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Abstract

In video person re-identification (Re-ID), the network
must consistently extract features of the target person from
successive frames. Existing methods tend to focus only on
how to use temporal information, which often leads to net-
works being fooled by similar appearances and same back-
grounds. In this paper, we propose a Disentanglement and
Switching and Aggregation Network (DSANet), which seg-
regates the features representing identity and features based
on camera characteristics, and pays more attention to ID
information. We also introduce an auxiliary task that uti-
lizes a new pair of features created through switching and
aggregation to increase the network’s capability for various
camera scenarios. Furthermore, we devise a Target Local-
ization Module (TLM) that extracts robust features against
a change in the position of the target according to the frame
flow and a Frame Weight Generation (FWG) that reflects
temporal information in the final representation. Various
loss functions for disentanglement learning are designed so
that each component of the network can cooperate while
satisfactorily performing its own role. Quantitative and
qualitative results from extensive experiments demonstrate
the superiority of DSANet over state-of-the-art methods on
three benchmark datasets.

1. Introduction

Person re-identification(Re-ID) [32] aims at matching
the identity of a specific person on camera from various
positions and angles. The demand for Re-ID has risen
owing to the proliferation of intelligent surveillance sys-
tems and various multimedia applications. Most Re-ID ap-
proaches [24, 25, 34] employ deep metric learning to map
embedding vectors corresponding to positive samples being
closer to each other in vector space, and negative samples
being farther away from each other.

Unlike the self-supervised approaches [2, 28] that com-
pose positive samples through various data augmentation
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Figure 1. Challenges with consecutive frames as input in video
Re-ID. (a) The final features are intertwined with background in-
formation and target-person information (especially dashed box).
Our proposed DSANet disentangles features into (b) ID-related
features and (c) Camera features. Concentric circles represent dis-
tances in vector space around the query. The shapes of the embed-
ding vectors denote different embedding spaces.

approaches, in Re-ID, positive samples comprise images
having the same ID but belonging to different scenes. In
other words, there are differences in characteristics such as
background and obstacles depending on the camera taken,
but if the ID is the same, the distance between embedding
vectors should be low in vector space. Features extracted
from the network inevitably include not only ID-related in-
formation but also camera domain/ID-unrelated informa-
tion because the background and angle change depending
on the scenes. This issue is more pertinent to video Re-ID,
which uses several consecutive frames as input.
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Compared to image Re-ID [10, 11], video Re-ID pro-
vides temporal information which reduces the uncertainty
of appearance. However, as ID-unrelated semantics also in-
crease, the network may be vulnerable to intra-class noise.
Most methodologies exploit temporal information such as
obtaining between frames [21, 29], selectively capturing de-
tails based on the previous frame features [6, 13], and ex-
tracting features that were not in the past sequence [14].
However, these methods depend heavily on the network’s
capability extracting the correct features for the target dur-
ing multiple frames.

For instance, as the time interval between frames is
small, a similar background is repeated, so the network fre-
quently learns the background as a key feature as in the ac-
tivation map in Figure 1-(a), e.g. the dashed-box areas. As
shown in Figure 1-(a), the final embedding includes the se-
mantics of bricks and taxis, so cases with a similar appear-
ance and background to the query are retrieved. In actual
fact, unnecessary background information is repeated in the
sequence and included in the final feature, which leads the
network to determine that a vector of a person appearing
in a scene having a similar appearance and background as
the query is closer to the query than vectors of the same
person appearing in a scene having a different appearance
and background. Ultimately, if the network is forcing the
final embedding vector with such entangled information to
be closer to the vector space, the representational ability of
the feature reduces.

In this paper, we propose a learning method that disen-
tangles features and utilizes them to efficiently harness the
network’s capability without harming the representational
ability. As briefly illustrated in Figure 1-(b, c), when the
features are separated, the network fully focuses on each
task, and the consistent rich information takes a pivot role
to find the correct snippet as rank-1. Our proposed method,
disentangling loss and camera ID classification, forces to
separate features focused on identity from features hav-
ing repeated background and occlusion patterns depend-
ing on the camera chosen. Furthermore, the target local-
ization module (TLM) makes ID-related embeddings more
robust against bounding box misalignment, a chronic con-
cern in video tasks. By leveraging the disentangled features
through switching and aggregation, the network learns to
not only explicitly separate features but also implicitly in-
crease capability. Our proposed method shows that it can
be quite useful for separation depending on the presence or
absence of identity information in video Re-ID.

In summary, our main contributions are three-fold:

• We propose a novel DSANet that disentangles features
into ID representative features and camera character-
istic features and creates a new combination of these
two for auxiliary tasks.

• We introduce ID representation learning, which makes
the final embedding features more robust to bounding
box misalignment and discriminative to temporal flow.

• Extensive experiments not only quantitatively demon-
strate the excellent performance and competitive
amount of parameters of our DSANet but also qualita-
tively prove disentanglement learning performs as we
intended.

2. Related Works
2.1. Video-based Person Re-Identification

In video Re-ID, it is crucial to completely extract the
features of the target, excluding distractors. Most meth-
ods obtain robust video-level representations by utilizing
the given information: spatial and temporal. A 3D CNN,
capable of encoding the local temporal relation and the rel-
ative position, is used in conjunction with a non-local op-
eration [8] or an attention mechanism [17] that aligns each
part to prevent deterioration of the final embeddings. Some
studies [7, 21] fully harness global-local temporal clues to
predict the weights of each frame. Chen et al. [1] focuses on
the object, a time-invariant feature, rather than on extracting
the motion vector. It disentangles features into temporal co-
herence and temporal motion and distills the discriminative
characteristic by sampling noise at multiple scales. How-
ever, discriminative features are not necessarily immutable.
For instance, depending on the video sequences, the back-
ground and obstacle may not change with a time dimension;
rather, ID-related semantics may be variant because of the
human pose. The most popular approach [6, 13, 15, 29, 33]
takes advantage of rich spatio-temporal clues. Hou et
al. [13] considers temporal relations by adaptively select-
ing the temporal kernel scale and then extracts spatial fea-
tures that are robust for multi-scaling. To make the final
representation resistant to spatial and temporal distractors,
Eom et al. [6] identifies the distractor pattern, stores it in
memory, and refines the video-level features through obsta-
cle handling. These methods guide the network to extract
rich representations of the target person but require a com-
plex network structure and heavy computation. In light of
[6]’s observation that patterns occur in backgrounds and ob-
stacles, our method explicitly disentangles the features of
the ID and background. Unlike [1], which obtains temporal
coherence features by computing the mean, we propose an
auxiliary task that can complement the disentangling pro-
cess and enhance the discrimination of the network through
feature augmentation.

2.2. Feature Disentanglement

The feature disentangling method separates represen-
tations so that they have independent and intentional at-

1604



TLM

R
ig

ht
M

id
dl

e
L

ef
t 𝑭𝒕

𝒇𝒕

Pseudo
labeling

Attention

…

FWG

Max 
pooling

𝑭𝑰𝑫

(a) Feature Disentangling (b) ID Representation Learning
T

rain
ing/ T

esting p
hase

T
raining phase

𝓛𝒘
𝓛𝑳/𝑹

𝑺𝟏

𝑺𝟐

𝑺𝟑

𝑺𝟒

𝑺𝟏

𝑺𝟐

𝑺𝟑

𝑺𝟒

Input data

𝑺𝟑

𝑺𝟏 𝑺𝟐

𝑺𝟒

SAO

Max 
pooling

𝑭𝒄𝒂𝒎
𝓛𝒄𝒂𝒎 𝓛𝒊𝒄

𝓛𝒅𝒊𝒔

𝒇𝒂𝒖𝒈

C
am

er
a-

aw
ar

e

Cam3

Cam2

𝓛𝒕𝒓𝒊

(c) Auxiliary Tasks

𝒇𝒄𝒂𝒎 𝒇𝑰𝑫

ID3

ID2𝑿

CEL

Figure 2. Overall framework of our DSANet for video Re-ID. In the training phase, as input, the mini-batch consists of positive samples
(S2, S4) and negative samples (S1, S2, S3) based on ID. (a) Feature Disentangling process separates ID representative feature FID and
Camera Characteristic feature Fcam. In the (b) ID representation learning, TLM extracts consistent features for the target’s position
that changes over time, and FWG reflects temporal information in the final embedding. Then, SAO creates features with various camera
scenarios and improves the DSANet’s capacity through (c) Auxiliary Tasks that classify IDs. In the testing phase, we use fID only as the
final representation. White text in the gray box denotes loss function.

tributes and then utilizes them further. It is applied for di-
verse purposes [4, 16, 19] in various areas, mainly in the
domain adaptation field [20, 40]. Zheng et al. [36] applies
feature disentanglement in the Re-ID field. It has two dis-
tinct encoders to separate features based on appearance and
structure code. The network generates high-quality cross-
ID composed images by switching the codes and performs
online learning with the generated images. This series of
processes goes on end-to-end. This method succeeds in re-
constructing images characterized by mixed appearance and
structure but fails to consider accessories and hair corre-
sponding to ID-related fine details in the appearance code.
As mentioned in [39], the fine detail that imparts discrimi-
nant power is the crucial factor, but it remains in the struc-
ture code and may confuse network learning. Zou et al. [40]
disentangles embeddings into ID-related/unrelated features
and uses only ID-related features to reduce the huge domain
gap. It has an encoder–decoder structure that reconstructs
the original image using the cycle consistency characteristic
to separate features into appearance and structure factors.
Unlike the above methods, our method can satisfactorily
disentangle features without requiring another network. In
addition, switching and aggregation with disentangled vec-
tors occurs at the feature level with no need to reconstruct
the image.

3. Proposed Method
3.1. DSANet

A brief overview of our Disentanglement and Switching
and Aggregation Network (DSANet) is given in Figure 2.
DSANet involves three processes: feature disentangling, ID
representation learning, and auxiliary tasks. DSANet ex-
plicitly separates features into two categories: ID features
and camera features. Then, ID representation learning is
performed for the extracted ID feature to become more re-
sistant to changes in the target’s position through Target
Localization Module (TLM) and Frame Weight Generation
(FWG). Finally, DSANet conducts auxiliary tasks by uti-
lizing Switching and Aggregating Operation (SAO), which
augments features to have various camera characteristics to
improve the network’s discernment. The series of processes
learn end-to-end, and each component works individually
and cooperatively to achieve the foremost goal of Re-ID: ro-
bust and differential feature extraction. The following sec-
tions present a detailed description of each part.

3.2. Feature Disentangling

Channel Expansion Layer (CEL) Existing methods
[19, 36, 40] require multiple networks to disentangle fea-
tures. However, DSANet separates FID and Fcam from one
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Figure 3. Illustration of Target Localization Module(TLM)

network satisfactorily by dividing the branches of the back-
bone. The starting point of dividing branches is the last
layer of ResNet-50 [9] before extracting more discrimina-
tive features. Relatively coarse X ∈ R c

2×t×h×w obtained
from the third layer of ResNet passes through CEL consist-
ing of 1×1 convolution and returns Fcam ∈ Rc×t×h×w con-
taining semantics that specify the camera being considered.
The last layer of the backbone returns FID ∈ Rc×t×h×w

containing only identity information. For Fcam to separate
reliably, we need the disentangling loss Ldis and the camera
ID classification.

Disentangling Loss Considering that fID ∈ Rc×1×1 and
fcam ∈ Rc×1×1 should have different information, we mea-
sure the cosine similarity of these two vectors as follows:

Ldis = max(
fID · fcam

∥fID∥2 ∥fcam∥2
, 0), (1)

where fcam is vector maxpooling in the feature maps Fcam.
When the cosine distance of fID and fcam becomes 0, it in-
dicates dissimilarity between the two vectors. A margin was
given to the loss function because being exactly opposite
could harm the representation ability. Disentangling loss al-
lows DSANet to extract fID and fcam focused on each task
without being disturbed by spatial distractors in a situation
where consecutive frames are input.

3.3. ID representation Learning

Target Localization Module (TLM) To consistently ex-
tract FID from the network even in consecutive frames, it
must be robust to bounding box misalignment. One of the
challenges in Re-ID is that the target is skewed in cropped
video clips owing to the limits of the detector’s perfor-
mance. Therefore, in video Re-ID, the representation must
follow the corresponding information according to the posi-
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Figure 4. Illustration of Frame Weight Generation (FWG) and gen-
erating pseudo-label

tion of the moving person of interest. To achieve the above
goal, we propose a TLM that conducts spatial attention, in-
spired by SAM [30]. It is designed to focus on where salient
information is located in one complete feature map. How-
ever, our proposed TLM divides the feature map FID into
ZL, ZM , and ZR ∈ Rc×t×h×w

2 in the spatial dimension
as shown in Figure 3 and pays attention to the location of
the target in each region.We concatenate the result of max
pooling and average pooling in the channel dimension of
the divided feature maps Z. Then we obtain spatial atten-
tion maps A through a convolution layer and softmax.

A = Softmax(Conv([Max(Z);Avg(Z)])) (2)

In many cases empirically, given that the person is located
in the center [3, 18], we add information corresponding to
the middle AM to make the final attention map Zattn.

Zattn = [AL;AR] +AM (3)

TLM finally acquires Ft as the weighted sum of the Zattn

and FID so that it can flexibly cope with bounding box mis-
alignment.

Ft = Zattn ⊙ FID + FID (4)

TLM employs the following loss to consistently extract fea-
tures by localizing the target in successive frames:

LL/R = CE(P(ft/L)) + CE(P(ft/R)), (5)

where CE stands for cross-entropy loss, P indicates the lin-
ear classifier computing probabilities, and ft/L ∈ Rc×t×1×1

and ft/R ∈ Rc×t×1×1 are vectors maxpooling in the feature
maps corresponding to the left and right sides of Ft.

Frame Weight Generation (FWG) Most methods [26,
38] mainly use global average pooling to merge the rep-
resentation of the video sequence into the final embedding
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vector. To further utilize temporal information, we predict
the weight ŵ ∈ R1×t for each frame through FWG and re-
flect this to obtain the final embedding vector. For the FWG
to make reasonable predictions, we generate a pseudo label
from the value that represents the importance index of the
frame and use it for training. ft ∈ Rc×t×1×1 was obtained
by max-pooling of Ft ∈ Rc×t×h×w extracted from TLM
in the spatial dimension. ft contains a compact feature for
each frame, which is input to the FWG and also used to
generate a pseudo label. We compute the cross-entropy in
the classification task, define it as a loss function, and learn
to reduce this value. In other words, the smaller the cross-
entropy value, the more correct the feature for the task. We
can use this fact to determine which frame contains more
identity information and express this value as a probability
value. After dividing ft by frame, the cross-entropy with the
ID label was computed respectively. Then, the max value
was found among the obtained values, and the difference d
was calculated based on these values. We express this com-
putation as a reverse operation in Figure 4.

d = max(CE(P(ft)))− CE(P(ft)) (6)

We make these values’ probabilities correspond to the im-
portance of the frame and then use it as a pseudo-label w.
FWG consists of one convolution layer reducing the chan-
nel dimension to 1. The weight is predicted by summarizing
the frame features. The final weight ŵ is predicted through
the same operation process as pseudo label generation. We
obtain the final representation fID by taking temporal atten-
tion to ŵ on ft.

Frame Weight Loss We calculate the mean squared er-
ror between pseudo label w and predicted ŵ and use it as a
loss function Lw to expect reliable weights from the FWG.
We do not use KL-divergence to reduce the difference be-
tween w and ŵ because the closer the probability value is
to 0, the more difficult it is to measure the similarity be-
tween distributions. We also experimentally determine that
the mean squared error is more appropriate for the reason-
able prediction of ŵ.

Intra-class Loss To reduce intra-class noise among the
positive samples of the mini-batch, we define it as follows:

Lic =

B∑
(

∑
fID∈Bk

1

Bk
(fID − 1

Bk

∑
fID∈Bk

fID)2), (7)

where Bk denotes the feature set belonging to identity k in
the mini-batch. The fID belonging to the positive samples
is extracted from various sequences, but the semantic cor-
responding to the scene has been removed, so only the ID-
related information is available. The intra-class loss func-
tion allows fID to focus more on common but distinctive
features within positive samples and reduces the burden on
training.

3.4. Auxiliary tasks

Camera ID Classification Although the dissimilarity of
FID and Fcam is guaranteed through CEL and disentan-
gling loss, a guide is needed for fcam to adaptively grasp
the background and occlusion patterns depending on the
camera. Figure 5 illustrates that the characteristics of the
scene and obstacle patterns are similar depending on the
camera taken for each dataset. Taking the above facts into
account, DSANet performs the auxiliary task of predicting
the camera ID with fcam containing the camera character-
istics. As the camera IDs that captured the sequence are
labeled, no additional annotation is needed. Rather, while
actively utilizing the given label, the auxiliary task guides
fcam to focus more on the background, excluding the tar-
get. The loss function used for camera ID classification is
the cross-entropy loss calculated as follows:

Lcam = −cicam log(
eWificam∑Ccam

j=1 eWj fjcam

), (8)

where W is the weight matrix of the fully connected layer,
cicam is the camera ID label, and Ccam is the total number
of camera IDs.

Switching and Aggregating Operation (SAO) The dis-
entangled fID and fcam can be augmented using a new em-
bedding vector through switching and aggregation. Specifi-
cally, when fID and fcam constituting a mini-batch are ran-
domly swapped and recombined, various pairs of fID and
fcam are generated. Even if a new fcam is assigned, the ID
corresponding to the label of fID does not change. There-
fore, the ID of the embedding vector faug obtained through
SAO is determined by fID, so we use faug for another aux-
iliary task of predicting the ID. This task not only improves
the robustness of the network to various camera scenes but
also enhances the disentangling learning adaptively.

In conclusion, the final cross-entropy loss used in
DSANet is as follows:

Lce = CE(P(fID)) + λ[CE(P(faug)) + LL/R + Lcam].
(9)

3.5. Training and Testing Phases

In the training phase, we employ the triplet loss [12] cal-
culated with fID and losses described in the previous sec-
tion. The overall objective function of DSANet is defined
as:

Ltotal = Lce + Ltri + Ldis + Lic + λLw, (10)

where λ is the scale factor and is set to 0.1.
In the testing phase, we use fID only as the final repre-

sentation and calculate the distance between the final em-
bedding vectors using cosine similarity.
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Table 1. Comparison with state-of-the-art methods on MARS, Duke-V, and LS-VID video Re-ID datasets. Methods are divided into three
groups: 3D CNN-based, temporal-clues-based, spatio-temporal-clues-based. Best results in bold, second best underlined.

Methods Params.
MARS [35] Duke-V [31] LS-VID [21]

Rank-1 mAP Rank-1 mAP Rank-1 mAP
M3D [22] (AAAI2019) - 84.4 74.1 - - 57.7 40.1
AP3D [8] (ECCV2020) 31.6 M 90.7 85.6 97.2 96.1 - -

SSN3D [17] (AAAI2021) - 90.1 86.2 96.8 96.3 - -
STA [7] (AAAI2019) - 86.3 80.8 96.2 94.9 - -

GLTR [21] (ICCV2019) - 87 78.5 96.3 93.7 63 44.3
VRSTC [15] (CVPR2019) - 88.5 82.3 95 93.5 - -

MG-RAFA [33] (CVPR2020) - 88.8 85.9 - - - -
TCLNet [14] (ECCV2020) 29.9 M 89.8 85.1 96.9 96.2 81 67.2

AFA [1] (ECCV2020) - 90.2 82.9 97.2 95.4 - -
BiCnet-TKS [13] (CVPR2021) 29.2 M 90.2 86 96.1 96.3 84.6 75.1

STMN [6] (ICCV2021) - 90.5 84.5 97 95.9 82.1 69.2
PSTA [29] (ICCV2021) 35.4 M 91.5 85.8 98.3 97.4 - -

DSANet (ours) 30.8 M 91.1 86.6 97.2 96.6 85.1 75.5

(a) MARS (b) Duke-V
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Figure 5. Cases of scene and obstacle patterns determined by the
camera captured for each dataset (e.g. bricks, stairs, bicycles)

4. Experiments
4.1. Datasets and Evaluation Metrics

As shown in Figure 5, characteristics of the scene and
obstacle patterns are similar depending on the camera cho-
sen for each dataset. Furthermore, in the Re-ID task, peo-
ple’s IDs do not overlap during the training and testing
phase, but the domain of the chosen camera is the same re-
gardless of the phase, so our method can be widely applied
even if the number of cameras increases.

MARS [35] is a large-scale benchmark dataset for video
Re-ID. It consists of approximately 20,000 tracklets of 1261
identities and additional distractors of 3248 tracklets. The
video sequences are captured using 6 cameras. There are
substantial bounding box misalignment problems, making
it more realistic and challenging.

DukeMTMC-Video ReID [31] is another large-scale
benchmark dataset, which contains 4,832 tracklets of 1,404
identities. The video sequences are captured using 8 cam-
eras. We abbreviate DukeMTMC-VideoRe-ID as ”Duke-
V” in the following descriptions.

LS-VID [21] is the most recent large-scale benchmark
dataset for video Re-ID. It consists of 3,772 identities and

14,943 tracklets, captured using 15 cameras. There are
many challenging elements such as illumination and bound-
ing box misalignments, so it can be seen as the closest
dataset to real life.

Evaluation Metrics The performance was evaluated us-
ing Cumulative Matching Characteristic (CMC) and mean
Average Precision (mAP), which are frequently used as
evaluation metrics in Re-ID.

4.2. Implementation Details

We adopt ResNet-50 [9] pre-trained on ImageNet [5] as
a backbone of DSANet. To maintain the spatial dimension
of the feature map, we change the stride of the last layer of
ResNet-50 to 1. We randomly select 8 identities sampled
with 4 clips for each identity to train model. We also lever-
age the restricted random sampling strategy [23] to contain
the entire video representation. Input frames are resized to
256×128, and data is augmented using random horizontal
flip, and random erasing [37] with a probability of 0.5. We
use the Adam optimizer with a weight decay of 5 × 10−4,
whose learning rate starts at 3.5 × 10−4 and decays by 0.1
times every 40 epoch. All experiments are conducted up
to 200 epochs to ensure sufficient convergence of learning.
In the testing phase, we compute all the frames of the se-
quence and obtain the final video-level feature through av-
erage pooling. As LS-VID has a large number of cameras,
we set the lambda of Lcam to 0.5.

4.3. Comparison with State-of-the-art Methods

Before comparison, our network has a different model
size for each dataset owing to the camera ID classifier. We
list the size of our model for the LS-VID, which has the
largest number of cameras in Table 1. The parameters of
DSANet are 29.5M in MARS, and 30M in Duke-V.

Table 1 summarizes the comparison between previous
methods for three video Re-ID benchmark datasets. We
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Table 2. Analysis of each component (TLM, FWG, SAO) of
DSANet including loss functions (LL/R, Lw, Lic) on LS-VID.

Methods Param.
LS-VID

Rank-1 mAP
Baseline 25.2M 73.3 62.1
+TLM w/o LL/R 27.4M 73.5 62.4
+TLM 29.1M 73.7 62.5
+FWG w/o Lw 27.4M 73.1 61.9
+FWG 29.1M 74.1 62.5
+TLM +FWG w/o Lic 30.8M 73.9 62.5
+TLM +FWG 30.8M 75.5 64.2
+TLM +FWG +SAO 30.8M 75.8 64.2

divide the approaches into three groups: 3D-CNN-based,
temporal-clues-based, spatio-temporal-clues-based.

First, our method shows particularly good performance
on MARS compared to 3D-CNN-based methods [8, 17, 22].
MARS has frequent bounding box misalignment problems,
so it is easy for the network to lose the consistency of tem-
poral appearance when using 3D convolution. Our pro-
posed method is robust against temporal appearance de-
struction because TLM aligns the position of the target that
changes with the flow of the frame.

Compared to the methods using temporal clues [7, 21],
our DSANet achieves much better performance for all
datasets. Although temporal information is crucial in the
video, approaches that utilize spatial information together
can extract more discriminative features. As our method
employs spatial information through TLM and obtains fi-
nal embedding by reflecting temporal information through
FWG, DSANet extracts a rich representative feature.

Finally, our method achieves superior or comparable
(considering the number of parameters) performance to the
spatio-temporal-clues-based methods [1, 6, 13, 14, 15, 29,
33]. DSANet uses not only spatio-temporal clues but also
feature-level augmentation through SAO with ID features
and camera features. It performs an auxiliary task that al-
lows the network to classify IDs for various cases. While
PSTA has significantly higher performance against Duke-V,
the mAP of MARS close to real-life scenarios is 0.8% lower
than that of our method. PSTA [29], considering intra-frame
and inter-frame relationships, is robust to long-term occlu-
sion, but the inter-frame correlation operation and pyramid
structure increase its parameters up to 35.4M. Our method
obtains remarkable performance with a lightweight network
without additional parameters through a simple feature-
switching and aggregation mechanism. Performance can be
further improved by combining other modules.

Comparison with Related Methods We agree with the
AFA [1] approach of separating features to focus on the tar-
get itself in video Re-ID. However, although AFA claims
that the network should focus on the time-invariant charac-
teristic of the target, targets are not the only ones that re-
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Figure 6. Heatmap of disentangled features on MARS and Duke-
V: FID and Fcam. The warmer color denotes higher activation.

main the same over time. Depending on the sequence, the
background may change with time, and ID-related informa-
tion that changes with time may rather be a discriminative
feature. Furthermore, when compared with the network de-
sign, AFA tries to disentangle the features finally extracted
from the backbone network. However, our method extracts
each feature from different branches with the goal of having
dissimilar information in the feature stage. Furthermore,
through visualization of the feature map corresponding to
our camera feature, we can intuitively see which part each
of the disentangled features has information about. Disen-
tangled features are also utilized in SAO so that the network
can extract robust and rich representations.

4.4. Discussion

Ablation Studies Table 2 summarizes the results of abla-
tion studies on the components (TLM, FWG, and loss func-
tions) of DSANet. As the evaluation of the entire frame
takes much time, we conduct the ablation studies accord-
ing to the RRS [23]. We also list the evaluation results for
all frames in Table 1. If TLM or FWG is applied alone,
it should be employed in conjunction with its loss function
to aid network training. As TLM helps extract salient fea-
tures for the target, it improves rank-1 by 0.4% and mAP
by 0.4%. FWG also improves rank-1 by 0.8% and mAP by
0.4%. This is because FWG reflects temporal information
in the final embedding to avoid interruption of the represen-
tation due to temporal obstructions. Finally, we can con-
clude that TLM and FWG are effective when used cooper-
atively, imporving rank-1 by 2.2% and mAP by 2.1% from
baseline. Furthermore, if the ID feature obtained from TLM
and FWG is used for SAO, the network acquires the gener-
alization ability to cover numerous situations. Surprisingly,
despite SAO being an additional parameterless mechanism,
it improves rank-1 by 0.3%. In summary, DSANet’s com-
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Figure 7. t-SNE [27] visualization of final embedding vectors from
baseline, fID , and fcam from DSANet on LS-VID.

ponents work complementarily, so they are most effective
when used together and perform best when all frames cor-
responding to the sequence are input.

Heatmap of Disentangled Features To prove we cre-
ate and disentangle the features according to our proposed
method, DSANet, we visualize the heatmap of each feature
map in Figure 6. In the first row corresponding to the case
where obstacles continuously appear in the frame, DSANet
obtains the final representation containing only informa-
tion about the target. In the second and third rows, they
show that DSANet can extract consistent features thanks
to TLM despite the change of size and location of the tar-
get over time. As seen in the last row, even when the
background occupies most of the frame, DSANet tries to
extract discriminative identity information FID by clearly
separating the background information Fcam. In conclu-
sion, DSANet successfully obtains final embeddings that
are robust against background cluttering and bounding box
misalignment problems while being rich in ID information,
which is the primary goal in video Re-ID.

Feature Distribution In Figure 7, we visualize the dis-
entangled features using t-SNE [27] to demonstrate that
each feature contains either the identity or the camera in-
formation. We map the final embedding vector from base-
line as well as fid and fcam from DSANet to the embed-
ding space. Compared with the baseline, our DSANet can
further narrow the intra-class distance through Lic. In ad-
dition, complementary learning of SAO, TLM, and FWG
allows DSANet to extract distinguishing features of fid and
widen the inter-class distance. Finally, we infer that the aux-
iliary task for predicting the camera ID is effective based on
the results of grouping each other according to fcam.

Results of Retrieval Figure 8 shows the results of re-
trieval on MARS and Duke-V. In MARS, there are many
samples with the background occupying more of the image
than humans. This can be seen as the characteristic that can
specify the camera that took the sequence. As the baseline
cannot separate this camera characteristic, so background
information is included in the final embedding, so a similar
background to the query is retrieved. By contrast, DSANet
can completely focus on identity information because the
characteristics of the captured camera are perfectly disen-
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Figure 8. Retrieval results of baseline and DSANet on MARS and
Duke-V. The correct and incorrect matches are bordered in green
and red, respectively.

tangled. Even for the last row sample, the baseline was dis-
tracted by the background, so information that could specify
the identity is missed, and the correct answer is not found
until rank-10. Finally, DSANet shows excellent results of
retrieval by focusing on fine details without being disturbed.

5. Conclusion

We propose DSANet, which disentangles camera char-
acteristic information and extracts discriminative ID-related
representation. TLM and FWG obtain features that are ro-
bust against temporal appearance destruction by coopera-
tively utilizing spatial and temporal information. DSANet
can cope with various scenarios by augmenting the fea-
tures of a new pair through SAO and performing auxiliary
tasks. Experimental results demonstrate that our method
is lightweight. Specifically, it achieves the highest perfor-
mance on the LS-VID. Diverse visualization results illus-
trate qualitatively that the feature creation and disentangle-
ment were as intended. We expect that the disentangling
structure of our DSANet and SAO with auxiliary tasks will
be used harmoniously with other methods in the future.
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