
Efficient Reference-based Video Super-Resolution (ERVSR):
Single Reference Image Is All You Need

Youngrae Kim*1, Jinsu Lim*1, Hoonhee Cho*2, Minji Lee*1,
Dongman Lee†1, Kuk-Jin Yoon†2, and Ho-Jin Choi†1

1School of Computing, KAIST, 2Mechanical Engineering, KAIST, Daejeon, South Korea
{youngrae.kim, j1n2u, gnsgnsgml, haewon lee, kjyoon, hojinc}@kaist.ac.kr, dlee@cs.kaist.ac.kr

Abstract

Reference- based video super- resolution (RefVSR) is a
promising domain of super- resolution that recovers high-
frequency textures of a video using reference video. The
multiple cameras with different focal lengths in mobile de-
vices aid recent works in RefVSR, which aim to super-
resolve a low- resolution ultra- wide video by utilizing wide-
angle videos. Previous works in RefVSR used all refer-
ence frames of a Ref video at each time step for the super-
resolution of low- resolution videos. However, computa-
tion on higher- resolution images increases the runtime and
memory consumption, hence hinders the practical appli-
cation of RefVSR. To solve this problem, we propose an
Efficient Reference- based Video Super- Resolution (ERVSR)
that exploits a single reference frame to super- resolve whole
low- resolution video frames. We introduce an attention-
based feature align module and an aggregation upsampling
module that attends LR features using the correlation be-
tween the reference and LR frames. The proposed ERVSR
achieves 12× faster speed, 1/4 memory consumption than
previous state- of- the- art RefVSR networks, and competitive
performance on the RealMCVSR dataset while using a sin-
gle reference image.

1. Introduction
Super-resolution (SR) aims to reconstruct a high-

resolution (HR) image from a low-resolution (LR) im-
age. To recover the high-frequency details, reference-based
super-resolution (RefSR) approaches [2, 20, 22, 25, 27,
30, 32, 33] utilize additional reference images, e.g. web-
crawled high-resolution images [20] and image taken from
slightly different viewpoints [16]. The super-resolved im-
age, incorporating high-frequency detail from the reference
images, is precise and visually pleasing compared to syn-

*Equal contribution. †Co-corresponding authors.
Code: https://github.com/haewonc/ERVSR
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“Single reference image is all you need”

Our 4xSR results!
(PSNR: 36.40)

SOTA 4xSR results!
(PSNR: 36.17)

Ground-truth HR!
(Cropped)

Ground-truth HR
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Figure 1. Illustration of input configuration for ERVSR. Unlike
previous RefVSR, we use only a single Ref frame (a center frame
within the time window) for alignment. Note that there is a lot of
overlap between Ref frames.

thesized textures [33]. In addition, since many recent mo-
bile phones are equipped with dual or triple cameras, the
demand for RefSR is increasing.

Reference-based video super-resolution (RefVSR) in-
herits the advantages of both RefSR and Video Super-
Resolution (VSR), which leverages the temporal informa-
tion in videos. Lee et al. [16] presented the dataset for Re-
fVSR, called RealMCVSR dataset, consisting of ultra-wide
and wide-angle videos captured with asymmetric multi-
cameras in smartphones. As these cameras capture the
scene with different field of view (FoV), the wide-angle im-
age of smaller FoV can be used as a Ref image to super-
resolve the ultra-wide angle image of larger FoV. To recover
the HR video, Lee et al. [16] computes the correlation be-
tween every Ref and LR frame. Guided by the additional
information, their approach outperforms VSR and RefSR
models. However, their best-performing model consumes
19GB of memory and takes up to 16× longer inference
time than the other VSR approaches [4, 5]. This large mem-
ory consumption and computation time of RefVSR mainly
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comes from the computation of correlation between Ref and
LR frames at every time step. Here the question arises: Can
we achieve competitive super-resolved video results with
less memory consumption while utilizing Ref data? In this
paper, we show that competitive performance can be ob-
tained by designing efficient and effective modules for the
alignment between Ref and LR data. Unlike the existing
work, we do not use Ref frames at every time step, but only
use a single Ref frame in the center of the window. As
shown in Fig. 1, there is a large overlap between consec-
utive wide-angle Ref frames. From this point of view, we
observe that a single Ref image is sufficient as long as such
high-frequency information can be used effectively.

In this paper, we introduce an Efficient Reference-based
Video Super-Resolution (ERVSR) framework that super-
resolves HR videos from LR videos using a single Ref im-
age. We propose an attention-based feature align (AFA)
module which aligns the center Ref frame with the LR
frame, thus propagating the Ref information without ex-
plicit alignment. Furthermore, high-frequency features of
the Ref frame are transferred to every low-resolution feature
by attention-based aggregation (AA) upsampling. The AFA
module and AA upsampling both exploit widely used at-
tention [21] mechanism where reference features are query
and LR features are key and value. Benefiting from atten-
tion modules that allow the network to fully exploit a sin-
gle Ref image, ERVSR achieves competitive performance
in the RealMCVSR dataset [16] compared to models that
use reference images for every time step [11, 30, 17, 16]
with faster speed and less GPU memory.

Our contributions are summarized as follows:
• We propose the ERVSR, which is the first work to

tackle the large computation of RefVSR. We success-
fully optimized the accuracy-efficiency trade-off of
RefVSR, opening the possibility of using RefVSR on
a mobile device.

• We exploit the attention-based similarity computation
and fusion in RefVSR. We also show that a single ref-
erence image is enough to recover high-frequency de-
tails of the entire video.

2. Related Works
2.1. Reference-based Image Super-resolution

Reference-based image super-resolution methods can be
categorized into two: texture transfer methods [32, 30, 27]
and the methods that exploit alignment [20, 23]. Texture
transfer methods usually unfold images to patches and com-
pute the similarity of reference patches for each LR patch.
To measure the similarity, RefSR-Net [32], and TTSR [27]
use the inner product between the raw pixels of patches,
whereas SRNTT [30] use the inner product between the fea-
tures of patches. On the other hand, some works [32, 30]

concatenate most similar reference patches for each LR
patch and fuse the patches using convolution layers.

Contrastingly, CrossNet [33] estimate the optical flow
and warp the reference image to the LR image. SSEN
[20] align reference features with LR features using stacked
deformable convolution. DCSR [23] exploits both texture
transfer and alignment; It first finds a reference patch that
maximizes cosine similarity for each low-resolution patch
and warp reference patch using estimated spatial transfor-
mation [11].

2.2. Video Super-Resolution

Many VSR methods perform the alignment by estimat-
ing the optical flow field between the target frame and
neighboring frames [3, 13, 26], then use convolutions or re-
current networks to fuse features from aligned frames [3, 7].
EDVR [24] aligns the features of each frame using de-
formable convolution, then fuses them via attention mecha-
nism in both spatial and temporal manner. BasicVSR [4] es-
tablished the usage of the bidirectional propagation scheme
in VSR by showing it maximizes the information gather-
ing. IconVSR [4] extends BasicVSR by adding the addi-
tional feature extractor and the coupled propagation mech-
anism, which interconnect the propagation modules to ex-
ploit further information in the sequences. BasicVSR++ [5]
extends BasicVSR with second-order grid propagation and
flow-guided deformable alignment.

2.3. Reference-based Video Super-Resolution

EFENet [31] utilizes the first frame of a high-resolution
ground-truth video as a reference to super-resolve a low-
resolution (LR) video. ERVSR is different from EFENet
in two folds. First, ERVSR only computes the correla-
tion between the single Ref frame and the single LR frame,
whereas EFENet computes flow maps between the Ref and
every LR frame using a shared flow estimator. Second,
EFENet requires the guidance of an HR video, which is im-
practical in a real-world scenario.

Lee et al. [16] propose a practical setup that captures
the Ref video with an asymmetric multi-camera in a smart-
phone. They follow a bidirectional propagation scheme,
with reference alignment [20] and propagation module in
each recurrent cell. Then the aligned reference features are
fused with temporally aggregated features using convolu-
tional layers.

Our proposed framework ERVSR differs from previous
works in two folds. First, ERVSR does not use the Ref
frame every time step, but only one frame in the center
time step. There is a lot of overlap between the Ref video
frames, and we believe it is not necessary to utilize every
Ref frames. Second, existing methods use the reference
alignment module proposed in [22] to obtain Ref features
aligned to LR frames. Instead of patch-wise calculation of
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Figure 2. Overall framework of our proposed method. 2w+ 1 denotes window size, which means the number of frames, and t denotes the
center time step.
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Figure 3. The proposed Attention-based Feature Align (AFA) module.

similarity and alignment, which is computationally heavy,
ERVSR computes the similarity between LR and Ref fea-
ture using learnable projection [21]. Note that ERVSR is
the first approach to exploit attention-based similarity com-
putation and fusion in RefVSR.

3. Proposed Method
In this section, we present ERVSR, an end-to-end

neural network for efficient reference-based video super-
resolution. As shown in Fig. 2, our proposed network con-
sists of three components: Attention-based Feature Align
(AFA), Bidirectional Propagation, and Attention-based Ag-
gregation (AA) upsampling module. The AFA module
aligns the LR frame at center time t, the Bidirectional Prop-
agation propagates the temporal information to the other
time steps, and the AA module transfers the features from
the Ref image to upsample the LR feature.

Let LR frames {ILR
t−w, · · · , ILR

t , · · · , ILR
t+w} ∈

R3×W×H and a reference frame at center time t,
Ireft ∈ R3×W×H , where 2w + 1 denotes size of the
window and W,H denote the width and height in spatial
dimension of LR frame, respectively. AFA module aligns

the LR frame at center time t with the reference frame Ireft .
Fig. 3 illustrates the overview of the AFA module. ILR

t

and Ireft are first deeply represented by residual layers [8],
resulting FLR

t , F ref
t ∈ RNc×W×H respectively, where

Nc denotes the number of channel dimensions. Since
the properties of the features to be extracted from the LR
frame and Ref frame are different, the two residual blocks
(ResBlock) do not share weights.

3.1. Attention-based Feature Align (AFA) Module

Extracted features are normalized through normalization
layer [1] and projected to query Q, key K, and value V [21].
We calculate the Q, K, V as follows:

Q = PQ(F
ref
t ) ∈ RWH×Nc ,

K = PK(FLR
t ) ∈ RNc×WH ,

V = PV (F
LR
t ) ∈ RWH×Nc ,

(1)

where PQ, PK , PV denote the projection consisting of 1×1
convolutional layer, efficient depth-wise separate convolu-
tional layer [9], and reshaping operation. AFA module then
computes the correlation between projected reference fea-
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ture Q and projected LR feature K, resulting in an attention
map A:

A = Softmax(KQ) ∈ RNc×Nc . (2)

Projected LR feature V is attended using the informa-
tion of reference, A, resulting an aligned LR feature F align

t

where out projection PO includes 1× 1 convolutional layer
and reshaping operation:

F align
t = PO(VA) + FLR

t . (3)

In attention calculation, we also utilize depth-wise separate
convolutions for efficient computation as demonstrated in
Fig. 3. For the forward network, we adopt the Gated-Dconv
Feed-forward Network (GDFN) in [28]. The AFA module
is repeated N times. Using attention mechanism, ERVSR
can fully exploit Ref features, not only the most similar fea-
tures, and benefit from repetitive textures.

By extracting and propagating F align
t instead of the low-

resolution feature, we can exploit information from refer-
ence efficiently. As proposed in [16], aligning all LR frames

with reference frames would guide more information to the
network, but it leads to a huge computational cost. There-
fore, LR frames other than ILR

t , are extracted to features
by residual block, not the AFA module, resulting Fi where
i ∈ {t− w, · · · , t+ w} and i /∈ {t}.

3.2. Bidirectional Propagation

The generally used approach to propagate the temporal
information is the unidirectional propagation method [10,
6], where the information is sequentially propagated from
the first frame to the last frame. However, the problem with
this method is that the first frame receives no information
from the other frames. In other words, there can be an in-
formation imbalance. Therefore, instead of a unidirectional
propagation approach, we adopted the bidirectional method
[4] to propagate temporal information in each frame.

As shown in Fig. 4, given consecutive LR features
{Ft−1, F

align
t , Ft+1}, we can obtain the forward feature

hfw
t and backward feature hbw

t where fw and bw denote
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Model Reference usage PSNR (dB) SSIM
Inference time

(ms/frame)
GPU memory usage

(GB)

Image SR
Bicubic No 26.65 0.8 N/A N/A

SRGAN [15] No 29.38 0.877 - -
RCAN-`1 [29] No 31.07 0.915 - -

Reference
Image SR

TTSR [27] All time steps 30.31 0.905 - -
TTSR-`1 [27] All time steps 30.83 0.911 - -

C2-Matching-rec* [12] All time steps 30.58 0.887 - -
DCSR [23] All time steps 30.63 0.895 - -

DCSR-`1 [23] All time steps 32.43 0.933 - -

Video SR

EDVR [24] No 33.26 0.946 512.82 6.474
BasicVSR [4] No 33.66 0.951 77.72 4.792
IconVSR [4] No 33.80 0.951 102.03 5.097

BasicVSR++* [5] No 32.80 0.942 100.19 6.452

Reference
Video SR

Lee et al.-IR [16] All time steps 31.73 0.916 1204.61 19.089
Lee et al.-IR-`1 [16] All time steps 34.86 0.959 1204.61 19.089

ERVSR (Ours) 1 per window 34.44 0.957 107.02 5.073

Table 1. Quantitative evaluation for the 13 frames per window on the RealMCVSR dataset. - indicates that the information is not provided
in that paper. The best and top-3 results are highlighted. * denotes the trained by ours.

the forward and backward module respectively:

hfw
t = fw(F align

t , Ft−1, h
fw
t−1),

hbw
t = bw(F align

t , Ft+1, h
bw
t+1).

(4)

Each module exploits the flow-based methods for spatial
alignment as:

s
{fw,bw}
t = O(F align

t , Ft±1),

ĥ
{fw,bw}
t = W (h

{fw,bw}
i±1 , s

{fw,bw}
i ),

h
{fw,bw}
t = R{fw,bw}(F

align
t , ĥ

{fw,bw}
i ),

(5)

where O and W denote the flow estimation and explicit
feature-level warping, respectively. Here, R{fw,bw} denotes
a stack of residuals for each forward and backward warping.

3.3. Attention-based Aggregation (AA) Upsampling

We propose the AA upsampling module to transfer the
high-frequency feature of reference while upsampling the
LR feature. As illustrated in Fig. 5, given the forward aggre-
gated feature and backward aggregated feature from bidi-
rectional propagation, the final high-resolution (HR) frames
are obtained by:

IHR
i = U(hfw

i , hbw
i ), i ∈ {t− w, · · · , t+ w}, (6)

where U denotes the upsampling module consisting of
pixel-shuffle [19], attention mechanism using AA attention
map obtained by computing correlation of LR feature and
reference feature. In the same way as the AFA Module, the

attention map is calculated using depth-wise separate con-
volution layer and then scaled up using pixel shuffle. In
contrast to the AFA module, AA upsampling module trans-
fers the information from the Ref feature to LR feature for
every time step. The AA module is repeated M times.

4. Experiments
4.1. Dataset

Our model is trained and tested on the RealMCVSR
dataset [16]. RealMCVSR dataset provides real-world HD
video triplets concurrently recorded by Apple iPhone 12
Pro Max equipped with triple cameras having fixed focal
lengths: ultra-wide (30mm), wide-angle (59mm), and tele-
photo (147mm). The video triplets are split into training,
validation, and testing sets, each of which has 137, 8, and
16 triplets of 19,426, 1,141, and 2,540 frames, respectively.
Following the [16], we set the ultra-wide and wide-angle as
LR frames and Ref frames, respectively.

4.2. Implementation Details

The network and experiments are implemented using the
Pytorch framework. We use NVIDIA A100-40GB when
measuring the inference time and GPU memory usage. For
the training, we use `1 loss as a loss function and Adam [14]
optimizer. For each iteration, we randomly sample batches
of frame triplets from the RealMCVSR training set while
setting the batch size 32. We used the pretrained optical
flow network [18] in bidirectional propagation. We trained
our model to super-resolve a 4× bicubic downsampled LR
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(a) (b) (c) (d) (e)

Figure 6. Qualitative comparison of our methods with previous works. For clarity, the magnified parts of the resultant images are zoomed.
From left to right, (a): LR input, (b): Bicubic interpolation, (c): BasicVSR++ [5], (d):Lee et al.-IR-`1 [16], and (e): Ours, respectively.

ultra-wide video using a wide-angle video frame as a Ref
image. In the training phase, the ultra-wide LR frames and
wide-angle Ref frames are cropped to 64 × 64. We set the
number of layers to N = M = 4 (in sec 3.1, 3.3) equally in
our network and the window size to 13 as a default size.
More details about the experiment can be found in our sup-
plementary materials.

4.3. Quantitative Comparison

Table 1 shows a quantitative comparison on RealM-
CVSR dataset. We used 4× bicubic downsampled low-
resolution ultra-wide video and wide-angle reference video
as input. We compared ERVSR with previous works: SR-
GAN [15], RCAN [29], TTSR [27], DCSR [23], EDVR
[24], BasicVSR [4], BasicVSR++ [5], Lee et al. [16]. We
demonstrated the comparisons on PSNR, SSIM, inference
time per frame, and GPU memory usage. Models trained
only on `1 loss function are indicated with `1.

Our ERVSR outperforms the previous single image SR
(SISR), RefSR, and VSR methods and achieves the second-
best in both PSNR and SSIM among several models. The
performance difference between Lee et al.-IR-`1 [16] (best
performing model among several models in [16]) and our
model is acceptable considering that our model is 12 times
faster, consumes 3.8 times smaller GPU memory usage, and
uses only one Ref image at inference time. Even when only
one Ref image is given, we show that our method efficiently
and effectively exploits and transfers the high-frequency in-
formation from the Ref image by using our novel attention-
based feature align (AFA) module (in sec 3.1) and attention-
based aggregation (AA) upsampling module (in sec 3.3).
The efficiency of ERVSR is also competitive with the meth-
ods in VSR in inference time per frame and GPU memory
usage, while PSNR and SSIM values are much higher. This
indicates that the efficiency of our method is comparable
with the VSR models, even incorporating the Ref frame in
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Model PSNR (dB) SSIM

Baseline 31.88 0.931
Baseline + AFA 32.11 0.932
Baseline + AA 32.17 0.933

ERVSR (Baseline + AFA + AA) 34.44 0.957

Table 2. Quantitative ablation study of our proposed components.

the network. Therefore, our proposed ERVSR successfully
reduces the accuracy-efficiency of the trade-off of RefVSR.

4.4. Qualitative Comparison

In Fig. 6, we show the super-resolved results of Bicu-
bic, BasicVSR++ [5], and Lee et al.-IR-`1 [16] trained
on RealMCVSR dataset. Non-reference-based SR methods
such as Bicubic and BasicVSR++ tend to produce blurred
textures and letters. Contrastingly, RefVSR methods ben-
efit from the Ref information and better super-resolve the
details such as letters. Also, our proposed ERVSR shows
competitive visual quality with Lee et al.-IR-`1 [16], even
though our method uses only one Ref image per window.

Lee et al.-IR-`1 [16] often produces the blurry artifact,
especially in small-sized features and non-overlapping FoV
area. It is due to the misalignment between the LR image
and the Ref image since it explicitly calculates the sim-
ilarity map. Benefiting from the attention-based mecha-
nism, our ERVSR can provide better visual results on small-
sized features by utilizing the feature-level alignment. Also,
since our AA module transfers the high-resolution detail to
LR from the Ref feature for overlapping as well as non-
overlapping regions, ERVSR can make better results in the
non-overlapping FOV area.

4.5. Ablation Studies

1. Contribution of each component of ERVSR to the
performance. We conducted quantitative ablation studies
to analyze the effect of each of our proposed modules, AFA
and AA. We set the baseline network as a model solely con-
sisting of bidirectional propagation without AFA and AA
modules. As demonstrated in Table 2, the models with our
each proposed module show better PSNR and SSIM than
the baseline network. AA module has a more remarkable
performance improvement than the AFA module since it
is effective in directly transferring the LR feature to tem-
porally aligned features by bidirectional propagation. We
find that the performance gain is significant when the net-
work uses both AA and AFA modules. We hypothesize
that the network needs to learn the encoded and decoded
feature simultaneously. Using the solely consisted module
becomes extremely difficult to transfer the high-resolution
information from the Ref feature to the LR feature. On the
other hand, using both AA and AFA module at encode- and

decode-level achieve to align the Ref to LR feature without
explicit alignment.

As shown in Fig. 7, we also conducted qualitative abla-
tion studies to show the visual effect of each component on
SR. The Baseline cannot restore the details such as letters
or repetitive patterns. The Baseline + AFA shows reduced
distortion than the Baseline but still produces blurry arti-
facts. Our ERVSR model with both AFA and AA modules
achieves the best visual quality with reduced blurry artifacts
and distortion and accurate restoration of edges.
2. Can reference at the center frame guide the LR
frames with a large time difference? This question is cru-
cial since we use a single reference frame per window. To
answer this question, we compared the PSNR of each super-
resolved video frame of ERVSR and BasicVSR++ with re-
spect to its time difference from the center frame (See Fig.
8). Performance degradation decreases as the time differ-
ence increases, but such an amount of degradation is also
observed in BasicVSR++. If reference at the center frame
cannot effectively guide the LR frames with a large time dif-
ference, the performance degradation will be greater than
that of the VSR. However, the performance gap between
ERVSR and BasicVSR++ is constant, which implies that
the details of the reference center frame manage to guide
the feature extraction and upsampling of an LR frame even
with a large time interval.
3. Effect of frame number in performance. VSR models
can benefit from the increased number of input LR frames
since the feature can be better refined from the bidirectional
flow. The advantageous effect of increased frame number
escalates in RefVSR models that exploit reference frames
for every time step. In this section, we show the compar-
ison of PSNR and SSIM for the number of frames in the
window in Table 3. As the frame number decrease, the per-
formance gap between our model and Lee et al.-IR-`1 [16]
decreases, and finally, our model outperforms it when the
frame number is 5. Knowing that Lee et al.-IR-`1 [16] still
exploits four more reference frames than ERVSR when the
frame number is 5, such results imply that our attention-
based modules are effective design for the utilization of the
reference details.

5. Conclusion
In this work, we propose efficient reference-based video

super-resolution (ERVSR) using only a single reference im-
age. To this end, we first propose the attention-based ap-
proach to compute similarity using learnable projections
in RefVSR. To evaluate our method, we train and evalu-
ate our network in a large-scale benchmark in [16]. Our
model outperforms the state-of-the-art image SR, reference-
based image SR, and VSR methods in both qualitatively
and quantitatively. We accelerate the inference time for
×12 faster while using GPU memory to ×3.8 efficiently
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(a) (b) (c) (d) (e)

Figure 7. Qualitative results of ablation studies on each component. For clarity, the magnified parts of the resultant images are zoomed
in. From left to right, (a): LR input, (b): Baseline, (c): Baseline + AFA, (d): Baseline + AA, and (e): ERVSR (Baseline + AFA + AA),
respectively.
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ERVSR BasicVSR++
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Figure 8. Comparison on PSNR of each video frame.

Model The number of frame for SR
5 7 13

BasicVSR++ [5] 32.56 32.74 32.80
0.9381 0.9404 0.9416

Lee et al.-IR-�1 [16] 34.02 34.36 34.86
0.9516 0.9548 0.959

ERVSR (Ours) 34.03 34.15 34.44
0.9534 0.9541 0.9567

Table 3. Quantitative evaluation of various networks on various
the number of frames in window. Best results are highlighted and
second-best results are underlined. 1st and 2nd row mean PSNR
(db) and SSIM scores, respectively.

where only one reference frame in a video is used, com-
pared with Lee et al.-IR-�1 [16], which is the state-of-the-
art approach in RefVSR domain. In short, we reduce the
accuracy-efficiency trade-off of RefVSR, opening the pos-
sibility of using RefVSR in real-time problems.

Acknowledgment

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No.2019-0-
01126, Self-learning based Autonomic IoT Edge Comput-
ing). (50%)
This research was supported and funded by the Korean
National Police Agency. [Project Name: XR Counter-
Terrorism Education and Training Test Bed Establishment /
Project Number: PR08-04-000-21] (50%)

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[2] Vivek Boominathan, Kaushik Mitra, and Ashok Veeraragha-
van. Improving resolution and depth-of-field of light field
cameras using a hybrid imaging system. In 2014 IEEE
International Conference on Computational Photography
(ICCP), pages 1–10. IEEE, 2014.

[3] Jose Caballero, Christian Ledig, Andrew Aitken, Alejandro
Acosta, Johannes Totz, Zehan Wang, and Wenzhe Shi. Real-
time video super-resolution with spatio-temporal networks
and motion compensation. In Proceedings of the IEEE Con-

1835



ference on Computer Vision and Pattern Recognition, pages
4778–4787, 2017.

[4] Kelvin CK Chan, Xintao Wang, Ke Yu, Chao Dong, and
Chen Change Loy. Basicvsr: The search for essential com-
ponents in video super-resolution and beyond. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4947–4956, 2021.

[5] Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and
Chen Change Loy. Basicvsr++: Improving video super-
resolution with enhanced propagation and alignment. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5972–5981, 2022.

[6] Dario Fuoli, Shuhang Gu, and Radu Timofte. Efficient video
super-resolution through recurrent latent space propagation.
In 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), pages 3476–3485. IEEE, 2019.

[7] Muhammad Haris, Gregory Shakhnarovich, and Norimichi
Ukita. Recurrent back-projection network for video super-
resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3897–
3906, 2019.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[10] Takashi Isobe, Xu Jia, Shuhang Gu, Songjiang Li, Shengjin
Wang, and Qi Tian. Video super-resolution with recurrent
structure-detail network. In European Conference on Com-
puter Vision, pages 645–660. Springer, 2020.

[11] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. Advances in neural informa-
tion processing systems, 28, 2015.

[12] Yuming Jiang, Kelvin CK Chan, Xintao Wang, Chen Change
Loy, and Ziwei Liu. Robust reference-based super-resolution
via c2-matching. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
2103–2112, 2021.

[13] Tae Hyun Kim, Mehdi SM Sajjadi, Michael Hirsch, and
Bernhard Scholkopf. Spatio-temporal transformer network
for video restoration. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 106–122, 2018.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017.

[16] Junyong Lee, Myeonghee Lee, Sunghyun Cho, and Se-
ungyong Lee. Reference-based video super-resolution

using multi-camera video triplets. arXiv preprint
arXiv:2203.14537, 2022.

[17] Liying Lu, Wenbo Li, Xin Tao, Jiangbo Lu, and Jiaya Jia.
Masa-sr: Matching acceleration and spatial adaptation for
reference-based image super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6368–6377, June 2021.

[18] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4161–4170, 2017.

[19] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016.

[20] Gyumin Shim, Jinsun Park, and In So Kweon. Robust
reference-based super-resolution with similarity-aware de-
formable convolution. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8425–8434, 2020.

[21] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[22] Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, and
Qifeng Chen. Dual-camera super-resolution with aligned
attention modules. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2001–2010,
2021.

[23] Tengfei Wang, Jiaxin Xie, Wenxiu Sun, Qiong Yan, and
Qifeng Chen. Dual-camera super-resolution with aligned at-
tention modules. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 2001–
2010, October 2021.

[24] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019.

[25] Yanchun Xie, Jimin Xiao, Mingjie Sun, Chao Yao, and
Kaizhu Huang. Feature representation matters: End-to-
end learning for reference-based image super-resolution. In
European Conference on Computer Vision, pages 230–245.
Springer, 2020.

[26] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, 2019.

[27] Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Bain-
ing Guo. Learning texture transformer network for image
super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
5791–5800, 2020.

[28] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.

1836



Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5728–
5739, 2022.

[29] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018.

[30] Zhifei Zhang, Zhaowen Wang, Zhe Lin, and Hairong Qi. Im-
age super-resolution by neural texture transfer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7982–7991, 2019.

[31] Yaping Zhao, Mengqi Ji, Ruqi Huang, Bin Wang, and
Shengjin Wang. Efenet: Reference-based video super-
resolution with enhanced flow estimation. In CAAI Interna-
tional Conference on Artificial Intelligence, pages 371–383.
Springer, 2021.

[32] Haitian Zheng, Mengqi Ji, Lei Han, Ziwei Xu, Haoqian
Wang, Yebin Liu, and Lu Fang. Learning cross-scale cor-
respondence and patch-based synthesis for reference-based
super-resolution. In BMVC, volume 1, page 2, 2017.

[33] Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu
Fang. Crossnet: An end-to-end reference-based super reso-
lution network using cross-scale warping. In Proceedings of
the European conference on computer vision (ECCV), pages
88–104, 2018.

1837




