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Figure 1. Overivew. We introduce SEG&STRUCT, a novel framework for the interplay between part segmentation and structure inference.
In the forward path (green), our framework parses a raw 3D shape into part segments and predicts a part structure driven by an established
point-to-part associations. In the backward path (yellow), the predicted structure is leveraged for segmentation refinement to relax the
confusion of part boundaries. Through this interplay, we can achieve a more accurate part structure and improved segmentation. We also
showcase that the predicted structure further can be used for shape retrieval by measuring a structural similarity between two shapes.

Abstract

We propose SEG&STRUCT, a supervised learning
framework leveraging the interplay between part segmen-
tation and structure inference and demonstrating their syn-
ergy in an integrated framework. Both part segmentation
and structure inference have been extensively studied in
the recent deep learning literature, while the supervisions
used for each task have not been fully exploited to assist
the other task. Namely, structure inference has been typ-
ically conducted with an autoencoder that does not lever-
age the point-to-part associations. Also, segmentation has
been mostly performed without structural priors that tell the
plausibility of the output segments. We present how these
two tasks can be best combined while fully utilizing super-
vision to improve performance. Our framework first decom-
poses a raw input shape into part segments using an off-the-
shelf algorithm, whose outputs are then mapped to nodes
in a part hierarchy, establishing point-to-part associations.
Following this, ours predicts the structural information,
e.g., part bounding boxes and part relationships. Lastly, the
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segmentation is rectified by examining the confusion of part
boundaries using the structure-based part features. Our ex-
perimental results based on the StructureNet and PartNet
demonstrate that the interplay between two tasks results in
remarkable improvements in both tasks: 27.91% in struc-
ture inference and 0.5% in segmentation.

1. Introduction

The importance of compositional understanding of 3D
shapes has been reiterated for a long time in computer
graphics and computer vision. Until recently, a large body
of work has investigated how the part structure of 3D shapes
can be utilized in various applications including object
recognition [22, 34], shape completion [43, 44], shape edit-
ing [23, 28, 29], deformation [55, 3], functional attributes
analysis [47, 30, 12, 42], shape retrieval [13, 2, 7, 46], and
so on.

Due to the vast range of applications, there also have
been lots of previous studies about learning representations
of the part structure of 3d shapes, such as GRASS [23] and
StructureNet [28]. StructureNet particularly offers highly
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curated information about the part structure including the
part abstraction (e.g., part bounding boxes) and the relation-
ships across the parts (e.g., symmetry across sibling parts).
A straightforward idea leveraging such supervision for the
part structure inference from a raw 3D shape is to build a
simple encoder-decoder network, whose encoder takes the
raw 3D shape and outputs a latent code, and the decoder
takes the code and produces the part structure. The limita-
tion of such an approach is, however, that the neural net-
work does not exploit the supervision of association be-
tween the areas on the raw 3D shape and the semantic parts.

3D segmentation is another direction of learning the
compositional structure from 3D shapes but focusing on de-
composition. It also has been extensively studied in the
deep learning literature, particularly to segment object in-
stances from a scene [14, 48]. While recent segmentation
techniques provide accurate results in many cases, the meth-
ods are still limited to learning the point-to-semantic part re-
lationships without considering the global structure result-
ing from the segmentation. The global structural priors can
assist in pruning such noises affecting the structure, while
such as idea has not been explored in recent deep-learning-
based approaches.

To overcome the limitations in both tasks, we pro-
pose SEG&STRUCT, a framework incorporating the inter-
play between them while fully exploiting the supervision of
both part segmentation and point-to-part associations. Our
pipeline is divided into two tasks: 1) a Segmentation-to-
structure inference and 2) Structure-to-segmentation refine-
ment. To infer a part structure from a raw 3d shape, we
first extract part segments from the input geometry and then
map them to nodes in a part hierarchy. This two-step ap-
proach establishing a correspondence between the part seg-
ments and nodes in the part hierarchy greatly helps the pre-
dicted structure resemble the input geometry. Subsequently,
we take an additional step that uses the part structures to
draw the candidates of incorrectly split parts and prune out
the candidates assisted by the structure-aware features from
the previous step. This reverse process and its rectification
of the noisy segments close the loop of the pipeline and
demonstrate the synergy between the two tasks.

Our experimental results based on the StructureNet
dataset demonstrate our method outperforms the baselines
using an encoder-decoder network, with significant margins
of 27.91%. Our results also show that the segmentation can
be better refined with the predicted structural information
by 0.5% in the PartNet dataset.

To summarize, our contributions are following:

• We propose a supervised learning framework leveraging
the interplay between part segmentation and structure in-
ference and demonstrate its synergy in improving perfor-
mance.

• We introduce a structure prediction module that takes ad-
vantage of a part segmentation network exploiting the su-
pervision of point-to-part associations.

• We also introduce a part segmentation refinement module
that learns the confusion of segmentation boundary from
the predicted structure.

• Our experimental results demonstrate significant outper-
formance of our integrated framework compared with
previous methods.

2. Related Work
Our work is primarily related to the two threads of re-

search study on segmenting 3D shapes into parts and in-
ferring the structure of 3D shapes. While both directions
have been extensively explored in the literature, we propose
to tackle the two tasks jointly and leverage their synergy
to boost the performance for both tasks in this paper. We
briefly review the two fields of study below.

2.1. Part Segmentation on 3D Shapes

Given a raw input 3D geometry, segmenting it into 3D
parts is a long-standing important yet challenging research
problem in 3D computer graphics and vision. Prior to the
popularity of data-driven methods, early works have inves-
tigated various optimization based techniques for segment-
ing 3D mesh inputs into parts [10, 17, 25, 36, 52, 1, 40, 6].
Recently, driven by the advancement of modern machine
learning techniques and the availability of large-scale data
sets [4, 58, 32, 60], researchers have switched gears to
work on data-driven solutions. While many works proposed
learning based approaches to perform 3D semantic part seg-
mentation – assigning semantic labels (e.g., chair back, seat
and base) to each point or face over the input geometry, such
as [20, 53, 38, 18, 59], more related to us are the previous
studies on 3D instance part segmentation where all differ-
ent part instances (e.g., the four chair legs) are separated,
e.g., [32, 26, 61]. There are also many works mostly fo-
cusing on 3D scene instance segmentation but also demon-
strating good results on segmenting 3D shapes into parts,
including [49, 50, 11, 14]. Researchers have been pushing
state-of-the-art for 3D shape part segmentation using such
learning-based methods driven by large-scale training data
with part labels. While these works show impressive re-
sults, they are limited to decomposing the shape into parts,
not connecting the parts to semantic and structural priors
such as the part names and the relationships across the parts
(e.g., parent-child, symmetry, etc).

In the vast literature on 3D shape part segmentation, only
a few past works have explicitly exploited the structural
information of 3D shapes. For example, researchers have
attempted to leverage part templates [21, 8], part hierar-
chy [57, 51, 60], and shape grammar [16] to capture the

1227



rich part relationships and constraints. While these works
have demonstrated that the 3D part segmentation tasks ben-
efit from estimating the shape structure, they have not ex-
plored if predicting 3D shape parts can inversely suggest
better shape structural predictions. Our work studies and
confirms the synergy between the two tasks.

2.2. 3D Shape Structure Inference

3D objects are often highly structured in their geometry,
parts, and rich part relationships. For example, a physically
stable chair is often governed by a set of rules specifying
some strong relationships and constraints among the shape
parts, e.g., the four legs are distributed symmetrically and
of the same length. Therefore, researchers have been in-
vestigating various approaches to infer the 3D shape struc-
ture from raw geometry input. Previous works have pro-
posed different ways to represent the structure of 3D shapes,
such as part-based templates [36, 21, 8], part-level or shape-
level symmetry [27, 43], shape programs [33, 45, 15], shape
grammars [5, 19], etc.. After estimating the 3D shape struc-
ture, these works can then leverage such information to
perform diverse downstream tasks, such as shape genera-
tion [45, 15], editing [19, 8] and completion [43].

Recent works have explored designing learning models
that represent and model the shape structure as part hierar-
chies or graphs [23, 57, 62, 54, 28, 9, 56]. Among these
works, GRASS [23] is the pioneering work designing a
novel learning framework to encode and decode binary part
hierarchies, while StructureNet [28] further extends the sys-
tem to handle n-ary hierarchical part trees and the rich part
relationships. Follow-up works have tried to predict the hi-
erarchical shape structure from a single input image of the
3D shape [35, 37] or a 3D input point cloud [60, 31]. Given
the good performance in modeling 3D shape structure, in
this paper, we adopt the hierarchical and relational struc-
tural shape representation introduced in StructureNet [28]
and focus on investigating the interplay between the two
tasks of structure prediction and part segmentation.

3. The Interplay-based Framework
3.1. Overview

Our goal is to build a synergy between the part segmen-
tation and the structure inference via the bi-directional inter-
play between two tasks in an integrated framework. To this
end, we propose two separate networks: a Segmentation-
to-Structure Inference network (Sec 3.2) and a Structure-
to-Segmentation network (Sec 3.3). The first network pre-
dicts a part structure from a given raw input geometry by ex-
ploiting an association between part regions and part nodes
in the structure. Afterward, the second network relaxes
the confusion of part segment boundaries by leveraging the
structure-aware features derived from the earlier stage.

Notations. We denote the raw 3D shape as a point cloud
A = {a1, ...aN} for each point a ∈ R3, and a part seg-
mentation output from A as B = {bl}l∈L, where bl is l-th
part segment which contains a set of points in the part re-
gion Xl and its semantic label yl, and L is the number of
part segments. For the part structure, we use a tree rep-
resentation S = (P,H,R) defined in StructureNet [28].
Here, a set of part nodes is represented by P , and rela-
tionships for the hierarchical connection and part relations
are denoted as H and R, respectively. For M number of
parts P = {m1, ...,mM}, a part node mi contains a 128-
dimensional feature vector and an one-hot encoded seman-
tic label yi as mi = (xi, yi). At the end of the structure
inference stage, the network predicts a part geometry repre-
sented in oriented bounding box parameters θi = (ti, si, qi)
based on the part feature xi. The box parameters θi include
a translation vector ti ∈ R3, a scaling vector si ∈ R3, and
an orientation in unit quaternion qi ∈ H. To describe a part
relation between two nodes, we use a edge (mi,mj , τ) for
a part relation type τ ∈ T , where T is a pre-defined set of
part relations, e.g. symmetry and adjacency.

3.2. Segmentation-to-Structure Inference

We first propose a parsing-based structure encoder F
that exploits the segmentation prior. To infer part structure
from a raw 3D shape, one can naively utilize a simple au-
toencoder network, which encodes the input A ∈ RN×3

into a latent code and decodes it into a part structure S,
adopting a decoder similar to StructureNet [28]. However,
this approach hardly yields an accurate output. Since the
information of 3D shape is just aggregated into a single la-
tent code, the network does not see which point in the input
shape belongs to which part in the structure.

To address this, we take a two-step approach that parses
the input geometry A into a set of part segments B using
a parser backbone ψ and then construct a structure hierar-
chy H. For ψ, we utilize PointGroup [14], an off-the-shelf
algorithm for 3d scene instance segmentation, by treating
part instances in a single object as object instances in an
indoor scene. To build the structure hierarchy, we treat
these parsed segments B as leaf nodes and group them in
a bottom-up manner recursively until we get a root node,
according to the rule defined in StructureNet [28], which is
based on the part labels. For example, a set of part nodes
with a semantic label named leg has to be grouped together
as sibling nodes under a base node. While the hierarchy
is built starting from leaf nodes, the network also encodes
each part geometry into a feature vector xi ∈ R128 and ag-
gregates the vectors of sibling nodes to produce a feature of
their parents in the same dimensionality. At the end of the
encoding step, we get the root feature vector xroot ∈ R128.
Finally, we can establish a correspondence between part re-
gions in input geometry and part nodes in structure hierar-
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Figure 2. Overall Framework Architecture. First, the structure encoder F decomposes an input geometryA into part segmentsB = {bl}
using the parser ψ. By treating these segments as the leaf nodes, F constructs a tree hierarchy in a bottom-up manner and aggregates the
features of sibling nodes to create a feature vector of their parent node. The following structure decoder G propagates the root feature
throughout the hierarchy in a top-down manner and aggregates the features of parent and sibling nodes indicated by the skip connection.
Further, the refinement network M relaxes the confusion of part boundaries in the segmentation by leveraging the predicted structure.

chy, which largely helps the later network to associate the
given shape and the part structure.

Next, we introduce a structure decoder G, which recur-
sively propagates the root feature xroot to leaf nodes, and
predicts the part bounding boxes {θi} and the part relations
{(mi,mj , τ)} between two nodes under the same parent
node. For G, we adapt a similar decoder network proposed
in StructureNet [10], which uses the message passing net-
work across the part features in the hierarchy. Through mes-
sage passing, the network updates the part features to con-
tain a much broader context across the hierarchy. We de-
note this updated part feature as x′

i ∈ R128. However, it is
not feasible to directly use the decoder from StructureNet,
which produces the whole part structures by recursively de-
coding a single latent vector at the root node. When the
input is given in the form of the raw geometry, it suffers to
predict the existence of part nodes due to the domain gap
between the geometry input and the structure output.

To tackle this, our decoder takes advantage of an explicit
guidance given by the established correspondence between
the part regions and part nodes in the previous stage. The
previous structure construction step enables us to represent
each part segment in the input shape as the hierarchical rep-
resentation. Based on this, we can associate given part re-
gions to the corresponding part nodes using skip connection
(Figure 2). This association gives us strong supervision for
the structure decoding step and enables the network to know
the exact part region to which the part node is related. As a
result, our network becomes less dependent on the implicit
latent code and infers the part structure resembling the input
geometry. We will discuss how this affects the performance
of structure inference in the experiments (Sec 4.1).

3.3. Structure-to-Segmentation Refinement

In this section, we introduce a segmentation refinement
network M on top of the structure inference. By predict-
ing the merge operation at the confusion of part regions,
our network relaxes noisy regions from the first segmen-
tation output. We found that this task largely depends on
the structural context since the local information does not
suffice to decide which part has to be merged to other one.
To this end, we exploit the features from earlier inference
stage, which play a critical role for merge prediction.

To detect the confusion of part boundaries, we apply a
simple heuristic using Intersection over Union (IoU). An
IoU is computed using predicted part boxes and treated as
conflict score. We filter out the candidates with a larger
score than a threshold, i.e. 0.09. Note that if there are mul-
tiple confusions for one node, we take only one candidate
with the largest score. This means we only consider one-
directional merge cases where the merge operation is order-
variant, e.g. a merge candidate for one node does not have
to be vice-versa, as shown in Figure 3. The valid candidate
pairs are assigned to C, aM×M binary matrix having each
row as an index of the part node to be merged and each col-
umn as an index of the target node. For example, C(i,j) = 1
describes i-th node have a chance to be merged to j-th node.

To predict merge operations across the nodes in C, we
first compute a candidate feature vector ci ∈ R256 for each
candidate part by encoding the part segment bi = (Xi; yi)
using a candidate feature encoder fc. For fc, we use a
vanilla PointNet [38] architecture where we treat a part seg-
ment as a single point.

ci = fc([Xi; yi]) (1)
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Figure 3. Structure-induced Segmentation Refinement. Our
network first sample the part segments to be merged in predicted
structure S through candidate detection. The number in the box
from part segments B indicates the index of each part region. The
order of indices inside the boxes grouped together means the direc-
tion of merge, e.g., 1-0 means the 1-th part segment can be merged
to the 0-th part. Utilizing a series of features from S, refinement
network further predicts merge scores for candidate pairs.

However, the feature ci contains only fragmentary informa-
tion of the local part region. Therefore, we opt to update
the candidate feature with its corresponding part node fea-
ture x′

i from the inference stage. Using a single linear layer
fn, we aggregate this part-wise structural information to ci
producing an updated candidate feature as c̃i = fn([ci; xi]).

After updating the candidate features, we compute a
merge feature, an order-variant feature vector to predict
merge operation from the candidate node to their defined
target node. We denote the merge feature as a 256-
dimensional vector mij ∈ R256 and merge feature encoder
as fm, which uses a single linear layer.

mij = fm([c̃i; c̃j ]) (2)

Similar to the candidate feature case, we update mij to as-
sist more comprehensive structural context to it from the
predicted structure. To this end, we brought the root node
feature xroot and treat it as a structure code and aggregate
it to all merge features. We use an another single linear
layer encoder fs, which outputs the updated merge feature
m̃ij = fs([mij ; xroot]).

After the series of the concatenations and feature encod-
ing, we finally predict the probability score of each merge
operation ∈ [0, 1] similar to edge prediction:

pmerge
(mi,mj)

= σ(gm(m̃ij)) (3)

where gm decodes the edge feature into logits, σ and p are
the sigmoid and probability function, respectively. For the
pairs with merge scores larger than the threshold (i.e., 0.7),
we perform merge operation to update the first part segmen-
tation by attaching the source part segments to their targets.

3.4. Training and Loss

Our goal is to train a category-specific framework that
integrates two networks: structure inference and segmenta-

tion refinement. We train two networks separately and use
the freezed part segmentation backbone ψ, which is pre-
trained in advance.

First, the parameters for the encoder F and the decoder
G are supervised both at the structure decoding step through
backpropagation. Our loss design is mostly brought from
StructureNet [28], which computes geometry loss for part
bounding boxes, edge prediction loss for part relations, and
structure consistency loss to make the relations at parent
nodes transfer to their siblings. For more detail, we refer
the readers to the original paper and our supplementary.

The training for our refinement network M is considered
as the traditional binary classification problem. However,
we face the imbalanced data distribution problem having
the majority of merge operation label True Negative, which
means most of the candidate pairs should not be merged due
to the fairly good quality of the previous part segmentation
output. To address this, we use a Focal Loss [24], a modi-
fied version of binary cross entropy loss to handle the data
imbalance problem by setting a bigger weight for a label
with a sparse number of samples. Please refer to the sup-
plementary for more detail on training.

4. Experimental Results
In this section, we demonstrate our experimental results

for two main tasks and one application: structure infer-
ence, segmentation refinement, and structure-aware shape
retrieval. For more results including ablation study and dis-
cussion on failure cases, please refer to our supplementary.

Data Preparation. We prepared two kinds of datasets to
test our method: PartNet [32] and StructureNet [28]. ParNet
provides point cloud data sampled on surfaces of 3D mesh
from ShapeNet [4] and its corresponding semantic-instance
part annotation. We use PartNet to train our segmentation
backbone ψ and evaluate the performance of segmentation
refinement. StructureNet is built upon PartNet with an addi-
tional annotation on the structure hierarchy, part bounding
boxes, and part relations. Same as StructureNet, we set a
maximum number of parts in a subset of the tree as 10 and
four types of part relations, i.e. translational, rotational, re-
flective symmetry, and adjacency. To test our method, we
pick three shape categories from StructureNet, which have
diverse and complex structures compared to other shapes:
chair, table, and storage furniture. Since our framework
learns from two datasets at the same time, we filter the in-
valid shape missing one of the annotations from them. In
total, the remaining shapes for chair, table, and storage fur-
niture are 3522, 1802, and 932, respectively. We split these
samples into the train and test set following PartNet.

4.1. Evaluation on Structure Inference

Baselines. Since there are no directly comparable meth-
ods in previous studies, we build two encoder-decoder base-
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Figure 4. Qualitative Comparison on Structure Inference. The top row describes the input 3D shape and the bottom row describes
ground-truth. In the second row, the part segmentation outputs from ψ are shown. Compared to other baselines, ours (bottom row)
achieves the most accurate part structures also capturing a more diverse set of part structures.

lines. The first one (Fs + GSN ) encodes the input into
a single feature vector using a shape encoder Fs with-
out any segmentation prior and decodes it to predict the
whole part structure using a structure decoder GSN . We
use PointNet++ [39] for Fs. and use the same decoder from
StructureNet [28] for GSN . Meanwhile, the second base-
line (F + GSN ) encodes the extracted part segments into
a root feature in the hierarchy using our encoder F and de-
codes the vector sharing the same decoder GSN , not exploit-
ing the point-to-part association. Both baselines expect the
latent vector to contain all the information for the part struc-
ture without using one or any priors used in our method.

Metrics. We evaluate our method using two metrics: 1)
part prediction accuracy and 2) edge prediction error. The
part prediction accuracy measures how accurately are part
bounding boxes predicted. We calculate this accuracy using
Average Precision (AP), which is widely used in the object
detection problem [41]. Since the part semantics are given
from segmentation backbone ψ, we use a class-agnostic AP
with an IoU threshold 0.25. Note that the correspondence
between the prediction and target structure is established
only for the leaf nodes. Next, the edge prediction error (EE)
measures the quality of classification on the part relations,

borrowing the same metric from StructureNet [28]. The
lower EE is likely to produce a more consistent structure,
which means the predicted part boxes are co-related based
on their relationships, e.g., symmetry and adjacency.

Results. We conducted the qualitative and quantitative
evaluations and the results are summarized in Figure 4 and
Table 1. We first illustrate the results of the qualitative eval-
uation in Figure 4. As illustrated, our method predicts the
most plausible structures for all categories even for the cases
of complex input geometry, resembling the target structures
compared to other baselines. However, other baselines al-
most deliver inaccurate appearance even from given input
shape and less realistic structure. Even in the case of an ap-
proximate structure predicted, they fail to recover the pre-
cise part geometry of small and thin parts. The second base-
line, in particular, also fails to transfer the information of
part regions extracted to the decoding step, although clear
correspondence exists. Here, we can observe that naive
encoder-decoder methods cannot deliver not only accurate
structure prediction but also the diversity of output, where
the predicted part structure has a similar appearance from
apparently different input shapes. Therefore, we argue that
fully utilizing part segmentation priors and the point-to-part
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Table 1. Quantitative Comparison on Structure Inference. Please note that AP means part prediction accuracy (%) computed by average
precision with IoU threshold 0.25, and EE means edge prediction error. The bold text is used for the best results for each column. The
columns for key components describe which prior knowledge each method takes, i.e. segmentation prior or skip connection.

Id Method Key Comp. Chair Table Storage Average
Seg. Skip. AP (%) EE (↓) AP (%) EE (↓) AP (%) EE (↓) AP (%) EE (↓)

1 Fs + GSN 5.03 0.682 2.02 0.827 1.07 0.649 2.71 0.720
2 F + GSN ✓ 10.79 0.421 1.28 0.786 1.95 0.519 4.68 0.576
3 F + G (Ours) ✓ ✓ 48.41 0.273 26.36 0.440 21.57 0.693 32.11 0.469
4 Ours +M ✓ ✓ 48.86 0.273 26.82 0.436 22.08 0.697 32.59 0.469

association clearly helps the structure inference.
Next, we demonstrate our quantitative evaluation results

in Table 1. Obviously, ours outperforms the naive encoder-
decoder baselines in two metrics, leaving significant mar-
gins for both. The numbers in the first row describe the
results of the first baseline without having any priors that
our method uses, i.e., part segmentation and point-to-part
association, which almost fails to predict the accurate struc-
tures. The other baseline also does not achieve good re-
sults either, only with a small improvement from the first
baseline. Although this one takes the hierarchically aggre-
gated latent code using both segmentation and hierarchy pri-
ors, the structure prediction accuracy slightly increased. By
comparing it with ours, we find utilizing the priors in our
method helpful showing a significant margin of 27.43% in
part prediction accuracy and 0.107 in edge prediction er-
ror. Moreover, ours leaves more margin by 27.91% for the
refined structure after the segmentation refinement (bottom
row). We will discuss this later (Sec 4.2).

4.2. Evaluation on Segmentation Refinement

Baselines and Metric. We compared our method
to the other state-of-the-art part segmentation methods,
covering SGPN [49], PartNet [32], Probabilistic Embed-
ding (PE) [61], and PointGroup [14]. To show the neces-
sity of our proposed method using structural context, we
compare ours to another simple baseline that predicts merge
operation directly from the output from part segmentation
without using any structural priors. The candidates are de-
tected using the part bounding boxes from a principal com-
ponent analysis (PCA)-based oriented bounding box esti-
mator. As same as the introduced methods, the quantitative
evaluation is performed based on a class-wise mean Aver-
age Precision (mAP) with IoU threshold 0.5.

Results. We discuss how the proposed method refines
the given part segmentation output with quantitative and
qualitative evaluations. Please note that we will focus on the
improvement on the segmentation quality from our back-
bone ψ since we do not train any additional part segmenta-
tion network in our framework.

In Figure 5, we illustrate the visualization of this refine-
ment process for clearance to demonstrate how the merge
operation gives us the refined part segmentation. Given an

ℳ

Input Segments Refined Seg. G.T

Figure 5. Structure-to-Segmentation Refinement. Utilizing
structural information, ours rectify the first segmentation through
refinement network M. The circle describes a closer look at the
region of conflict in the predicted part structure. After merge pre-
diction, we can get refined segmentation updating noisy regions.

initial segmentation output and the prediction structure from
it, we first predict merge operation by M for the candidate
nodes detected by the conflict of the part boxes (indicated
by the red arrow). By incorporating the set of structure-
aware features, ours refines the first part segmentation result
by merging the candidate part segment to its target segment.
From the visuals, we observe the accurate merge prediction
gives us more realistic and clear part segmentation. We pro-
vide more examples in Figure 6.

We demonstrate the result of quantitative evaluation in
Table 2. Before our merge prediction, we observe that
PointGroup itself achieves state-of-the-art performance on
part instance segmentation overall. We observe that this
quality can be much enhanced after structure-driven merge
prediction (bottom row), showing the improved segmenta-
tion accuracy by 0.5% in average. However, for our com-
pared baseline, we observe that the accuracy rather de-
creases on average, where the merge prediction is not aware
of the structural information. For the chair category, the
number seems not improved that much since most of the
chair part segments are relatively small to make a bigger
improvement even though with the correct merge predic-
tion. On the other hand, the other categories have the big-
ger improvement where most of the merge cases occur in
the bigger part regions, as shown in Figure 6. Based on
the evaluations, we claim that the synergy between the part
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Table 2. Quantitative Results of Segmentation Refinement. The
numbers are calculated by mean average precision (mAP) for each
shape category. Compared to the PCA-based baseline which rather
decreases the performance, ours with structure-aware features has
shown the clear advantage of the proposed method.

Avg Chair Stora. Table
SGPN [49] 18.5 19.4 21.5 14.6
PartNet [32] 26.8 29.0 27.5 23.9
PE [61] 31.5 34.7 34.2 25.5
PointGroup (ψ) [14] 32.0 40.7 26.8 28.5
ψ + PCA-box 31.6 40.7 26.9 27.2
ψ + Ours 32.5 40.8 27.5 29.3

Input G.T 
Seg.

Refined
Struct.

Refined
Seg.

Parsed 
Seg.

Predicted
Struct.

Figure 6. The Interplay between Part Segmentation and Struc-
ture Inference. The ground-truth part segmentation is at the right-
most column. We point the region of conflict using a red arrow.

segmentation and structure inference enables us to improve
both tasks by exploiting the supervision for each task, i.e.,
segmentation and structural priors.

Moreover, we observe this interplay between two tasks
further improves the quality of part structure again. In Ta-
ble 1, we observe that rectified segmentation further can be
used to enhance the quality of part structure once again, im-
proved by 0.48% (bottom row). In Figure 6 (fifth column),
we also draw the effectiveness of this refinement enabling
our method to achieve more clean and plausible outputs.

Query Ours CD-based Query Ours CD-based

Figure 7. The Top-1 Retrieval results of Structure-aware vs.
CD-based approaches.

4.3. Structure-Aware Shape Retrieval

As an application based on our proposed framework,
we introduce a structure-aware shape retrieval. Shape re-
trieval, which is to search for the most resemble shape
in the database given a query shape, has been one of the
most practical applications to measure the shape difference.
Currently, there has been a typical and dominant approach
to comparing two shapes by measuring a fitting distance,
which is usually computed by chamfer-distance (CD). This
yields perceptional failure cases where we seek to find a
similar shape in perspective of the semantics and structure.

To tackle this, we propose a structure-driven approach,
measuring a structure difference that reflects the similarity
of semantics between the query shape and shapes in the
shape collection. We showcase the results of top-1 shape
retrieval, comparing our structure-aware retrieval with the
CD-based method in Figure 7. Here, we find that our
method does not yield the smallest fitting distance, while
the retrieved shapes have more similar semantic parts. For
more results, we refer readers to the supplementary.

5. Conclusion

We proposed SEG&STRUCT, a framework leveraging
the interplay between part segmentation and structure
inference in a 3D shape to fully exploit two different super-
visions, such as point-to-part associations and hierarchical
part structure, and thus improve performance in both tasks
making a loop between them. Our experimental results
demonstrate that this interplay between segmentation and
structure inference enables overcoming the performance
barrier of existing methods solving only one of the tasks.
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Patané, Michela Spagnuolo, and Ayellet Tal. Mesh
segmentation-a comparative study. In IEEE International
Conference on Shape Modeling and Applications 2006
(SMI’06), pages 7–7. IEEE, 2006.

[2] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis
Savva, Angel X Chang, and Matthias Nießner. Scan2CAD:
Learning CAD model alignment in RGB-D scans. In CVPR,
2019.

[3] Martin Bokeloh, Michael Wand, Hans-Peter Seidel, and
Vladlen Koltun. An algebraic model for parameterized shape
editing. ACM TOG, 2012.

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3D model repository. CoRR,
abs/1512.03012, 2015.

[5] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas J.
Guibas, and Vladlen Koltun. Probabilistic reasoning for
assembly-based 3D modeling. ACM Transactions on Graph-
ics (TOG), 30:35, 2011.

[6] Xiaobai Chen, Aleksey Golovinskiy, and Thomas
Funkhouser. A benchmark for 3d mesh segmentation.
Acm transactions on graphics (tog), 28(3):1–12, 2009.

[7] Manuel Dahnert, Angela Dai, Leonidas J Guibas, and
Matthias Nießner. Joint embedding of 3D scan and CAD
objects. In ICCV, 2019.

[8] Vignesh Ganapathi-Subramanian, Olga Diamanti, Soeren
Pirk, Chengcheng Tang, Matthias Niessner, and Leonidas
Guibas. Parsing geometry using structure-aware shape tem-
plates. In 2018 International Conference on 3D Vision
(3DV), pages 672–681. IEEE, 2018.

[9] Lin Gao, Jie Yang, Tong Wu, Yu-Jie Yuan, Hongbo Fu, Yu-
Kun Lai, and Hao Zhang. SDM-NET: Deep generative net-
work for structured deformable mesh. ACM TOG, 2019.

[10] Aleksey Golovinskiy and Thomas Funkhouser. Randomized
cuts for 3D mesh analysis. ACM TOG, 2008.

[11] Lei Han, Tian Zheng, Lan Xu, and Lu Fang. Occuseg:
Occupancy-aware 3d instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2940–2949, 2020.

[12] Jiahui Huang, He Wang, Tolga Birdal, Minhyuk Sung, Fed-
erica Arrigoni, Shi-Min Hu, and Leonidas J Guibas. Multi-
BodySync: Multi-body segmentation and motion estimation
via 3D scan synchronization. In CVPR, 2021.

[13] Hamid Izadinia, Qi Shan, and Steven M Seitz. Im2cad. In
CVPR, 2017.

[14] Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-
Wing Fu, and Jiaya Jia. PointGroup: Dual-set point grouping
for 3D instance segmentation. In CVPR, 2020.

[15] R Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang,
Ellen Jiang, Paul Guerrero, Niloy J Mitra, and Daniel
Ritchie. Shapeassembly: Learning to generate programs for
3d shape structure synthesis. ACM Transactions on Graphics
(TOG), 39(6):1–20, 2020.

[16] R Kenny Jones, Aalia Habib, Rana Hanocka, and Daniel
Ritchie. The neurally-guided shape parser: Grammar-based
labeling of 3d shape regions with approximate inference. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2022.

[17] Oliver Van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi,
and Daniel Cohen-OR. Shape segmentation by approximate
convexity analysis. ACM TOG, 2015.

[18] Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji,
and Siddhartha Chaudhuri. 3D shape segmentation with pro-
jective convolutional networks. In CVPR, 2017.

[19] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne
Koller, and Vladlen Koltun. A probabilistic model for
component-based shape synthesis. ACM Transactions on
Graphics (TOG), 31(4):1–11, 2012.

[20] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.
Learning 3D mesh segmentation and labeling. ACM Trans-
actions on Graphics (TOG), 29(4):102, 2010.

[21] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha
Chaudhuri, Stephen DiVerdi, and Thomas Funkhouser.
Learning part-based templates from large collections of 3d
shapes. Transactions on Graphics (Proc. of SIGGRAPH),
32(4), 2013.

[22] Young Min Kim, Niloy J. Mitra, Dong-Ming Yan, and
Leonidas Guibas. Acquiring 3D indoor environments with
variability and repetition. ACM TOG, 2012.

[23] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive
autoencoders for shape structures. ACM TOG, 2017.

[24] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
2017.

[25] Rong Liu, Hao Zhang, Ariel Shamir, and Daniel Cohen-Or.
A part-aware surface metric for shape analysis. In Computer
Graphics Forum, volume 28, pages 397–406. Wiley Online
Library, 2009.

[26] Tiange Luo, Kaichun Mo, Zhiao Huang, Jiarui Xu, Siyu Hu,
Liwei Wang, and Hao Su. Learning to Group: A bottom-up
framework for 3D part discovery in unseen categories. In
ICLR, 2020.

[27] Niloy J Mitra, Leonidas J Guibas, and Mark Pauly. Partial
and approximate symmetry detection for 3d geometry. ACM
Transactions on Graphics (TOG), 25(3):560–568, 2006.

[28] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy J. Mitra, and Leonidas J. Guibas. StructureNet: Hi-
erarchical graph networks for 3D shape generation. ACM
TOG, 2019.

[29] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy J Mitra, and Leonidas J Guibas. StructEdit: Learning
structural shape variations. In CVPR, 2020.

[30] Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhi-
nav Gupta, and Shubham Tulsiani. Where2Act: From pixels
to actions for articulated 3D objects. In ICCV, 2021.

[31] Kaichun Mo, He Wang, Xinchen Yan, and Leonidas Guibas.
PT2PC: Learning to generate 3D point cloud shapes from
part tree conditions. In ECCV, 2020.

1234



[32] Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna
Tripathi, Leonidas J Guibas, and Hao Su. Partnet: A large-
scale benchmark for fine-grained and hierarchical part-level
3D object understanding. In CVPR, 2019.

[33] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural modeling of buildings. In
ACM SIGGRAPH 2006 Papers, pages 614–623. 2006.

[34] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify
approach for cluttered indoor scene understanding. ACM
TOG, 2012.

[35] Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3D
shape structure from a single RGB image. In CVPR, 2018.

[36] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J.
Mitra. Exploration of continuous variability in collections of
3D shapes. ACM TOG, 2011.

[37] Despoina Paschalidou, Luc van Gool, and Andreas Geiger.
Learning unsupervised hierarchical part decomposition of 3d
objects from a single rgb image. In Proceedings IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), June
2020.

[38] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017.

[39] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
Net++: Deep hierarchical feature learning on point sets in a
metric space. In CVPR, 2017.

[40] Ariel Shamir. A survey on mesh segmentation techniques.
In Computer graphics forum, volume 27, pages 1539–1556.
Wiley Online Library, 2008.

[41] Shuran Song and Jianxiong Xiao. Deep sliding shapes for
amodal 3D object detection in RGB-D images. In CVPR,
2016.

[42] Minhyuk Sung, Zhenyu Jiang, Panos Achlioptas, Niloy J.
Mitra, and Leonidas J. Guibas. DeformSyncNet: Defor-
mation transfer via synchronized shape deformation spaces.
ACM TOG, 2020.

[43] Minhyuk Sung, Vladimir G Kim, Roland Angst, and
Leonidas Guibas. Data-driven structural priors for shape
completion. ACM TOG, 2015.

[44] Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha
Chaudhuri, and Leonidas Guibas. ComplementMe: Weakly-
supervised component suggestions for 3D modeling. ACM
TOG, 2017.

[45] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,
William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.
Learning to infer and execute 3D shape programs. 2019.

[46] Mikaela Angelina Uy, Vladimir G Kim, Minhyuk Sung,
Noam Aigerman, Siddhartha Chaudhuri, and Leonidas J
Guibas. Joint learning of 3D shape retrieval and deforma-
tion. In CVPR, 2021.

[47] Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang,
Shuyang Sun, Ariel Shamir, and Daniel Cohen-Or. Co-
hierarchical analysis of shape structures. ACM TOG, 2013.

[48] Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh
Nguyen, and Chang D. Yoo. SoftGroup for 3D instance seg-
mentation on 3D point clouds. In CVPR, 2022.

[49] Weiyue Wang, Ronald Yu, Qiangui Huang, and Ulrich Neu-
mann. SGPN: Similarity group proposal network for 3D
point cloud instance segmentation. In CVPR, 2018.

[50] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and
Jiaya Jia. Associatively segmenting instances and semantics
in point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4096–
4105, 2019.

[51] Xiaogang Wang, Bin Zhou, Haiyue Fang, Xiaowu Chen,
Qinping Zhao, and Kai Xu. Learning to group and label fine-
grained shape components. ACM Transactions on Graphics
(SIGGRAPH Asia 2018), 37(6), 2018.

[52] Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang,
Daniel Cohen-Or, and Baoquan Chen. Active co-analysis
of a set of shapes. ACM Transactions on Graphics (TOG),
31(6):165, 2012.

[53] Yunhai Wang, Minglun Gong, Tianhua Wang, Daniel Cohen-
Or, Hao Zhang, and Baoquan Chen. Projective analysis
for 3d shape segmentation. ACM Transactions on Graphics
(TOG), 32(6):1–12, 2013.

[54] Zhijie Wu, Xiang Wang, Di Lin, Dani Lischinski, Daniel
Cohen-Or, and Hui Huang. SAGNet: Structure-aware gen-
erative network for 3D-shape modeling. ACM Transactions
on Graphics (TOG), 38(4):1–14, 2019.

[55] Weiwei Xu, Jun Wang, KangKang Yin, Kun Zhou, Michiel
van de Panne, Falai Chen, and Baining Guo. Joint-aware
manipulation of deformable models. In ACM SIGGRAPH,
2009.

[56] Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J Guibas, and
Lin Gao. DSG-Net: Learning disentangled structure and
geometry for 3D shape generation. CoRR, abs/2008.05440,
2020.

[57] Li Yi, Leonidas Guibas, Aaron Hertzmann, Vladimir G.
Kim, Hao Su, and Ersin Yumer. Learning hierarchical shape
segmentation and labeling from online repositories. In ACM
SIGGRAPH, 2017.

[58] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics (ToG), 35(6):1–12, 2016.

[59] Li Yi, Hao Su, Xingwen Guo, and Leonidas J Guibas. Sync-
speccnn: Synchronized spectral cnn for 3d shape segmenta-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2282–2290, 2017.

[60] Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai
Xu. Partnet: A recursive part decomposition network for
fine-grained and hierarchical shape segmentation. In CVPR,
2019.

[61] Biao Zhang and Peter Wonka. Point cloud instance segmen-
tation using probabilistic embeddings. In CVPR, 2021.

[62] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi,
and Hao Zhang. SCORES: Shape composition with recur-
sive substructure priors. ACM TOG, 2018.

1235


