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Abstract

This paper presents a framework for real-time concealed
weapon detection (CWD) on 3D radar images for walk-
through screening systems. The walk-through screening
system aims to ensure security in crowded areas by per-
forming CWD on walking persons, hence it requires an
accurate and real-time detection approach. To ensure ac-
curacy, a weapon needs to be detected irrespective of its
3D orientation, thus we use the 3D radar images as detec-
tion input. For achieving real-time, we reformulate classic
U-Net based segmentation networks to perform 3D detec-
tion tasks. Our 3D segmentation network predicts peak-
shaped probability map, instead of voxel-wise masks, to en-
able position inference by elementary peak detection oper-
ation on the predicted map. In the peak-shaped probability
map, the peak marks the weapon’s position. So, weapon
detection task translates to peak detection on the probabil-
ity map. A Gaussian function is used to model weapons in
the probability map. We experimentally validate our ap-
proach on realistic 3D radar images obtained from a walk-
through weapon screening system prototype. Extensive ab-
lation studies verify the effectiveness of our proposed ap-
proach over existing conventional approaches. The experi-
mental results demonstrate that our proposed approach can
perform accurate and real-time CWD, thus making it suit-
able for practical applications of walk-through screening.

1. Introduction
Security concerns in public places have increased the

demand for systems that can detect concealed hand-held
weapons to inhibit terrorist activities. Concealed weapon
detection (CWD) is typically performed by body scanners
which employ radar imaging technology to visualize con-
cealed items on a person. Conventional body scanners, such
as the ones widely used at airports, require the person to be
stationary and adopt a pre-defined pose during the scan, as
shown in Fig. 1a [16, 17]. This makes the scanning pro-
cedure time-consuming, leading to low throughput. There-
fore, they are not suitable to be deployed in crowded public

(a) Stationary (b) Walk-through

Fig. 1: Stationary vs walk-through scaninng: Top row: Top-
view of the scan process. Middle row: 3D radar image of
the scan, which is composed of ordered voxels. Bottom row:
Corresponding z-axis projected 2D image.

places like railway stations, malls, etc, which require fast
scanning. To overcome these problems, we developed a
walk-through screening system prototype (Fig. 1b) capable
of performing CWD on walking persons.

The CWD requirements of walk-through screening are
two-folds: real-time processing and accuracy. Since the tar-
get is a walking person, the occlusion of weapon can hap-
pen by arms or legs leading to reduced accuracy of detec-
tion. This problem can be tackled if the system can scan
at a high frame rate so as to capture the changing poses of
a walking person. Based on the transmission time of the
radar sensors, our system has a scan rate of 20fps (details
in Section 2). Each scan generates a radar image frame and
so, the detection approach needs to have a run-time of 20fps
to inspect all the frames. Otherwise, any dropped frame can
risk missing the detection of weapon. Therefore, a real-time
(20fps) CWD approach is required for our system. Some
existing approaches [8, 18] have shown that convolutional
neural networks (CNN) are well-suited to the task of CWD
from radar images. However, these approaches project the
originally 3-dimensional (3D) radar image to 2D prior to
detection. The 2D projection based-approach is suitable for
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Fig. 2: Top view of different orientations of the weapon (top
row), corresponding z-axis projected image (middle row),
and x-axis projected image (bottom row).

conventional stationary scanning, as shown in Fig. 1a. In
this case, the scan surface area is large as it is frontal scan-
ning. Thus, the projection of 3D image to 2D conserves the
shape of the target to be detected. Whereas in walk-through
scanning (Fig. 1b), the scan surface area is smaller due to
lateral scanning. Therefore, 2D projection leads to the loss
of signature shape of the gun, as shown in the bottom row of
Fig. 1b. Fig. 2 further illustrates how changing orientation
of the gun, carried by the human, impacts the loss of shape
information in the 2D projected image.

This shape loss is worsened when intensity of weapon’s
concealing material becomes higher compared to the
weapon. This can happen if whole or part of material has
stronger reflectance due to the presence of metal tags, zips,
etc. Consequently, the 2D projection operation ignores con-
tribution from the weapon as, by design, it favors the selec-
tion of higher intensity regions i.e. material. The reflectance
R refers to the effectiveness of a surface to reflect the re-
ceived radar waves. As shown in Fig. 3b, the right side
of the gun has weaker reflection due to presence of high R
material, thus comparatively lowering its intensity in the re-
sulting 3D radar image. Hence, the gun’s right side shape is
lost in 2D projection along z-axis as its intensity was lower
compared to that of the material. Therefore, considering
weapon’s shape information loss during 2D projection, an
accurate detection approach should process the 3D radar
image directly. Thus, a real-time (run-time≤ 50ms) 3D de-
tection approach is required for our walk-through weapon
screening system.

While research in 3D object detection has progressed
lately, the majority of the studies are designed for order-
less point clouds [6]. Such approaches are not appropriate
for the ordered 3D radar image as they do not consider the
spatial relationship between the neighboring voxels. On the
other hand, the 3D CNN based object detection networks
capture such spatial relationship and are often utilized in the
medical domain [20]. In many instances, they are based on
computationally-intensive Region Proposal Network (RPN)
and are therefore not well suited for our severe real-time

(a) Easy case (b) Difficult case
Fig. 3: Received reflections from the gun (top row), Inten-
sity distribution of gun in 3D image and in 2D projected
image respectively (middle and bottom row).

constraints. Thus, to the best of our knowledge, there is no
existing approach for 3D object detection which fulfils our
requirements of real-time and accuracy.

This paper proposes a framework for real-time and ac-
curate CWD on 3D radar images for walk-through weapon
screening system. More specifically, we reformulate a 2D
segmentation network U-Net [15] for a 3D detection task.
U-Net has a fully-convolutional architecture which can be
readily extended to 3D. Additionally, U-Net has a proven
track record in challenging domains such as the biomedical
field [5]. To facilitate positional inference, our 3D U-Net
implementation is trained to predict a 3D peak-shaped prob-
ability map instead of the usual voxel-wise label map. In the
probability map, a peak signifies the presence of a weapon,
so the weapon detection task translates to peak detection on
the map. The peak detection operation can be efficiently
implemented in 3D, thus providing the fast detection out-
put. To prove the effectiveness of the proposed framework,
we evaluate it on a realistic walk-through 3D radar image
dataset. Extensive experimental evaluations confirm that
the proposed real-time CWD approach fulfils the real-time
(20fps) and accuracy requirements for use in a walk-through
weapon screening system.

2. Walk-through weapon screening system
Our walk-through weapon screening system is a body

scanner capable of performing CWD on a walking person.
Apart from body scanners, closed-circuit television (CCTV)
[10] and X-Ray scanners [3] may be used for security appli-
cations but they are outside the scope of CWD. CCTV based
technologies generally employ optical camera sensors thus
making them unsuitable to detect concealed weapons. And,
X-Ray based technologies employ high power waves which
are harmful for humans. Hence, both CCTV and X-Ray are
unsuitable for CWD.

2.1. Basics of CWD
Body scanners, which perform CWD, employ low power

safe waves like radio and hence are suitable to scan the hu-
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Fig. 4: Processing flow of a body scanner performing CWD.
Our proposed framework focuses on the CWD block, whose
input is 3D radar image and output is detection result.

Table 1: Main difference points of our walk-through
screening vs conventional stationary body scanner

CWD system Throughput (person/H) Pose restriction

Stationary [8, 18] 300 Exists
Walk-through 2400 None

man for concealed dangerous objects like weapons. Gen-
erally, systems performing CWD have a processing flow as
shown in Fig. 4. First, in measurement or scanning step,
the radar antennas transmits radio waves and receives their
reflections from a subject. Second, in imaging step, the ac-
quired scan is synthesized into a 3D radar image frame. The
radar image is in the form of a 3D voxelized cuboid, as
shown in middle row of Fig. 1. Third, in detection (CWD)
step, each frame of the radar image is inspected to detect
concealed weapons by either a human operator or by au-
tomated CWD e.g., artificial intelligence based detection.
Our proposed framework falls under automated CWD, as
automation is required to support the high throughput of
our walk-through screening system. Hence, references to
CWD in the following sections of this paper implies auto-
mated CWD. Finally, in judgement step, the frame-based
detection result is integrated to perform a final judgement,
as to whether the weapon is detected on the person or not.

2.2. System overview
Our walk-through weapon screening system is a walk-

through version of the body scanner, as opposed to the con-
ventional stationary version (Fig. 1). Major differentiating
points are summarized in Table 1. Our system consists of
two parallel radar sensor panels, forming a gate, between
which the person walks during scanning, as shown in the
top row of Fig. 1b. Each of the panel contain multiple
antennas spread across it, which transmit and receive ra-
dio waves at different frequencies to scan the 3D space be-
tween them. All these antennas must transmit sequentially
in order to prevent any signal interference, and then receive
the reflected wave to acquire a single scan. The sequential
transmission constrains the scanning speed of the system to
20fps i.e., 50ms per scan. The acquired scan is synthesized
into a 3D radar image I ∈ R3 using beam-forming algo-
rithm [2], as per Eq. 1.

I(P ) = |
∑
∀f

∑
∀R

∑
∀T

s(T,R, f)ej
2πf
c (rPT+rPR)| (1)

Fig. 5: Overview of the real-time 3D object detection
framework.

Here P ∈ R3 defines a point in 3D space i.e., voxel, I(P )
is the absolute value of the radar image at P th voxel, T ∈
R3 is the transmitter’s position, R ∈ R3 is the receiver’s
position, f is the frequency of radar wave, c is the speed of
light, rPT = ||P − T ||2, rPR = ||P − R||2 and s(.) is the
acquired radar signal. The |.| operation takes the absolute
value and ||.||2 calculates the L2 norm. The synthesized 3D
radar image I is given as input for CWD which outputs the
location of detected weapon(s), if any.

3. Related Work
Concealed Weapon Detection (CWD). There is only a

handful of available research on CWD. In one of the work
[4], the radar image is divided into 2D patches. Patch-
wise SIFT features are extracted and fed to a support vector
machine (SVM) for classification into weapon/no-weapon.
Due to the patch based nature of this approach, it can-
not meet the real-time constraints of walk-through screen-
ing. Recent works in CWD [8, 18] use deep learning based
methods and can achieve good performance with real-time
processing speed. However, these approaches project the
3D image to 2D prior to detection, thus losing weapon
shape information in walk-through screening, as shown in
Fig. 1b. Thus, existing work in CWD are unsuitable to
meet the requirements of walk through weapon screening.
Hence, the motivation for this work.

3D Deep Learning. Almost all of the existing research
in 3D deep learning is either in point cloud domain [6] or
medical domain [1, 20]. The point cloud does not have a
regular grid-like structure as the radar image, thus the ap-
proaches designed for point cloud mostly employ multi-
layer perceptrons (MLP) [7] which do not consider the spa-
tial order of the input. A few approaches [19, 9, 11] which
do consider the spatial order by converting the point cloud
to ordered 3D voxelized format are designed for classifi-
cation tasks as opposed to detection. Zhao and Tuzel [21]
attempted point cloud detection but the feature extraction
backbone was partially designed with multi-layer percep-
tron so it ignored the 3D spatial relationship.Thus, point
cloud 3D object detection approaches are not appropriate
for our task.
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The existing 3D deep learning approaches designed for
medical data take 3D ordered data format as input, similar
to ours, but they are not suitable for CWD application as
explained next. The system proposed in [1] is designed for
pixel-wise segmentation as opposed to detection, while the
system proposed in [20] has large processing time due to
the use of 3D RPN.

4. Method
In this section, we introduce our proposed approach to

perform real-time and accurate CWD on 3D radar images
for walk-through screening. Initially, the overview of the
proposed method is provided. That is followed by details of
the probability map’s design, network architecture and loss
function.

4.1. Overview of Proposed Method
In order to adapt the 3D segmentation network for detec-

tion, it needs to be trained to predict probability maps. The
ground truth (GT) 3D probability maps are prepared first as
shown in Step (1) of Fig. 5. This step utilizes the 3D annota-
tion which contains the GT position and size information of
the weapon; more details will be presented in Section 4.2.
Next, in Step (2), the generated GT 3D probability maps
and the corresponding radar images are utilized to train our
real-time 3D segmentation network, details of which are in-
troduced in 4.3 and 4.4. In Step (3), the trained network first
generates a predicted probability map on a radar image, and
then a peak detection operation is used to detect and local-
ize the peaks, i.e., weapons, on the map. The peak detection
is a simple mathematical operation which analyzes the gra-
dient in the probability map to localize maxima if present.
The peak detection operation finally provides the detected
peak as prediction result after ensuring that the peak’s value
is higher than a pre-decided detection threshold. In a multi-
class setup, the peak detection operation is performed for
each of the output class maps

Although the proposed detection approach is capable of
localizing multiple weapons per image by virtue of a multi
peak shaped probability map, the rest of the paper will focus
on single weapon detection per image.

4.2. Design of Probability Map
We use a peak-shaped Gaussian function to model the

weapon in the probability map. The 3D annotations for
the weapon, which are available as 3D bounding boxes, are
used to generate the Gaussian function on the GT proba-
bility map. The bounding box center Xi ∈ R3 denotes
its mean µi ∈ R3, whereas the bounding box’s dimension
li ∈ R3 determines its standard deviation σi ∈ R3 for the
ith image as

σi = kli,∀i ∈ 1, 2, . . . , N (2)
Here, N is the total number of images and k ∈ R is a pro-
portionality factor which controls the size of the Gaussian

Fig. 6: Proposed 3D network’s architecture. Here, f1 = 32,
f2 = 64, f3 = 128, f4 = 256, and f5 = 512.

function by adjusting it’s σi along each dimension in order
to capture the weapon shape appropriately. In mathematical
terms, k controls the extent to which the Gaussian func-
tion overlaps with the bounding box; e.g., for k = 0.25,
the [−2σ, 2σ] range of the Gaussian function overlaps with
the bounding box. The values in the probability map lie
between [0, 1], where 1 indicates the peak of the Gaussian
function. In the case when a weapon is not present in a radar
image, the corresponding probability map consists of all ze-
ros. In our implementation, the 3D bounding box dimen-
sions are tightly adjusted around the weapon and aligned
with the x, y, and z axis.

4.3. 3D Segmentation Network
To achieve real-time CWD on 3D radar images, the 2D

U-Net segmentation network [15] is adapted to provide de-
tection output. The U-Net is first extended to 3D by replac-
ing all 2D operations (convolution, transposed convolution,
and max-pooling) with their 3D versions. To meet the real-
time requirement, we further reduce the number of train-
able weights to one-third by halving the feature map count.
Thus, we obtain our real-time 3D segmentation network as
shown in Fig. 6, where Nin is the number of input channels
and Nclass is the number of classes. Lastly, this network
is trained to generate a peak-shaped 3D probability map to
facilitate weapon detection through peak detection.

4.4. Loss Function
Our 3D segmentation network is trained using the loss,

L = −
∑
v∈Ω

∑
c∈Nclass

wvy
c
vlog(p

c
v) (3)

Here pcv is the predicted probability map’s value and ycv is
the GT probability map’s value for the cth class channel’s
vth voxel in Ω ∈ R3. Here, wv is the weight for the vth
voxel, wv > 1 for the voxels where ycv > 0, otherwise
wv = 1. The weight helps deal with severe class imbalance
as the weapon occupies only 2–3% of the total volume in a
3D image.
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(a) Model guns (b) With-weapon scenarios

Fig. 7: (a) Model guns: (top) Pistol and (bottom) Revolver;
(b) Experiment scenarios: (left) gun concealed in bag, and
(right) gun concealed on waist.

Table 2: Data distribution of the radar image dataset
Data split With-weapon images No-weapon images

Train 9800 10000
Test 2400 2500

Validation 2500 -

5. Experimental Evaluation
In this section, we first introduce our dataset and eval-

uation method. Then, we validate our proposed 3D ap-
proach’s suitability for walk-through CWD by comparing it
with other candidate architectures, existing 3D-RCNN and
2D approaches. Finally, we present extensive ablation stud-
ies to validate the effectiveness of the proposed approach.

Dataset. Our proposed method is evaluated on a radar
image dataset collected using our walk-through weapon
screening system prototype. Multiple subjects walked
through the screening system, either carrying a concealed
weapon (with-weapon) or without weapon (no-weapon). In
the with-weapon scenarios, the weapon is concealed in re-
alistic positions e.g., inside bags, in holsters at the side of
the waist, etc. Two types of model guns as shown in Fig. 7a
- a pistol and a revolver, are used as target weapons. In the
no-weapon scenarios, the subjects carried daily-use items
like cell-phone, laptop, water bottle, etc, to make the evalu-
ation more realistic. The experimental scenarios are shown
in Fig. 7b and the data distribution is given in Table 2. The
validation set was used to tune the class-weight wv and to
choose the best network in terms of validation loss for eval-
uation. 2D visualizations of the probability map and their
corresponding bounding box labels are shown in Fig. 8.

Evaluation method. The network parameters are set as
single input channel i.e. Nin = 1 which is radar image’s
intensity, and Nclass = 1 as there in only a gun class for this
experiment. To generate the Gaussian function, k = 0.25
is used in Eq. 2 as it was experimentally determined to be
optimal. The weapon detection output is obtained as shown
in Step (3) of Fig. 5.

During the prediction phase, the trade-off between the
true positive rate (TPR) and false positive rate (FPR) is
controlled by means of a detection threshold. To compare
the performances of different approaches, we use the Area-

(a) Gun in bag (b) Gun on waist

Fig. 8: Sample radar images (2D visualization): Left image
shows the bounding box label and the right image shows the
Gaussian function of the probability map.

under-Curve (AUC) metric of the receiver operating char-
acteristics (ROC) curve. The ROC curve is generated by
evaluating the TPR and FPR at different detection thresh-
olds. TPR, or more commonly known as recall measures
an approach’s capability to detect the weapon when it is
present in the image. Thus, recall is evaluated on the with-
weapon images as mentioned next - if peak i.e. weapon
is detected and predicted peak’s position is inside the GT
bounding box then we consider it to be true positive (TP)
else a false negative (FN). Whereas in CWD, the aim of
FAR is to evaluate the proportion of false alarms i.e., in-
stances where weapon is wrongly detected in a no-weapon
image. Hence, FAR is evaluated on only no-weapon images
as follows: if a peak is detected in a no-weapon image then
its considered a false positive (FP) else a true negative (TN).
Since high FAR in CWD is detrimental to its practical ap-
plicability, we use the partial AUC [12] i.e., AUCeff as our
accuracy metric by limiting the range of FAR between 0%
and 10%. The AUCeff is an appropriate overall metric of
CWD accuracy as it captures the balance between the recall
and FAR for various detection thresholds. We also present
the more comprehensive ROC curves for finer comparisons.

5.1. Comparison of accuracy and run-time
We experimentally show that our proposed approach is

the best choice for our walk-through screening system in
terms of run-time and accuracy requirements. Run-time is
defined as the time taken to output the detection result af-
ter the input 3D image is provided and AUCeff is used as
a measure of accuracy. We compare our proposed 3D ar-
chitecture with other candidate architectures. The network
architectures used in this comparison are based on the U-
Net of Fig. 6. The feature map count fi for i ∈ {1, 2, ..., 5}
differs for each candidate architecture, as summarized in
Table 3. The proposed 3D network’s accuracy and run-time
is compared with the default U-Net [15] (3D-UNet-default)
and its variations where default feature map count is re-
duced by 75% (3D-UNet-3-by-4), and 25% (3D-UNet-1-
by-4), as well as the 3D-RPN [20] and 2D approaches (2D-
z int and 2D-multi-view) for completeness. The compara-
tive evaluation results are as shown in Fig. 9. The details
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3D-UNet-default = 72.3
3D-UNet-3-by-4 = 93.7
3D-UNet-1-by-4 = 72.9
3D-RCNN = 90.7

Fig. 9: Comparison of accuracy vs run-time of candidate
architectures, the red dotted line signifies the walk-through
system’s run-time requirement of 50ms (20fps).

Table 3: Feature map and parameter count (param.) for
candidate architectures for CWD in walk-through screen-
ing, proposed 3D architecture is shown in bold

Architecture f1 f2 f3 f4 f5 param.
Proposed 3D 32 64 128 256 512 18M

3D-UNet-default 64 128 256 512 1024 72M
3D-UNet-3-by-4 48 96 192 384 768 42M
3D-UNet-1-by-4 16 32 64 128 256 4M

of 3D RPN and 2D approaches will be introduced in subse-
quent subsections. All the frameworks are implemented in
PyTorch [13] and a single Quadro RTX 5000 GPU is used
for the evaluation.

As it can be seen in the Fig. 9, most of the candidate
architectures are to the right of the red dashed line. This
implies they exceed the walk-through run-time requirement
of 50ms. Accuracy-wise, interestingly, the 3D-UNet-3-by-
4 achieves high value and a significant improvement over
3D-UNet-default. We suspect that the reduced parameter
count (30M less than the default), led to a better generaliza-
tion capability for 3D-UNet-3-by-4. However, its run-time
is significantly higher than our requirement. Amongst the
architectures to the left of the red dashed line, the proposed
3D has the highest accuracy. It is because the proposed 3D
architecture has enough representational power, without be-
ing overly complicated, to match the required complexity
of the detection task. Thus, the proposed 3D best fulfils
the accuracy and run-time requirements for CWD in walk-
through weapon screening systems.

5.2. Comparison with existing work
We compare the run-time and accuracy of our proposed

3D approach with existing RPN-based method [20] to val-
idate that the existing work does not satisfy our system
requirements. We tune the hyper-parameters of the 3D-
RCNN network, mainly the RPN, on our validation dataset.
Namely, we adjust the number of anchors, their sizes and

Fig. 10: Performance of proposed 3D approach (run-time =
20fps) compared with conventional 3D RPN-based object
detection (run-time = 7fps) [20].

Table 4: Performance of proposed 3D vs 2D projection
based approaches, using the AUCeff metric. Here over-
all performance is evaluated on the whole test set.

Approach overall easy case difficult case
Proposed 3D 88.8 88.2 74.9
2D multi-view 87.7 87.0 67.4

2D z int 87.6 87.1 68.3
2D x int 83.8 82.7 65.1

the bounding box overlap thresholds which control the
count of region proposals. The run-time of the 3D-RCNN
network is reduced compared to [20] due to these opti-
mizations, but it is still much higher than our system’s re-
quirement. Post-optimization, the run-time of 3D-RCNN
is 145ms (7fps), where 3D RPN alone has a run-time of
100ms. This confirms our understanding that RPN con-
tributes to increased run-time thus, making it unsuitable
for our requirement of real-time processing (20fps). Next
we perform accuracy comparison. For fairness, we use
the same method of accuracy evaluation as our proposed
approach instead of conventional Intersection-over-Union
(IoU) i.e. if center of predicted 3D bounding box is inside
GT box then we say its a TP else not. As shown in Fig. 10,
the RPN-based approach has comparative performance as
our approach.

5.3. Comparison with 2D Approach
We experimentally validate the performance superiority

of using 3D approach over 2D for our application, by com-
paring proposed 3D approach with 2D-projection based ap-
proaches, as in [8, 18]. A 2D projected image Ip is ob-
tained from a 3D absolute valued image I by using the max-
projection strategy along projection axis p as,

Ip = max(I, axis = p) (4)

For the 2D approach, two orthogonal projection axes, the
z-axis and x-axis, are considered to obtain the 2D images
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(a) Easy case (b) Difficult case

Fig. 11: Easy vs difficult images: Gun’s position is shown
by white bounding box. The left and right images show gun
concealed on the waist and in the bag respectively.

Fig. 12: ROC curves of proposed 3D approach vs 2D
projection-based approaches. Proposed 3D has higher per-
formance in both cases, but for the difficult case it surpasses
2D approaches by a large margin.

Iz and Ix, respectively. Two separate 2D networks, z int
and x int, are trained with Iz and Ix as detection input, re-
spectively. The 2D detection method is implemented with
a 2D U-Net [15] and 2D Gaussian function in a probabil-
ity map. We also compare the proposed 3D approach with
a multi-view approach as multi-view 2D network is fre-
quently employed in other domains [14] to learn 3D shape.
The multi-view is an ensemble approach which combines
the prediction outputs of z int and x int using the OR rule.
If a weapon is detected by either the z int or the x int ap-
proach, it is counted as detected in the multi-view. The re-
sults are presented in Table 4 (overall).

For a more detailed analysis, we further split the with-
weapon test set of 2400 count into easy (2159 counts) and
difficult case (249 counts). As explained in Fig. 3, the 3D
radar images which retain the shape of the gun after 2D pro-
jection are tagged as easy case, whereas the images which
suffer from shape loss are tagged as difficult case. Since
such a shape loss is challenging to quantify, we instead use
a qualitative visual check to identify such images. Even

(a) Binary (b) Gaussian

Fig. 13: Types of mask (2D visualization): (a) Voxel-wise
binary mask vs (b) Peak-shaped Gaussian probability mask.

though the 2D projected image is used for the qualitative
check, understandably the images are difficult in 3D as well
due to lower weapon intensity values (middle row of Fig.
3b). Some sample images for both the cases are shown in
Fig. 11. We present the ROC curves for the same in Fig.
12, and the accuracy values in Table 4 for completeness.

Amongst the 2D-projection based approaches, the multi-
view approach has better accuracy than the “single-view”
(z int and x int) approaches. This is understandable be-
cause the multi-view is an ensemble approach utilizing the
shape information from two orthogonal projection axes, z
and x, for detection. But the proposed 3D approach per-
formed most effectively, compared to the 2D approaches,
in particular for the difficult cases. As expected, all ap-
proaches have lower performance for difficult cases when
compared with easy cases. But the 3D approach proves to
be most robust, as the performance gap between easy and
difficult cases is the least. Hence, it is confirmed that our
proposed 3D method is superior compared to 2D.

5.4. Ablation Study

Peak shaped probability mask vs voxel-wise mask.
We compare our peak shaped probability mask with the
conventionally used voxel-wise mask to show that the for-
mer is more meaningful. Since our original GT annotations
are available as bounding boxes, we suggest generating GT
voxel-wise masks as cuboid-shaped binary masks, as shown
in Fig. 13. Such a binary mask resembles a solid 3D bound-
ing box, the inside of the mask containing the weapon has
value of 1 whereas its outsides has value of 0. So it can
be said that binary masks are hard labels whereas our peak-
shaped probability masks are soft labels. During prediction
with voxel-wise binary masks, we calculate the center-of-
mass of the thresholded output map to infer the weapon’s
position. We compare the accuracy of the peak-shaped
probability map approach with the voxel-wise binary mask
approach, as shown in Fig. 14, and observe that our pro-
posed approach outperforms significantly.

Thus, we can conclude that our proposed approach of us-
ing peak-shaped probability maps is more meaningful than
the conventional approach of using binary mask. We would
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Fig. 14: Performance comparison between peak-shaped
probability mask vs voxel-wise binary mask.

(a) 0.125 (b) 0.25 (c) 0.5 (d) 0.75 (e) 1.0

Fig. 15: Impact of k’s value on Gaussian function’s size
(Eq. 2), shown for k ∈ {0.125, 0.25, 0.5, 0.75, 1.0}. The
Gaussian map is superimposed on the radar image.

like to add here that the suggested approach to find the cen-
ter of a weapon in binary mask does not extend to the case
of multiple weapons per image, since there is no straight-
forward way to find multiple centers.

Impact of probability map size on accuracy. The im-
pact of the Gaussian function size σi on the accuracy is
studied by varying the value of the proportionality factor
k in Eq. 2. We actually wish to find the the optimal ra-
tio kopt between σi and the ground truth bounding box’s
size li, thus we vary k ∈ [0.125, 0.25, 0.5, 0.75, 1.0]. If k
is too small as shown in Fig. 15a, the Gaussian function
does not cover the entire weapon shape, leading to loss of
shape information. Meanwhile, if k is too large, as shown in
Fig.15e, the Gaussian function treats the surrounding con-
text, e.g., the person’s body, as weapon. The ROC curves
for various k are shown in 16, where the maximum AUC
score is obtained for k = 0.25, so we set kopt = 0.25. We
would like to add here that kopt is independent of a gun’s
size as li already captures such size variation.

6. Discussion

From the experimental evaluation, we can see that our
proposed 3D approach achieves good accuracy, while ful-
filling the run-time requirements of the walk-through CWD

Fig. 16: Impact of probability map size on accuracy, σi of
Eq. 2 is varied by varying the proportionality factor k.

system (Fig. 9). The 3D-UNet-3-by-4 as well as 3D-RCNN
have higher accuracy but they significantly exceed the walk-
through run-time requirements, and hence are deemed un-
suitable. On the other hand, the 2D approaches are faster
and seem to have good accuracy in overall metric but de-
tailed analysis reveal their shortcomings (Table 4). If one
examines the curves for difficult cases in Fig. 12, then the
large gap in performance between 3D and 2D is revealed.
This confirms our understanding that 2D approaches are not
a suitable choice for our system as: (1) the detection perfor-
mance suffers immensely due to shape loss during 2D pro-
jection, and (2) multiple 2D projections (multi-view) are un-
able to represent the 3D shape and perform worse than 3D
approach as projection itself is a lossy operation. The abla-
tion studies justify our choice of probability map as the seg-
mentation mask, instead of the conventional binary mask.
And we inform the optimal ratio between the probability
map’s size and the ground truth bounding box’s size i.e. k
to aid in the probability map’s design.

To sum up, we verify the effectiveness of our proposed
approach through extensive experimental studies and con-
firm that it is indeed the most suitable choice to perform
accurate and real-time walk-through screening.

7. Conclusion
We developed a framework for real-time and accurate

CWD on 3D radar images for walk-through weapon screen-
ing systems by reformulating a 2D segmentation network.
To facilitate positional inference, the segmentation network
is trained to predict peak-shaped probability maps where
a peak marks a weapon’s position. The predicted weapon
probability maps are given to an elementary peak detector
to obtain the weapon detection output. The effectiveness of
the proposed approach is validated by extensive experimen-
tal studies on a realistic dataset of walk-through 3D radar
images. The proposed framework performed accurately and
in real-time, thus making it suitable for use in walk-through
weapon screening.
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