapt the model to the target data distribution. Cur-
rent domain adaptation methods for segmentation are
by and large tailored to imaging modalities, or specific
tasks or applications that are very di�erent than cell
instance segmentation [15, 53]. Some promising work
has addressed the problem in an unsupervised man-
ner [26, 27]. But these approaches assume that a large
fraction and amount of target data is available to un-
dergo a relatively intense training to adapt the model.

In this work, we advocate for a more practical and
scalable solution to address the need to generalize well
out of distribution. We assume that a model for seg-
menting instances, such as cell bodies, membranes, or
nuclei, has already being trained on a source dataset.
Then, by annotating only a handful of samples of the
target dataset we adapt the model, with a low train-
ing budget, to generalize well on the new distribution.
We introduce CellTranspose, a new approach that im-
plements the paradigm just described, for the few-shot
supervised adaption of cell instance segmentation. The
approach builds on a state-of-the-art model, and we
introduce new losses and a training procedure for the
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quick adaptation of the model to new data.
Our framework allows for a broad range of data to

be properly segmented beyond the capabilities of cur-
rent generalist approaches. We show that only a small
number of annotations on the target dataset are re-
quired for the model to learn to produce high-fidelity
segmentations and demonstrate this both on 2-D and
3-D data. In particular, few annotated samples are
su�cient also to reach adaptation levels comparable
to the unsupervised adaptation models. Additionally,
CellTranspose a�ords a much faster training scheme as
compared to training a model with similar accuracy
from scratch.

2. Related Work
2.1. Cellular Instance Segmentation

The current top approach for cell instance segmen-
tation is Cellpose [44]. Like many recent segmentation
algorithms, Cellpose’s underlying model is a variant of
U-Net [38], outputing a pixel-wise mask prediction. By
itself, this only produces a semantic segmentation: the
output mask merely determines the class of each pixel
(foreground/cell or background), making it impossi-
ble to delineate between individual cells when they are
clustered together. Deriving inspiration from the tra-
ditional watershed algorithm [3] and a gradient-based
deep pose recognition algorithm called OpenPose [5],
Cellpose contains two additional outputs correspond-
ing to predicted gradients towards each pixel’s associ-
ated cell source location, one in the x-direction and one
in the y-direction. Through an iterative process, the
gradient of each pixel is followed to neighboring pixels
until a “source” pixel representing a cell center is en-
countered. Each pixel directly linked to the source is
then considered a part of the cell instance, in this way
constructing segmentations of individual cells.

Other cellular segmentation methods have been pro-
posed recently. Similar to Cellpose, Mesmer [14] repre-
sents another variant of “deep watershed” algorithms,
also producing a pixel-wise mask prediction, but in-
stead of the two flow outputs it generates an “inner dis-
tance transform” to predict the distance of each pixel to
a cell’s center. StarDist [40] and StarDist-3D [51] pre-
dict object centers and then approximate the distance
from the given location to cell boundaries at fixed an-
gles from the center. The points defined by these pre-
dictions are then connected to each neighboring point
to produce the outline of the cell’s mask. Other ap-
proaches include NuSeT [57], which also builds on the
watershed algorithm, and DenoiSeg [4], which utilizes
a joint learning strategy in concert with a denoising
task to produce better accuracy on noisy samples.

2.2. Domain Adaptation for Medical Imaging
A common issue in deep learning practice is the

scarcity of labeled data for many tasks and the of-
ten unrealistic requirement to produce vast amounts
of costly annotations in order to appropriately train a
model. Although many e�orts have been made to pro-
duce “generalist” models which are invariant across dif-
ferent datasets for a specific task, doing so is intractable
in real-world applications where data has intrinsically
high variability. Domain adaptation allows for taking a
high-performing model trained on a large dataset and
adapting it to work on new data representing some tar-
get domain. This enables the model to take advantage
of learned low-level features acquired from the larger
source dataset while tuning to the specific features of
the target dataset, requiring less target data.

Due to this lower dependence on manual annotation
from experts, a vast amount of research on domain
adaptation-based approaches has been unleashed on
the medical imaging field [15, 53]. In addition to a few
domain adaptation approaches on semantic segmenta-
tion for various imaging modalities including brain tu-
mors [10, 47, 12], whole tissue [65], and organelles [2],
several unsupervised mechanisms for semantic segmen-
tation [55, 22, 19, 49, 36, 9, 1, 11, 21, 20, 63, 62, 7, 54,
56, 37, 41, 35, 23] and the more challenging instance
segmentation task [26, 27, 58, 24] have been proposed.
Generally, these unsupervised methods aim to learn
representations of a given target domain without the
use of any annotations. This greatly reduces the need
for e�ort from medical experts while producing bet-
ter segmentations than non-adapted models. However,
this is accompanied by a clear trade-o� with model ac-
curacy, and the training scheme, in addition to more
complex model architectures, causing training time to
increase heavily. There is also an intrinsic expecta-
tion for the shape and relative size of segmentations
from the target data to match closely with those of the
source dataset, constraining such approaches to nuclei
segmentation rather than more heterogeneous full-cell
segmentations. These methods are also notably not
“generalist,” and tend to focus on and perform best on
a particular cell or imaging type.

2.3. Few-shot Domain Adaptation
In order to accommodate many real-world settings,

one set of techniques known as “few-shot” domain
adaptation aims to balance the demand for annota-
tions with overall model performance. Since at least
one large dataset is often available for a given task,
many of the weaknesses posed by few-shot learning on
its own can be avoided. Some popular techniques for
addressing domain adaptation with a limited number of
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Figure 1. Variability of microscopy data. Image sam-
ples highlighting the variability of cell images. From left
to right: Human U20S cells with Hoechst and phalloidin
stains from BBBC006 [29]; Neuroblastoma cells labelled
with phalloidin and DAPI stains from the Cell Image Li-
brary [60]; GI tissue cells imaged by co-detection by in-
dexing (CODEX) from Tissuenet [14]; Breast cancer cells,
using hematoxylin and eosin (H&E) stain from TNBC [34].

target samples includes utilizing adversarial techniques
to increase the confusion between the source and tar-
get domain [32], using meta-learning approaches to use
tasks from one domain for adversarially learning tasks
in a smaller, novel domain [39], and generating proto-
types based on learned embeddings from the few target
samples [64], a technique common to few-shot learning.

One which has proven e�ective across multiple
paradigms is the use of contrastive losses [16]. A con-
trastive loss function encourages each sample from the
target domain to be represented similarly to one or
more samples of the same class (positive samples) in
the source domain while simultaneously pushing its
representation away from samples from other classes
(negative samples) within the source domain. This ap-
proach has proven successful in a number of scenarios
including domain adaptation [25, 50, 28], unsupervised
learning [48, 66, 30, 45, 18, 6], self-supervised learn-
ing [8, 59, 31], meta-learning [39], and even few-shot
domain adaptation [33].

3. Problem Definition
We are interested in the segmentation of instances

such as cell bodies, membranes, or nuclei which are
present in cell images. Such image structures have a
remarkable variability because they are acquired with
a variety of microscopy techniques, come from a diverse
range of tissues, and present very di�erent shapes. See
Figure 1. Therefore, even state-of-the-art supervised
instance-based segmentation approaches [44, 14], which
claim to o�er a generalist solution, unfortunately ex-
perience rapid performance degradation when facing
the challenge of data distribution shift [42]. In essence,
when the so-called generalist model is tasked to oper-
ate on data distributed di�erently than the data it was
trained on, expectations are unmet.

Given how frequent the need to generalize out-of-
distribution is for the task at hand, and given how
costly and time consuming, if not completely impracti-
cal, the process of collecting and annotating su�cient

target data for retraining the model can be, we reframe
the problem as one of few-shot learning. The intent is
to significantly widen the range of image variability
handled by current generalist solutions. Specifically,
given a source dataset Ds made of labeled images with
which a generalist model could be trained, the learn-
ing task is to adapt such a model to generalize well
on a target dataset Dt, which is distributed di�erently
than Ds. To perform such adaptation, the user is re-
quired to label only a minimal amount of target data,
let us say K data instances for a K-shot learning. In
Section 4.2.3 we clarify the meaning of a single shot.

Note that simple fine-tuning of a generalist model
on very few target samples is not a feasible solution
due to the obvious overfitting challenges [13], which is
why we introduce a method that aims at a very low
budget in terms of the amount of target data to anno-
tate, as well as the time for adaptation training. Given
the specific setting of our problem, to the best of our
knowledge, this is the first work to propose a method
for few-shot supervised domain adaptation for the task
of cell instance segmentation.

4. Approach
Our approach, shown in Figure 2, assumes that some

large labeled source dataset Ds can be used to initially
train the model. However, regardless of the variety of
cell images within Ds, there will always conceivably
be new data samples outside of the source distribu-
tion. This is due to limitations in both model and
dataset size. We also assume that given some out-of-
distribution set of target samples, annotation is costly,
and therefore only a few samples will be labeled. In the
following subsections, we first describe the pretrained
method we rely on, and then introduce the proposed
few-shot supervised adaptation model.

4.1. Pretrained Model
To provide a robust starting point, we use the state-

of-the-art cell instance segmentation approach Cell-
pose [44], which we summarize here to introduce nota-
tion and make the paper self-contained. Given an im-
age I, the model uses a network f to produce a dense,
pixel-wise feature Z = f(I), where Z = [Z1, Z2, Z3] œ
Rh◊w◊3. Given the feature z = [z1, z2, z3] œ Z for
some pixel i, then z

.= (z1, z2) has the meaning of gra-
dient pointing towards the center of the cell structure
to which pixel i belongs. Collectively, (Z1, Z2) form a
gradient flow. Instead, z

.= z3 represents the unnormal-
ized score indicating the probability of pixel i to belong
to a cell structure. Note that with this notation, the
feature z can be written as z = [z, z]. The network f is
trained in a supervised manner with pixel-wise instance
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Figure 2. Architecture approach. Comprehensive illustration of our contrastive learning-based few-shot cellular instance
segmentation approach.

segmentation loss

LIS
i = (z1 ≠ gx)2 + (z2 ≠ gy)2 + ‹H(m, ‡(z)) , (1)

where, for pixel i, (gx, gy) represents the ground-truth
gradient label with unit ¸2-norm, m œ {0, 1} is the bi-
nary mask label indicating absence/presence of a cell
structure, ‡(z) .= 1/(1 + exp(≠z)), H represents the
binary cross-entropy, and ‹ is a hyperparameter set to
0.04. The pixel-wise loss contributions are then aggre-
gated into a final loss LIS =

q
LIS

i for the image I.
Given the feature Z, the cell instance segmenta-

tion head g produces the mask Y = g(Z), where for
pixel i, the predicted label y is a number in the set
{0, 1, · · · , N}, with N being the total number of cell
instances segmented. Pixels belonging to the same cell
instance have same label, and y = 0 indicates absence
of a cell instance. For details on how g is implemented
the reader can consult [44]. See also Figure 2.

4.2. Adaptation Model

Consider now a target image I œ Dt. If I was
drawn from the same distribution from which source
images composing Ds were drawn, we would expect
the following to be true: For a target pixel i with la-
bel (gx

t
, gy

t
, mt), its feature zt should be very close to

the features of pixels in the source dataset that have
the same label. However, in presence of a domain shift

this is generally untrue, which leads to performance
deterioration of the cell instance segmentation process,
when we use the feature network f on I, followed by
the instance segmentation head g. Therefore, provided
that the labels of some target image pixels are avail-
able, we design a method for reversing the e�ects of
domain shift, by adapting f to generalize well on the
target dataset Dt. Given the distinct predictive nature
(continuous vs. discrete) of the gradient flow features
z = (z1, z2), from the mask feature z, we proceed by
designing adaptation losses for each case.

4.2.1 Contrastive Flow Loss
In order to align zt with the gradient flow features of
source pixels with same label, we set up a contrastive
prediction task [8]. We identify a positive source pixel
with binary label ms

+ = mt = 1, and with gradient flow
features zs

+ that best matches the label (gx
t
, gy

t), ac-
cording to a similarity measure, like cosine similarity
s(u, v) .= u€v/ÎuÎÎvÎ, where Î · Î denotes ¸2-norm.
Then, we compose a set of negative source gradient flow
features Ni = {zs

≠ | s(zs
+, zs

≠) < ”, ms
≠ = 1}, where ”

is a suitable constant hyperparameter threshold that
we choose. Now we can use a contrastive loss func-
tion for pixel i that attempts to pull the positive pair
(zt

, zs
+) closer, while pushing apart every negative pair

(zt
, zs

≠), for zs
≠ œ Ni. The loss function we used, which

we name contrastive flow loss, is

LCF
i = ≠ log exp(s(zt, zs

+)/·)
exp(s(zt, zs

+)/·) +
q

zs
≠œNi

exp(s(zt, zs
≠)/·)

(2)
where · denotes a temperature parameter. Note
that (2) addresses only the directional alignment of
the gradient flow features. This is also what matters
most, because the segmentation head g uses only that
information for assigning pixels to instances, not the
gradient magnitude. However, in Section 4.2.3 we will
see that (1) is also applied on target data, which does
encourage gradients to have unit magnitude.

An important component of the loss is how we mine
the negative source features. Specifically, Ni is com-
posed by selecting the features closest to the positive
source feature zs

+. This hard-mining strategy removes
the need to consider large amounts of negative source
features, because it makes them less informative. This
leads to faster training, and usually more rapid conver-
gence and better model performance, as it was shown
also in [48]. Moreover, for a given target pixel i we
extract one positive feature, and all the |Ni| negative
features from one source image. We set |Ni| to be
the same for every target pixel, and generally, there
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is a su�cient number of negative features such that
the similarity between zs

+ and each negative feature is
approximately equal to ”. Therefore, the Ni features
are roughly equally divided between those at cos≠1

”

radians clockwise and those at cos≠1
” radians counter-

clockwise from zs
+. Thus, when zt is o�, the negative

samples nearer to zt will produce a greater gradient
than those further away.

Given a target image patch and a source image patch
in the minibatch, for this pair we compute a loss contri-
bution by aggregating all the components coming from
the target pixels that belong to cell structures, so they
have label mt = 1. Let us indicate with M this set of
pixels, then the loss for the given pair will be

LCF = 1
|M|

ÿ

M
LCF

i . (3)

4.2.2 Contrastive Mask Loss
The contrastive flow loss (2) is a specialized version of
a loss used in [43, 46, 8, 48], and when · æ +Œ it
converges to

lim
·æ+Œ

LCF
i = ≠s(zt

, zs
+) + ⁄

ÿ

zs
≠œNi

s(zt
, zs

≠) , (4)

where ⁄ is a hyperparameter. The loss (4) was origi-
nally proposed in [17], and a specialized form of it was
introduced in [33] for supervised domain adaptation
and generalization for multi-class visual classification.

Since we are interested in aligning the unnormal-
ized binary classification score z

t with the scores of the
source pixels with same label, we derive a contrastive
loss for segmentation, inspired by (4) and [33]. This
is also motivated by the fact that losses like (2) have
been proven e�ective with cosine similarity, which we
cannot use for this task and we need to replace.

When (4) is optimized, the first term aims at max-
imizing similarity. In our case this would be the sim-
ilarity between z

t and the unnormalized score of the
pixel of a source image z

s
+ with label ms = mt. We can

replace that term with an alignment term based on a
distance, leading to a squared loss

d(zt
, z

s
+) = 1

2(zt ≠ z
s
+)2

. (5)

The second term of (4), instead, aims at minimizing
similarity. In our case this would be the similarity be-
tween z

t and the unnormalized score of pixels in source
images with label di�erent than mt. This would lead to
separation between scores with opposite labels. Given
one such pixel with score z

s
≠, we can measure the sim-

ilarity with z
t with

k(zt
, z

s
≠) = 1

2 max(0, m ≠ |zt ≠ z
s
≠|)2

, (6)

Ms

Mt

I s

I t

ms=0; mt=0
ms=0; mt=1

ms=1; mt=0

ms=1; mt=1

Figure 3. Contrastive Mask Loss. Representation of
the Contrastive Mask Loss for a given source-target sample
patch pair. The mask of a source and target sample are
overlapped to compare representations on a per-pixel ba-
sis. Pixels belonging to the same class are encouraged to
be represented similarly while pixels from di�erent classes
have their representations separated.

where m is a margin, and the loss provides gradient
contributions when z

t is within the margin m of z
s
≠.

Given a target image patch and a source image patch
in a minibatch, we aggregate the losses (5) and (6) as
follows. Let P be the set of positive pairs of scores
(zt

, z
s
+) corresponding to pixels in the same relative

positions in the target and source patches, and with
same label, i.e., ms = mt; and let N be the set of neg-
ative pairs of scores (zt

, z
s
≠) corresponding to pixels in

the same relative positions in the target and source
patches but with di�erent label, i.e., ms ”= mt. Then,
the loss for a pair of target and source patches is

LCM = 1
|P|

ÿ

P
d(zt

, z
s
+) + ⁄

1
|N |

ÿ

N
k(zt

, z
s
≠) , (7)

and we refer to this as the contrastive mask loss. Note
that each term of the loss is normalized with respect
to the area covered by the positive and negative pairs,
respectively. Also, the formation of the sets P and
N is based on the comparison of the mask labels of
the target and source patches, as in Figure 3, and the
pairs originate from pixels with same relative position.
This is not a strict requirement, but it is convenient
because it allows forming su�ciently large sets P and
N , while implementing (7) is easier and faster since it
takes advantage of the parallel architecture of GPUs.

4.2.3 Few-shot Adaptation
Assuming that Dt

K is the target dataset portion of Dt

with K labeled samples, the K-shot adaptation learn-

ing aims at minimizing the loss

LISA =
ÿ

Dt
K

A
LIS + “1

|Ds|
ÿ

Ds

LCM + “2
|Ds|

ÿ

Ds

LCF

B
.

(8)
The training assumes that the generalist model has al-
ready been pretrained. The Cellpose model we used
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z = 32z = 24z = 16z = 08

Ground Truth

z = 00

Cellpose

CellTranspose
(3-shot)

AP=50.9 AP=83.7 AP=85.1 AP=84.1 AP=50.2

AP=22.8 AP=81.0 AP=76.5 AP=77.3 AP=39.3

Figure 4. BBBC006 dataset. Qualitative results on an image from the BBBC006 dataset at di�erent levels of focus. z=16
is considered in-focus, while values further from this are more out of focus in either direction. Segmentations are shown in
gray with cell borders shown in blue. AP values are computed at 0.5 IoU.

was pretrained for 500 epochs [44]. The adaptation
with (8) lasts 5 epochs where source images are contin-
uously randomly paired with one of the K target sam-
ples without replacement. Pairing the target samples
with 1/K-th of Ds in every epoch ensures that even a
1-shot adaptation can operate a significant pull of the
model towards the target distribution. The adapted
model is then fine-tuned on Dt

K with LIS only for 5
more epochs at a very low constant learning rate.

Since this is the first attempt at few-shot domain
adaptation for cellular instance segmentation, we need
to define what constitutes one “shot”. A target exem-
plar cell is selected manually such that its size and
the relative density of cells nearby is representative
of the average scenario across the target dataset. If
K > 1 cells are selected, they should better capture
the variability of the dataset, and will lead to the K-
shot scenario. For a given cell sample the cell is mea-
sured, giving the value mc in pixel units. The one shot
patch is center-cropped around the cell and has size
—maxmcw/mn, where mn is the nominal cell size, w is
the size of the patch passed into the network, and —max

is the largest scaling factor admissible. Data augmen-
tation including translation and random cropping with
factor 0.75 to —max = 1.25 is part of the training to
promote invariance to cell size.

5. Experiments
We evaluate the proposed approach, which we name

CellTranspose, with several datasets and multiple set-
tings. In absence of additional directions, the following
setup is used for each experiment. The model in Sec-
tion 4.1 is pretrained with the “generalized” dataset
of [44] as source data Ds. Adaptation is done as de-
scribed in Section 4.2.3. In general, we follow the data
splitting guidelines laid out by previous works to en-

sure fair comparisons. In order to fit our approach to
these guidelines, we draw our K sample patches, to
produce Dt

K , from the training split of the dataset of
the target distribution. Instead, the testing split of the
target distribution dataset is used as our remaining,
unlabeled portion of the target dataset Dt. We use
SGD with initial learning rate 10≠2, momentum 0.9,
weight decay 10≠5, and batch size of 2 provides opti-
mal results. For the first five epochs, the learning rate
decreases by a factor of 10 each epoch, and is kept con-
stant for the remaining five. We take square patches
with side length h = w = 112, use a minimum over-
lap of 84 during evaluation, and enforce a nominal cell
size mn = 30. Additional hyperparameters are set as:
|Ni| = 20, · = 0.1, m = 10, ⁄ = 1, “1 = 0.05, “2 = 2,
and ” = 0.05. Because the source dataset used is al-
ways significantly larger than the target data, adapta-
tion takes roughly the same amount of time regardless
of the size of K or the target data to which the model is
adapted. Using a singular NVIDIA TITAN Xp GPU,
adaptation takes approximately 5 minutes to complete
for each experiment.
Broad Bioimage Benchmark Collection – 006.
We evaluated CellTranspose on the target dataset
BBBC006 [29], hosted by the Broad Institute. This
dataset is composed of human U2OS cells which are
fairly homogeneous and easy to segment in ideal set-
tings. However, the same tissue samples have been im-
aged with di�erent focus settings, generating di�erent
images, which allow us to observe the e�ect of the asso-
ciated covariate shift on generalist and our approaches.
We consider images taken with five focal planes, specif-
ically at z=00, 08, 16, 24, and 32. The optimal focal
plane is at z=16. Figure 4 shows qualitative segmen-
tation results. As we move away from the optimal fo-
cal plane the generalist Cellpose model exposes greater
performance deterioration than CellTranspose.
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Figure 5. BBBC006 dataset. Average precision of K-shot adaptation with K = 1, 2, 3, 5, 10 target samples. Experiments
were completed using five BBBC006 datasets.

Table 1. TissueNet dataset. F-1 score from state-of-the-
art “generalist” approaches and CellTranspose.

TissueNet Platform-specific Tissue-specific
Results CODEX CyCIF MIBI Vectra Breast GI Imm. Panc.

Cellpose 0.785 0.548 0.479 0.609 0.670 0.523 0.350 0.797
Mesmer 0.88 0.80 0.76 0.72 0.74 0.82 0.82 0.92
CellTranspose 0.940 0.940 0.932 0.918 0.911 0.906 0.934 0.955
Cellpose-UB 0.962 0.967 0.945 0.960 0.950 0.940 0.953 0.958

We also test CellTranspose with di�erent numbers
K = 1, 2, 3, 5, 10, of few-shot adaptation. Figure 5
plots the average precision (AP) against the intersec-
tion over union (IoU) for the di�erent focal settings.
CellTranspose consistently achieves high performance
levels with as few as three annotated shots. Beyond
this, results begin to exhibit diminished returns. So,
unless otherwise specified, other results have been ob-
tained with a 3-shot adaptation, given the balance it
gives between performance and annotation needs.
TissueNet. We evaluated CellTranspose on Tis-
sueNet [14], a dataset developed alongside a gener-
alist method called Mesmer. TissueNet is comprised
of samples from various imaging platforms and tissue
types, providing a wide-spanning array of cellular im-
ages. In [14] one set of experiments split TissueNet into
subsets of the four most common imaging types, each
of which was further divided into di�erent tissue types.
Similarly, four other subsets were composed of the four
most common tissue types, each being further split into
the imaging types that make up the samples for that
tissue type. Table 1 shows the F-1 scores on these eight
data splits, computed for the generalist Cellpose, Mes-
mer trained on each of the splits, and CellTranspose
3-shot adapted to each of the splits. Again, CellTrans-
pose consistently shows improved performance. Since
CellTranspose essentially adapts Cellpose to the tar-
get domain, we can interpret it as a lower bound of
performance. On the other hand, we also re-trained
Cellpose with each target training dataset, obtaining
what could be interpreted as an upper bound for Cell-
Transpose, and we indicated that as Cellpose-UB.
Triple Negative Breast Cancer. Among the most
challenging types of cellular data to segment is that of
hematoxylin and eosin-stained (H&E) images. This is
in part due to the fact that multiple cell types often
appear within an individual sample, in addition to the
high variability of the background. The Triple Nega-

Table 2. TNBC dataset. Comparison between the top
unsupervised approach and CellTranspose. Best results are
in bold, and second best results are underlined.
BBBC039 æ TNBC AJI Pixel-F1 Object-F1

Cellpose 0.3815 ± 0.0794 0.5829 ± 0.0689 0.5408 ± 0.1124
CyC-PDAM [26] 0.5672 ± 0.0646 0.7593 ± 0.0566 0.7478 ± 0.0417
CellTranspose 3-shot 0.4916 ± 0.0771 0.6702 ± 0.0710 0.7092 ± 0.0818
CellTranspose 5-shot 0.5693 ± 0.0576 0.7377 ± 0.0431 0.7825 ± 0.0625
CellTranspose 10-shot 0.5906 ± 0.0617 0.7568 ± 0.0493 0.7879 ± 0.0687
Cellpose-UB 0.5498 ± 0.0860 0.7216 ± 0.0704 0.7760 ± 0.0640

tive Breast Cancer (TNBC) dataset [34], gathered by
the Curie Institute, is comprised of 50 images obtained
from 11 distinct tissue types, furthering the inherent
di�culty of the dataset.

We compare CellTranspose with the top-performing
unsupervised domain adaptive cellular instance seg-
mentation approach, CyC-PDAM [26]. This is the clos-
est approach to ours we found in terms of problem set-
tings and data, since the only other supervised domain
adaptive instance segmentation approaches [61, 52]
were tuned to very specific and di�erent applications.
Following the lead of CyC-PDAM, we divert from the
protocol used above and pretrain CellTranspose on the
BBBC039 dataset. We then adapt the model with 3, 5,
and 10 shot samples selected from the target dataset of
40 images and 8 tissue types from TNBC. Each model
is then tested on the 10 images from the remaining 3
tissue types. Results, using the same metrics as CyC-
PDAM, are shown in Table 2. It can be noted that a
5-shot adaptation leads to performance metrics compa-
rable with those of CyC-PDAM, that has used all the
training target data available to adapt the model in an
unsupervised manner. Note that the settings of this
experiment is still di�erent and disadvantageous from
the protocol for which CellTranspose was designed, be-
cause the target testing data distribution is di�erent
from the target training data distribution. We also
tested Cellpose-UB in this settings, which appears to
be a�ected more than CellTranspose by the domain
shift still present in the evaluation protocol.
3D Segmentation. As biological applications often
produce and require the analysis of 3-D data, following
the approach in [44], we extend CellTranspose to oper-
ate in 3-D, named CellTranspose3D, by making adap-
tation and combining the predictions along the xy, yz,
and zx volume sections. We test our approach on two
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Original Image Ground Truth

Cellpose CellTranspose

Figure 6. 3D Segmentation. Qualitative segmentation
results on samples from the BBBC024 dataset. Note that
Cellpose3D tends to oversample; this is likely due to the fact
that the particular characteristics of the data Cellpose3D
was trained on necessitated pixels of even lower intensities
to be segmented. More importantly, on the bottom right of
the results obtained with Cellpose3D, it is possible to ob-
serve some over-segmentation e�ects, which are not present
in the results of CellTranspose3D.

Table 3. 3D datasets. Average Precision at IoU threshold
0.5.

3-D Results Worm BBBC024
Cellpose3D 0.575 0.822
CellTranspose3D 0.648 0.994
Cellpose3D-UB 0.675 1.0
StarDist-3D 0.765 —

3-D datasets. The BBBC024 is composed of synthetic
annotated cells from the Broad Institute. The Worm
dataset is a series of nuclei images from larval stage
C. elegans. Similar to the 2-D experiments, only three
2-D sample patches, taken from the XY-plane from vol-
umes in each training set, are used as target data for
the model.

StarDist-3D [51] and Cellpose3D-UB have been
trained and tested on Worm, and Cellpose3D-UB on
BBBC024 also, and serve here as upper bounds. Ta-
ble 3 shows the average precision results, highlighting
the improvement of CellTranspose3D over the general-
ist Cellpose3D. Figure 6 provides a qualitative com-
parison between 3D segmentations of the BBBC024
dataset.
Ablation Study. Table 4 shows ablation results com-
puted on the BBBC006 dataset with z=00 and 3-shot
adaptation. The addition of both contrastive losses im-
proves the overall AP by more than 15%. Interestingly,
however, the removal of only one adaptation loss tends
to decrease the performance to below that of removing
both, which follows the same training scheme outlined
in Section 4.2.3, but without either adaptation loss.
This indicates that the flow and mask losses are in-
trinsically tied to one another, which is consistent with
the fact that weights are shared between both outputs

Table 4. Ablation results on BBBC006. AP is calcu-
lated for an IoU threshold of 0.5.

Ablation Results AP50

CellTranspose 0.509
No Contrastive Flow Loss 0.414
No Contrastive Mask Loss 0.434
No Adaptation Losses 0.441
No Adaptation Losses & No cell size 0.390
Cellpose 0.233

until the final layer.
Additionally, the cell size calculation method seems

to play an important role in accurate segmentation.
Cellpose computes the cell size based upon the num-
ber of pixels corresponding to a particular cell, but
non-spherical cells have the potential to provide a sim-
ilar diameter while spanning a much larger area. Thus,
a more robust cell size calculation could be based on
computing the total rectangular area enclosing a cell,
which is how it is done in CellTranspose. The second
row from bottom in Table 4 shows that when this sec-
ond strategy is replaced with the one used by Cellpose,
performance further deteriorates.

6. Conclusions
In this work, we have exemplified the need for adap-

tation of cell instance segmentation methods when
working in new domains. Our approach is e�ective
at achieving this with very few samples, thanks to the
proposed new losses and training procedures we imple-
mented. CellTranspose shows a level of performance
that e�ectively tackles the e�ects of the covariate shift,
and that can be comparable to models fully retrained
on the target distribution. We have also shown that
few samples are su�cient to reach performance similar
to unsupervised approaches that rely on larger datasets
and training simulations. We found that 3 to 5 anno-
tated samples usually allowed to match or surpass the
state of the art. The adaptation procedure takes a few
minutes on a single GPU, striking an attractive bal-
ance in terms of time and resources used for training
and annotation.
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Hal Daumé Iii and Aarti Singh, editors, Proceedings of
the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning
Research, pages 1597–1607. PMLR, 2020.

[9] Qi Dou, Cheng Ouyang, Cheng Chen, Hao Chen, Ben
Glocker, Xiahai Zhuang, and Pheng-Ann Heng. PnP-
AdaNet: Plug-and-Play adversarial domain adapta-
tion network at unpaired Cross-Modality cardiac seg-
mentation. IEEE Access, 7:99065–99076, 2019.

[10] Mohsen Ghafoorian, Alireza Mehrtash, Tina Kapur,
Nico Karssemeijer, Elena Marchiori, Mehran Pesteie,
Charles R G Guttmann, Frank-Erik de Leeuw, Clare M
Tempany, Bram van Ginneken, Andriy Fedorov, Pu-
rang Abolmaesumi, Bram Platel, and William M
Wells. Transfer learning for domain adaptation in
MRI: Application in brain lesion segmentation. In
Medical Image Computing and Computer Assisted In-

tervention – MICCAI 2017, pages 516–524. Springer
International Publishing, 2017.

[11] Amir Gholami, Shashank Subramanian, Varun
Shenoy, Naveen Himthani, Xiangyu Yue, Sicheng
Zhao, Peter Jin, George Biros, and Kurt Keutzer. A
novel domain adaptation framework for medical im-
age segmentation. In Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries, pages
289–298. Springer International Publishing, 2019.

[12] Michael Goetz, Christian Weber, Franciszek Binczyk,
Joanna Polanska, Rafal Tarnawski, Barbara Bobek-
Billewicz, Ullrich Koethe, Jens Kleesiek, Bram Stielt-
jes, and Klaus H Maier-Hein. DALSA: Domain adap-
tation for supervised learning from sparsely annotated
MR images. IEEE Trans. Med. Imaging, 35(1):184–
196, Jan. 2016.

[13] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and
Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

[14] Noah F Greenwald, Geneva Miller, Erick Moen, Alex
Kong, Adam Kagel, Thomas Dougherty, Christine Ca-
macho Fullaway, Brianna J McIntosh, Ke Xuan Leow,
Morgan Sarah Schwartz, Cole Pavelchek, Sunny Cui,
Isabella Camplisson, Omer Bar-Tal, Jaiveer Singh,
Mara Fong, Gautam Chaudhry, Zion Abraham, Jack-
son Moseley, Shiri Warshawsky, Erin Soon, Shirley
Greenbaum, Tyler Risom, Travis Hollmann, Sean C
Bendall, Leeat Keren, William Graf, Michael Angelo,
and David Van Valen. Whole-cell segmentation of tis-
sue images with human-level performance using large-
scale data annotation and deep learning. Nat. Biotech-
nol., Nov. 2021.

[15] Hao Guan and Mingxia Liu. Domain adaptation
for medical image analysis: A survey. IEEE Trans.
Biomed. Eng., 69(3):1173–1185, Mar. 2022.

[16] R Hadsell, S Chopra, and Y LeCun. Dimensionality
reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’06), volume 2,
pages 1735–1742, June 2006.

[17] R Hadsell, S Chopra, and Y LeCun. Dimensionality
reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’06), volume 2,
pages 1735–1742, June 2006.

[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition (CVPR). IEEE, June 2020.

[19] Mehran Javanmardi and Tolga Tasdizen. Domain
adaptation for biomedical image segmentation using
adversarial training. In 2018 IEEE 15th International
Symposium on Biomedical Imaging (ISBI 2018), pages
554–558, Apr. 2018.

[20] Jue Jiang, Yu-Chi Hu, Neelam Tyagi, Pengpeng
Zhang, Andreas Rimner, Gig S Mageras, Joseph O

463



Deasy, and Harini Veeraraghavan. Tumor-Aware, ad-
versarial domain adaptation from CT to MRI for
lung cancer segmentation. In Medical Image Com-
puting and Computer Assisted Intervention – MICCAI
2018, pages 777–785. Springer International Publish-
ing, 2018.

[21] Jiang Jue, Hu Jason, Tyagi Neelam, Rimner Andreas,
Berry L Sean, Deasy O Joseph, and Veeraraghavan
Harini. Integrating cross-modality hallucinated MRI
with CT to aid mediastinal lung tumor segmentation.
In Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019, pages 221–229. Springer
International Publishing, 2019.

[22] Konstantinos Kamnitsas, Christian Baumgartner,
Christian Ledig, Virginia Newcombe, Joanna Simpson,
Andrew Kane, David Menon, Aditya Nori, Antonio
Criminisi, Daniel Rueckert, and Ben Glocker. Unsu-
pervised domain adaptation in brain lesion segmenta-
tion with adversarial networks. In Information Pro-
cessing in Medical Imaging, pages 597–609. Springer
International Publishing, 2017.

[23] Neerav Karani, Krishna Chaitanya, Christian Baum-
gartner, and Ender Konukoglu. A lifelong learning ap-
proach to brain MR segmentation across scanners and
protocols. In Medical Image Computing and Computer
Assisted Intervention – MICCAI 2018, pages 476–484.
Springer International Publishing, 2018.

[24] Chaoqun Li, Yitian Zhou, Tangqi Shi, Yenan Wu,
Meng Yang, and Zhongyu Li. Unsupervised domain
adaptation for the histopathological cell segmentation
through Self-Ensembling. In Manfredo Atzori, Nikolay
Burlutskiy, Francesco Ciompi, Zhang Li, Fayyaz Min-
has, Henning Müller, Tingying Peng, Nasir Rajpoot,
Ben Torben-Nielsen, Jeroen van der Laak, Mitko Veta,
Yinyin Yuan, and Inti Zlobec, editors, Proceedings of
the MICCAI Workshop on Computational Pathology,
volume 156 of Proceedings of Machine Learning Re-
search, pages 151–158. PMLR, Sept. 2021.

[25] Shuang Li, Binhui Xie, Bin Zang, Chi Harold Liu, Xin-
jing Cheng, Ruigang Yang, and Guoren Wang. Se-
mantic distribution-aware contrastive adaptation for
semantic segmentation. CoRR, abs/2105.05013, May
2021.

[26] Dongnan Liu, Donghao Zhang, Yang Song, Fan Zhang,
Lauren ODonnell, Heng Huang, Mei Chen, and Wei-
dong Cai. Unsupervised instance segmentation in mi-
croscopy images via panoptic domain adaptation and
task re-weighting. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2020.

[27] Dongnan Liu, Donghao Zhang, Yang Song, Fan Zhang,
Lauren O’Donnell, Heng Huang, Mei Chen, and Wei-
dong Cai. PDAM: A Panoptic-Level feature alignment
framework for unsupervised domain adaptive instance
segmentation in microscopy images. IEEE Trans. Med.
Imaging, 40(1):154–165, Jan. 2021.

[28] Weizhe Liu, David Ferstl, Samuel Schulter, Lukas
Zebedin, Pascal Fua, and Christian Leistner. Domain

adaptation for semantic segmentation via Patch-Wise
contrastive learning. CoRR, abs/2104.11056, Apr.
2021.

[29] Vebjorn Ljosa, Katherine L Sokolnicki, and Anne E
Carpenter. Annotated high-throughput microscopy
image sets for validation. Nat. Methods, 9(7):637, June
2012.

[30] Luke Melas-Kyriazi and Arjun K Manrai. PixMatch:
Unsupervised domain adaptation via pixelwise consis-
tency training. In 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
IEEE, June 2021.

[31] Ishan Misra and Laurens van der Maaten. Self-
supervised learning of pretext-invariant representa-
tions. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, June
2020.

[32] Saeid Motiian, Quinn Jones, Seyed Mehdi Iranmanesh,
and Gianfranco Doretto. Few-shot adversarial domain
adaptation. In Adv. Neural Inf. Process. Syst. (NIPS).
papers.nips.cc, 2017.

[33] Saeid Motiian, Marco Piccirilli, Donald A Adjeroh,
and Gianfranco Doretto. Unified deep supervised do-
main adaptation and generalization. In 2017 IEEE In-
ternational Conference on Computer Vision (ICCV).
IEEE, Oct. 2017.

[34] Peter Naylor, Marick Lae, Fabien Reyal, and Thomas
Walter. Segmentation of nuclei in histopathology im-
ages by deep regression of the distance map. IEEE
Trans. Med. Imaging, 38(2):448–459, Feb. 2019.

[35] Mauricio Orbes-Arteaga, Thomas Varsavsky, Car-
ole H Sudre, Zach Eaton-Rosen, Lewis J Had-
dow, Lauge Sørensen, Mads Nielsen, Akshay Pai,
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