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Abstract

Even a rough sketch can effectively convey the descrip-
tions of objects, as humans can imagine the original shape
from the sketch. The sketch-to-photo translation is a com-
puter vision task that enables a machine to do this imagina-
tion, taking a binary sketch image and generating plausible
RGB images corresponding to the sketch. Hence, deep neu-
ral networks for this task should learn to generate a wide
range of frequencies because most parts of the input (bi-
nary sketch image) are composed of DC signals. In this pa-
per, we propose a new loss function named Wavelet-domain
High-Frequency Loss (WHFL) to overcome the limitations
of previous methods that tend to have a bias toward low fre-
quencies. The proposed method emphasizes the loss on the
high frequencies by designing a new weight matrix impos-
ing larger weights on the high bands. Unlike existing hand-
craft methods that control frequency weights using binary
masks, we use the matrix with finely controlled elements ac-
cording to frequency scales. The WHFL is designed in a
multi-scale form, which lets the loss function focus more on
the high frequency according to decomposition levels. We
use the WHFL as a complementary loss in addition to con-
ventional ones defined in the spatial domain. Experiments
show we can improve the qualitative and quantitative re-
sults in both spatial and frequency domains. Additionally,
we attempt to verify the WHFL’s high-frequency generation
capability by defining a new evaluation metric named Un-
signed Euclidean Distance Field Error (UEDFE).

1. Introduction
Sketches are concise and powerful means of intuitive ob-

ject description. Despite the simplicity, they contain es-
sential information like pose and arrangement of compo-
nents, and a well-drawn sketch describes an object’s shape
better than a language. Hence, people often use sketches
when they want to explain their ideas or thoughts visually.
Also, it became easier to draw and share sketches with the
widespread use of smartphones and touchpads. Accord-
ingly, various computer vision tasks related to sketches have

been researched, such as sketch recognition [22, 45, 46, 51],
sketch-based image retrieval [2–4,35,36,40,50], and sketch-
to-photo translation [7, 9, 23, 25–27, 41, 43, 47].

Sketch-to-photo translation is a computer vision task
that takes a binary sketch image as an input and generates
an RGB image. Sketch images in computer vision tasks
can be roughly divided into edge-map and freehand-sketch,
depending on whether edges between sketches and corre-
sponding photos are aligned. Since colorful images need
to be generated from a binary input having no color and
texture, researchers generally adopt a generative adversarial
network (GAN) [11] framework for this task, where con-
volutional neural networks (CNNs) are usually adopted as
generators [18, 24, 31, 32].

However, the CNNs tend to learn low frequency in a bi-
ased way, which is called spectral bias [17,33,34] (see Sec-
tion D of supplementary file for an example of the spectral
bias). The bias is caused not only by the network struc-
ture but also by loss functions defined in the spatial domain.
Since low-frequency parts have order of larger magnitudes
than the high in general images, the loss function tends to
focus and learn more on the low-frequencies [38]. Since
sketches do not have frequency information in most regions
other than around the sketch lines, generating both low and
high frequency is necessary to make realistic photos. How-
ever, the spectral bias makes it difficult for the GAN to gen-
erate a wide range of frequencies. As a result, the difference
in frequency, called the frequency gap, occurs between gen-
erated photos and actual ones, which results in an unsat-
isfactory output or even a degraded image. For example,
artifacts in the spatial domain could appear as a repetitive
pattern in the frequency domain [1].

To alleviate the frequency gap, various approaches have
been proposed regarding network architecture and loss
function. In order to transmit high frequency within the net-
work better, Magid et al. [28] proposed Dynamic High-Pass
Filtering Layer (HPF) module and Matrix Multi Spectral
Channel Attention (MMCA). With the dynamic HPF layer,
the network can predict adaptive high-pass kernels for the
input feature. Through the MMCA, channels are rescaled
using the maximal frequency response after a feature is
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transformed to the frequency domain. Xie et al. [44] sug-
gested Frequency-Aware Dynamic Network (FADN), which
separates an input image into low, medium, and high fre-
quency, and then assigns a larger model capacity to high
frequency to improve performance and speed. However,
since these methods still use loss functions defined in the
spatial domain, the spectral bias problem still remains.

Some methods defined the loss in the frequency do-
main to resolve the frequency gap [5,17] using the Discrete
Fourier Transform (DFT). Specifically, Jiang et al. [17] sug-
gested Focal Frequency Loss (FFL) used in various tasks in-
cluding sketch-to-photo translation. This method maps the
frequency value at each spectral position to the Euclidean
space and calculates the final loss with frequency distance
and weight matrix. Cai et al. [5] decoupled low and high-
frequency bands using a binary mask and measured loss at
each band, where the boundary between low and high bands
is determined based on spectral energy. However, these
methods also have some limitations. If the loss is calculated
without refining frequency bands as [17], the low frequency
could influence the loss even more than the high frequency.
Also, the binary mask adopted in [5] has some room to im-
prove because the mask’s boundary is a hand-crafted hyper-
parameter. Moreover, setting the boundary becomes more
challenging work if the size of the training dataset increases
because it is necessary to analyze all samples.

In this paper, we design a new loss function to relieve the
frequency gap in sketch-to-photo translation. Our method is
based on the observation of existing methods that the low-
frequency bands are well learned in the spatial domain, but
high-frequency bands need explicit frequency-domain ma-
nipulations. For the frequency domain processing, we adopt
DFT and the frequency distance defined in [17]. This dis-
tance is multiplied with a new weight matrix with larger
weights on the high frequency, where the weight matrix is
designed from the fact that magnitudes of high-frequency
components are smaller than those of low bands by an order
in most natural images. The loss is designed in a multi-scale
form using wavelet transform, which enables more pre-
cise control of frequency components. Precisely, the input
image is decomposed into multi-scale images by wavelet
transform, and the FFL with our new weights is applied for
each scale.

The contributions of this paper can be summarized as
follows.

• To generate a realistic photo from a given sketch, we
propose a loss function named WHFL in the frequency
domain. The function focuses on the high-frequency
with a weight matrix that imposes large weights on the
high-frequency band, where weights are adaptively de-
termined based on the frequency scales.

• The proposed loss is applied to multi-scale images de-

composed by the wavelet transform, enabling more
fine and scale-dependent weighting.

• We obtain the results with quantitative and qualitative
improvements in both spatial and frequency domains.
Furthermore, we verify the performance of WHFL by
defining a new metric, Unsigned Euclidean Distance
Field Error (UEDFE) suggested in Section 5.1.

2. Related Works

2.1. Sketch-to-Photo Translation

Before utilizing deep learning, the direct conversion of a
sketch to realistic photos was almost impossible, but there
are some researches to retrieve photos from a large database
for the given sketch query. For example, Chen et al. [6] pro-
posed a framework in which photos are searched on the In-
ternet given corresponding sketches and text labels. In [8],
the framework similar to [6] used bag-of-features (BoF) for
the retrieval instead of the text label. Although the gen-
erated (actually retrieved) images are realistic photos, they
often have different shapes and textures.

Chen et al.’s method [7], which is the first to adopt a
GAN for this task, suggested an encoder-decoder architec-
ture composed of a Masked Residual Unit (MRU). Con-
textualGAN [27] regards sketch-to-photo translation as an
image completion problem. In [10], users can modify the
output image interactively with additional sketch strokes.
There have also been attempts that users can control the
style of generated images by giving a reference image from
a target domain as [21,53]. However, these approaches ma-
nipulate images and losses in the spatial domain and did not
explicitly consider high-frequency details of objects.

2.2. Conditional Image Generation

GAN [11] is one of the widely used frameworks for im-
age generation. GAN mainly consists of two components, a
generator and a discriminator. They are learned through the
adversarial loss to bring the distribution of a generated im-
age closer to that of a real one. Diverse methods [12,19,29]
are suggested to train the GAN framework better, and many
applications have been proposed. In addition to taking a
random latent vector as an input, conditional information
like texts [14,42,52], semantic maps [31], and sketches can
be fed to the network to confine the scope of the output
image. Also, Isola et al. [16] suggested a network trained
with a dataset where input and its ground truth are paired
for explicitly mapping data from one domain to the other.
Furthermore, CycleGAN [54] consists of two GAN archi-
tectures learned in pairs. The one translates from a source
domain to the target, and the other operates in the opposite
direction. Huang et al. [15] proposed an image-to-image
translation network capable of working in multimodality.
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Figure 1. Overview of WHFL: (a) denotes multi-scale decomposition by wavelet (Sec. 3.3), where the second subscipts in each box (1, 2)
denote decomposition level (image scale). (b) shows a process for generating frequency distance matrix (FDM) and high-frequency weight
matrix (HFWM) (Sec. 3.2) required for the calculation of our loss WHFL, for each scale k (Sec. 3.4). Subscript r and f denote real and
fake image, respectively. Abbreviation LL corresponds to the approximation component obtained from the wavelet transform (Figure 4).

In [20], an attention module is also used to guide the net-
work to focus on the important parts of the source domain.
However, these suggestions also did not explicitly consider
high-frequency manipulation.

3. Method
Objective functions in the spatial domain (e.g., L1, L2

loss) make the network learn low-frequency components
better than the high [16, 33]. Hence, we design a loss func-
tion in the frequency domain, which is adaptive to the fre-
quency magnitudes of input images.

3.1. Revisiting Focal Frequency Loss

Jiang et al. [17] proposed FFL to reduce the frequency
gap between real and generated images through a generative
model. For calculating the loss, real images (subscript r)
and fake ones (subscript f ) are transformed to the frequency
domain, which are denoted as

Fr(u, v) = ar(u, v) + jbr(u, v), (1)

Ff (u, v) = af (u, v) + jbf (u, v), (2)

where (u,v) means a spectral position, Fr(u, v) is the DFT
of a real image, and ar and br are real and imaginary parts of
Fr(u, v), respectively, where the position (u, v) is omitted
when confusion is not likely. Also, Ff (u, v), af , and bf are
similarly defined for the fake image.

Each of frequency values from the above equations is
mapped to a point on Euclidean-space having real and imag-
inary value as a coordinate:

−→pi = (ai, bi), i = r, f. (3)
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Figure 2. Frequency distance represented on Euclidean-space [17].
If we want to penalize the distance, both magnitudes and phases
(θr , θf ) need to be considered in a loss function.

Then, the frequency distance between mapped points on
Euclidean-space is defined as:

d(−→pr ,−→pf ) = ||−→pr −−→pf ||22 = |Fr(u, v)− Ff (u, v)|2, (4)

which is the element of the frequency distance matrix
(FDM) at the spectral position of (u, v).

Additionally, a weight matrix was proposed to impose
more weight on the spectral positions that is hard to learn
for the network. Under the assumption that a hard spectral
position has a larger frequency distance, the element of the
matrix is defined as:

w(u, v) = |Fr(u, v)− Ff (u, v)|α, (5)

where α controls the degree of change in weights. There-
fore, the loss can be finally written as:

FFL =
1

HW

H−1∑
u=0

W−1∑
v=0

w(u, v)|Fr(u, v)− Ff (u, v)|2,

(6)
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where H, W denote height, width of an image, respectively.

3.2. Weight Matrix Focusing on High-Frequency

To measure the difference between the frequency values
of generated and actual images, we adopt frequency dis-
tance in Equation 4, which considers both magnitude and
phase. However, it can be seen that the difference is naively
reflected when defining the matrix of Equation 5, while it
is well known that the dynamic range of frequency values
is very large. Specifically, the high-frequency magnitudes
are usually much smaller than DC and low-frequency mag-
nitudes by an order or more. Hence, if the difference in
each band is equally treated in a loss function, a difference
in higher bands cannot well be reflected in the overall loss.
Therefore, the difference should be weighted by orders of
magnitudes so that the difference in higher bands can influ-
ence the overall loss, which is not considered in the conven-
tional FFL as in Equation 5.

Based on the observations, we suggest a new weight
matrix stressing the high-frequency band and name it as
High-Frequency Weight Matrix (HFWM). Unlike previous
methods, which design a hand-crafted binary mask based
on spectral energy, our proposed weight matrix is adjusted
according to the scale of frequency. Precisely, we apply the
log function to the frequency domain difference. Based on
the outputs of the log function, we call the domain having
negative values as low-scale section (i.e., high-frequency
band) and the other section with positive values as high-
scale section (i.e., low-frequency band). To give larger
weights to the distances in the lower scales, the absolute
value of the logarithm is used for defining the weight:

w0(u, v) = |log10(|Fr(u, v)− Ff (u, v)|)|α, (7)

where a weight control factor α adjusts the degree of
changes in each section, similar to Equation 5. Afterward,
the matrix values are divided by the maximum value for
normalization as:

wn(u, v) = w0(u, v)/max(w0(u, v)). (8)

Subsequently, we can make the matrix have a high value at
the high-frequency band as shown in Figure 3(b), while the
conventional method gives very small weights to high fre-
quencies as in Figure 3(a). However, the figure also shows
that there still remains a problem with the above defini-
tion. Although the weight matrix elements for high fre-
quencies are enlarged, the low frequencies are still given
large weights due to their inherently large scales, as demon-
strated in the third graph of Figure 3(b). To prevent this, we
enforce the weights for the high-scale section to be zero.
As a result, the weights of the part change to zero, but other

(a)

(b)

(c)

Figure 3. (a) shows a weight matrix calculated by Equation 5
from [17]. (b) displays a matrix derived from our method in Equa-
tion 8, and (c) demonstrates our final matrix after applying Equa-
tion 9. For each row, the figure in the middle visualizes the second
quadrant of the weight matrix (the upper left corner is (0, 0) and
the lower right corner is (π, π)), and the one on the left shows an
enlarged view of the low-frequency part. Moreover, the graph on
the right plots the magnitudes of the weights according to the fre-
quency along the diagonal direction (0.5 corresponds to π). For
visualization, we use a jet colormap where the red color indicates
a higher value and the blue one means the opposite. As shown
in the red boxes of (b) and (c), weights of (c) become smaller
than those of (b) at low frequencies. Note that the weight ma-
trices above are calculated on multiple samples from the training
dataset of ShoeV2 [49]. By averaging the matrices, we can investi-
gate the tendency to where the weight matrix focuses. The weight
matrices for individual samples are displayed in Section G of the
supplementary material.

weights keep almost the previous value (Figure 3(c)). For-
mally, our proposed weight matrix is finally defined with
one more step to the above equation as:

w(u, v) =

{
0 at high-scale section
wn(u, v) elsewhere. (9)
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Figure 4. Demonstration of the wavelet transform, which de-
composes an image into an approximation (LL) and details
(LH,HL,HH).

3.3. Frequency Focal Loss Applied to Multi-scale
Images Decomposed by Wavelet

For refining the frequency-domain loss in a multi-scale
manner, we adopt the wavelet transform to decompose the
input into multi-scale subbands. Specifically, instead of the
conventional FFL in Equation 6, we split the frequency re-
gions and use different FDM (Equation 4) and weight ma-
trix (Equation 9) for each of different frequency bands. In
order to transform an image to the wavelet domain, 2D Dis-
crete Wavelet Transform (DWT) is performed, which splits
an image into four sub-images, as illustrated in Figure 1.
One contains low-frequency components in both horizon-
tal and vertical directions, called approximation (LL). The
others, termed as details, have high frequency of horizontal
(LH), vertical (HL), and diagonal components (HH) (Fig-
ure 4). When the wavelet decomposition is repeated for
k times, then the lowest bands are denoted as LLk, LHk,
HLk, andHHk. If the dimension of an image isH×W×3,
sub-signals have H/2k ×W/2k × 3 dimension at level k.
Then, for each of the k-level approximations LLk, we ob-
tain the FDMk and HFWMk as in Figure 1, which will
be used for our loss.

3.4. The Final Formula for WHFL

Based on the explanation and notations in the above sub-
section, the frequency loss for the k-level frequency band is
defined as

Lk =
1

HkWk

Hk−1∑
u=0

Wk−1∑
v=0

FDMk(u, v) ·HFWMk(u, v),

(10)

where Hk,Wk denote the height and width of approxima-
tion at each wavelet decomposition level k. Finally, our loss
is the sum of losses from all decomposition levels:

LWHFL =

d∑
k=0

Lk. (11)

If the level is zero, the symbols are related to data to which
wavelet transform is not applied. Also, d specifies the max-
imum level.

We can apply WHFL as a complementary loss to the
losses defined in the spatial domain (e.g., L1 or L2 loss)
as:

Ltotal = Lspatial + λ · LWHFL, (12)

where λ indicates a hyper-parameter which adjusts the bal-
ance between two loss terms.

4. Experiments

4.1. Settings

Experiments are divided into two categories depending
on whether a ground truth is given as a photo correspond-
ing to an input sketch or not. If the input and ground truth
are paired, we term it as a paired case and as an unpaired
case if not. For the paired case, we adopt Pix2Pix [16] as
a baseline. We select CycleGAN [54] and MUNIT [15] for
the unpaired case.

To train the Pix2Pix, we choose edges2shoes [48], which
provides a set of photos and sketches whose boundaries are
aligned to the related photo. For the unpaired case, we uti-
lize ShoeV2 [49] used in fine-grained sketch to image re-
trieval (FG-SBIR) [2,39,50]. The dataset consists of photos
and free-hand sketches which depict a corresponding photo
in several ways. We set Haar wavelet as a wavelet basis,
wavelet decomposition level as 1 or 2, and α = 1 in Equa-
tion 7 (see Section C of supplementary file for ablation stud-
ies about α).

4.2. Results

Figure 5 shows qualitative results in the spatial domain.
As shown in the outcomes of Pix2Pix, there are artifacts
in the texture of shoes’ front without WHFL. We expect
that WHFL reduces the risk of generating large artifacts in
boundaries. Furthermore, with WHFL, it can be observed
that outermost borders like a sole becomes more distinct in
the case of using CycleGAN. In a similar context, we can
find in MUNIT that the details of sketches, such as shoe
laces, appear more clearly by our method.

Moreover, we evaluate quantitative results with Frechet
Inception Score (FID) [13] and Inception Score (IS) [37]
for each baseline. Lower FID is better because it means
that the statistics of generated images are closer to those of
real ones. Also, higher IS indicates superior results owing to
the quality and diversity of images. We check whether our
WHFL improves the metrics for each baseline. Table 1 lists
the comparisons, which shows that our method provides
better results in most cases. More quantitative results, in-
cluding loss comparisons and ablation studies about which
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w/o 
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w/ 
WHFL

Real

Sketch

Pix2Pix CycleGAN MUNIT

Figure 5. Qualitative results for both paired (Pix2Pix) and unpaired (CycleGAN, MUNIT) cases. The first row shows input sketches, and
the second displays corresponding real photos (ground truths). The third row indicates the generated photos when WHFL is not used, and
the fourth exhibits the outcomes when the loss is used additionally. The last row shows enlarged images for the areas marked with the
corresponding color in the first column. More examples are provided in Section G of the supplementary material.

Table 1. Quantitative results calculated by FID and IS.
Network Loss FID ↓ IS ↑

Pix2Pix w/o WHFL 63.580 2.505±0.175
w/ WHFL 61.744 2.622±0.202

CycleGAN w/o WHFL 60.138 2.787±0.354
w/ WHFL 56.354 2.756±0.300

MUNIT w/o WHFL 110.252 2.797±0.278
w/ WHFL 102.203 2.925±0.344

component contributes more, are provided in Section B of
the supplementary material.

5. Analysis

We propose a new evaluation metric in this section,
which is suitable for measuring the difference of gener-
ated images in high-frequency bands. Also, we investigate
the effect of each component suggested in Section 3.2 and
Section 3.3 by performing ablation studies using a dataset
ShoeV2 in terms of frequency.

5.1. Unsigned Euclidean Distance Field Error

As stated previously, Chen et al.’s method [7] is the first
to adopt a GAN for sketch-to-photo generation. They sug-
gested using the unsigned Euclidean distance field (UEDF)
to calculate a dense representation for an input. Since sim-

(a) (b)

Figure 6. (a) shows an edge-map whose non-zero pixel represents
an edge. (b) exhibits an UEDF calculated from the edge-map. In
UEDF, pixels farther from edges have a higher intensity.

ilar images are clustered in the field, the difference in this
field can be a measure for evaluating the synthesized im-
ages, and we define an evaluation metric called Unsigned
Euclidean Distance Field Error (UEDFE). To calculate the
error, we transform an edge-map (Figure 6(a)) to the UEDF
(Figure 6(b)). In this field, each pixel value indicates the
shortest distance to the non-zero pixel in the edge map.
Thus, all pixels of UEDF contain information about edges.
The pixel’s intensity of UEDF can be written as:

IUEDF (pi) = minpjde(pi, pj) for I(pj) 6= 0, (13)

where I means the edge-map, IUEDF denotes UEDF of
I , pi indicates a pixel coordinate, and de is the Euclidean
distance between the pixels. Then, we normalize intensities

749



Laplacian 
Operator

HFWM Weight Matrix 
used in FFL

Binary Mask
Canny Edge 

Detector

Figure 7. Results by applying Canny edge detector, HFWM,
weight matrix used in FFL [17], binary mask, and Laplacian oper-
ator to the samples in the first column. More visualizations can be
found in Section G of the supplementary file.

Table 2. UEDFE calculated for (a) HFWM, (b) binary mask, and
(c) Laplacian operator by setting the outcome of the Canny edge
detector as the reference. We experiment with four settings for
objectivity according to low and high threshold values; (1) 50, 200
(2) 50, 250 (3) 100, 200 (4) 100, 250.

×10−4 (1) (2) (3) (4) Average
(a) 40 41 39 41 40.25
(b) 101 103 103 108 103.75
(c) 29 31 33 37 32.50

to [0,1]. Finally, UEDFE can be represented as:

UEDFE =
1

|P |
∑
p∈P

(ÎUEDF (p)− ĪUEDF (p))2, (14)

where ÎUEDF and ĪUEDF mean UEDFs converted from
the edge-map and the reference, respectively. Besides, P
specifies a set of pixels making up the UEDFs. A lower
UEDFE is better because it means the two edge maps are
similar.

5.2. The Effect of High-Frequency Weight Matrix

In this section, we investigate the property of HFWM de-
fined in Section 3.2 using edge maps. As a reference to con-
firm whether HFWM focuses on high frequencies, we select
the Canny edge detector that is the most basic method for
extracting the frequencies (i.e., edges). Also, we compare
our matrix with the weight matrix in FFL [17], binary mask,
and Laplacian operator. The binary mask in this experiment
is obtained by thresholding, specifically the frequencies are
masked when the Euclidean distance between its spectral
position and DC signal is less than 20, as denoted by the
blue area in the third image of Figure 8(a).

By applying the masks or weights in these methods, we
obtain the results shown in Figure 7. In the case of the
weights of FFL [17], we can see that the silhouette of an
object, which contains low frequencies, remains rather than
the edges. On the other hand, edges are left in the results of
HFWM, similar to the Laplacian operator. The binary mask
also extracts edge information, but the precision of extrac-
tion is inferior to HFWM.

Weight Matrix 
used in FFL

Laplacian 
Operator

Binary 
Mask

(a)

(b)

HFWM

Figure 8. (a) visualizes the second quadrant of HFWM, weight ma-
trix used in FFL [17], and binary mask, and Laplacian operator
(the upper left corner is (0,0) and the lower right corner is (π, π)).
(b) plots the averaged magnitudes of elements along the diagonal
direction. Note that all graphs in (b) are normalized to [0,1].

To quantitatively compare the performance of HFWM,
the binary mask, and Laplacian operator for edge extraction,
we calculate UEDFE (Equation 14) for the outputs based
on the references (i.e., the difference from Canny edge de-
tector in terms of the distance in the field). Table 2 shows
that the averaged error between HFWM and the references
is smaller than that of the binary mask. The error from the
Laplacian operator has the minimum value and is closer to
that of HFWM than the binary mask. Moreover, this is con-
sistent with the observations in Figure 7.

We infer the reason for the above phenomena by visu-
alizing the matrices (HFWM, weight matrix in FFL [17],
binary mask, and Laplacian operator) (Figure 8(a)), specifi-
cally by plotting the averaged magnitudes of elements along
the diagonal direction (Figure 8(b)). The matrix in FFL [17]
leaves the silhouette from the image as its weights are ex-
tremely biased to the low frequency. Since not possible to
assign different weights according to each frequency, the
binary mask could not extract the edge information as pre-
cisely as the other two matrices. Besides, we analyze the
factor that makes UEDFE of the Laplacian operator supe-
rior in terms of design similarity between the Canny edge
detector and the Laplacian operator, in that their kernels are
based on the derivatives. However, HFWM has dynamic
and adaptive properties in contrast to the operator and could
dynamically impose weights on the frequencies. Hence,
HFWM has positive effects on the training process and per-
formance. More details about the properties and effects of
HFWM are presented in Section A of supplementary file.

In summary, from the above experiments, we can con-
firm that HFWM concentrates on the part of high frequency
while having advantages in dynamic and adaptive character-
istics compared to the binary mask and Laplacian operator.
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Figure 9. (a) shows the log-magnitudes of DFT using log(·) in
gray scale. Some artifacts are marked by red ellipses. (b) plots the
averaged log-magnitudes of DFT along diagonal direction from
(0, 0) to (π, π), and the figure on the right is an enlarged view of
the yellow box in the left plot. Also, the sharply bent peaks in the
graph are indicated by arrows colored corresponding to each case.

5.3. The Effect of Multi-Scale Decomposition
Scheme

To analyze the influence of the multi-scale framework
in constructing the loss function, we investigate the log-
magnitudes of DFT for the generated images. A non-multi-
scale method, which does not use the wavelet transform, is
denoted as the single-scale method. As illustrated in Fig-
ure 9(a), the repetitive artifacts appear in the CycleGAN
baseline result, where the repeated blobs are related to the
perceptual degradation of the naturalness [1]. Although the
blobs remain when FFL [17] or the single-scale method is
used, they almost disappear in the multi-scale case. The
improvement can be observed in the graph plotted with the
averaged log-magnitudes of DFT along the diagonal direc-
tion. As indicated in Figure 9(b), the sharply bent peak,
which does not emerge in the real case, appears at a high fre-
quency in the cases of CycleGAN baseline, FFL [17], and
single-scale method, but is most alleviated with the multi-
scale method.

6. Limitation & Future Work

Experiments show that WHFL can reduce the occur-
rence of large artifacts in boundary lines and keep details

(a) (b) (c)

Figure 10. We inspect the applicability of WHFL through image
deblurring task [30] with GOPRO dataset. (a) Ground truth, (b)
Ground truth masked by HFWM, and (c) Ground truth masked by
a binary mask.

of sketch inputs in the generated photos, as mentioned in
Section 4.2. However, there are also some samples without
significant improvement in texture generation. We conjec-
ture that WHFL does not significantly generate textures in
flat areas because the human visual system is sensitive to
the artifacts in low-frequency regions. The limitations are
displayed in Section G of the supplementary file.

We have explored the possibility that the WHFL can also
be used for image restoration tasks. We attempt to find
out whether WHFL focuses on the high frequency in these
tasks, where we select a deblurring problem [30] as an ex-
ample. We estimate HFWM using the network output and
ground truth. Then we apply the matrix to the ground truth
for visualization, as shown in Figure 10. The result masked
by HFWM is comparable to the outcome from a binary
mask, especially for people areas in the scene. Therefore,
we can confirm that the high frequency can be sufficiently
extracted from natural images through WHFL, and we will
apply the function to the restoration tasks as future work.

7. Conclusion
We have proposed a new loss function named WHFL to

improve the quality of results from sketch-to-image transla-
tion networks. The function is formulated in a multi-scale
manner by using wavelet transform so that it can more finely
control the weights for high-frequency bands. By apply-
ing the function to GAN-based image generation models,
we could overcome the tendency that networks learn a bias
towards low frequency. Also, unlike previous methods us-
ing hand-crafted binary masks based on spectral energy for
weighting the frequency bands differently, WHFL uses an
adaptive and scale-based weight matrix. Hence, the func-
tion can dynamically focus on the high frequency, and we
confirmed its performance by several image quality metrics
and a new metric UEDFE.
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