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Abstract

Style may refer to different concepts (e.g. painting style,
hairstyle, texture, color, filter, etc.) depending on how
the feature space is formed. In this work, we propose a
novel idea of interpreting the lighting in the single- and
multi-illuminant scenes as the concept of style. To verify
this idea, we introduce an enhanced auto white-balance
(AWB) method that models the lighting in single- and
mixed-illuminant scenes as the style factor. Our AWB
method does not require any illumination estimation step,
yet contains a network learning to generate the weighting
maps of the images with different WB settings. Proposed
network utilizes the style information, extracted from
the scene by a multi-head style extraction module. AWB
correction is completed after blending these weighting
maps and the scene. Experiments on single- and mixed-
illuminant datasets demonstrate that our proposed method
achieves promising correction results when compared
to the recent works. This shows that the lighting in the
scenes with multiple illuminations can be modeled by the
concept of style. Source code and trained models are avail-
able on https://github.com/birdortyedi/
lighting-as-style-awb-correction.

1. Introduction
Perceptual systems are generally intended to separate the

content and style factors of the observations [63]. Words
spoken in an unfamiliar accent, letters written in a novel
hand-writing style, or the objects displayed under different
lighting conditions can be considered as some examples of
the style factors integrated into the content of audio, text or
image, respectively. Earlier studies [44, 24, 43, 63] attack
this problem with different computational factor models to
provide expressive representations of these factors. The
term of factor is used to represent the well-characterized
representation of the observations [35]. Particularly, sepa-
rating the content from the style in natural images is a chal-
lenging problem. Convolutional Neural Networks (CNNs)

have the ability to produce generic feature representations,
which can be used for independently processing the con-
tent and the style of natural images. Previous studies at-
tempt to process the content and the style separately on tex-
ture recognition [23] and synthesis [33, 41, 57], classifying
the artistic style [48] and filter style [66, 53], style trans-
fer [32, 36, 46], style removal [53] and generative image
synthesis [51, 49, 50]. These studies demonstrate that the
style representation can be distilled by forming a particular
feature space of images via learning objectives.

The concept of style can be interpreted in different ways.
For example, it can represent the age of a person, the hair-
cut type and wearing glasses or not as the compact style
of the face images [51]. The affine parameters can be ex-
tracted by the mapping network where they form the feature
maps as the way that packs the different attributes together
in the feature space. To achieve this, the mapping network
exploits a random vector or the feature vector extracted by
pre-trained networks (e.g. VGG [62]). On the other hand,
the concept of style may refer to the painting style of an
artist [32] or the filters applied to the natural images [53].
This time, the affine parameters stand for the correlation
between the features, and they can be directly used for ma-
nipulating the painting style of an image or removing the
filters applied to an image. Based upon these findings, one
may argue that any disruptive or modifying factors for the
whole image can be modeled as the style factor.

The image signal processor (ISP) applies consecutive
processing operations to the raw-RGB sensor image to ob-
tain the standard RGB (sRGB) output image. Some exam-
ples of these operations are noise reduction, white-balance
(WB), gamma correction, auto-exposure and tone-mapping.
WB is one of the earliest ISP operations applied to the raw-
RGB sensor image, which normalizes the effect of different
lighting conditions in the captured scene [25]. Auto white-
balance (AWB) corrects the captured image by estimated
illuminant color of the scene, assuming that the illuminant
in the scene is global. This operation makes it possible to
perceive a particular color in the scene content as the same
when viewed under different illuminations, as similar to the
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human visual system [40].
Prior works on AWB correction [61, 45, 10, 12] thor-

oughly focuses on global illuminant estimation. The re-
cent studies [67, 42, 54] achieve significant improvements
on this task specialized on single-illuminant scenes. As a
common practice, a diagonal-based correction matrix [38]
is applied to the images to perform WB. More recently,
it is shown that the diagonal correction matrix can be re-
placed by different static non-linear [6, 5] or learnable [2]
functions. Beyond the single-illuminant scenarios, perform-
ing single-illuminant AWB algorithms on the scenes illumi-
nated by multiple light sources leads to produce color tint in
the sRGB output image. Instead of directly estimating the
illumination in the scene, blending the weighting maps of
the scenes illuminated by different WB settings [4] is a re-
cently proposed solution introducing a method for increas-
ing the robustness of AWB on mixed-illuminant scenes.

Contribution: In this work, we propose a novel AWB
method that models the lighting in single- and mixed-
illuminant scenes as style. Our proposed method contains
a network that learns the effect of different lighting con-
ditions on the scene with the help of the style informa-
tion of the scene. Assuming that multiple illuminations in
the scene basically stands for the additional style informa-
tion injected to the scene, our model normalizes the feature
maps of the encoder by style information in adaptive man-
ner. Then, it simply employs these normalized feature maps
for the learning process of the pixel-wise weighting maps
of the same scene with different WB settings. Our AWB
strategy does not require to apply any illuminant estima-
tion algorithm, but learns to blend the scene and the pixel-
wise weighting maps, as practiced in [4]. We evaluate our
method on well-known single illuminant datasets [9, 18],
synthetic mixed-illuminant dataset [4] and night photogra-
phy rendering set. Moreover, we evaluate the performance
of our method when changed the patch size for training and
the set of WB settings used to generate the weighting maps.

2. Related Works
This section briefly reviews the previous studies on il-

luminant estimation, WB correction methods and the prior
work on learning the style factor.

2.1. Illuminant Estimation

The main aim of the illuminant estimation in the pre-
vious studies is to predict the global scene illumination
color. In the literature, this problem has been attacked with
different strategies. The prior work can be divided into
two main categories as statistical methods and learning-
based approaches. Statistical illuminant estimation meth-
ods mostly use some statistical hypothesis in order to esti-
mate the scene illuminant color. Although these methods

are computationally-efficient, they struggle to predict the
correct illumination color for real-world scenarios. These
methods can be listed as gray-world hypothesis [17], white-
patch hypothesis [16], the shades-of-gray [29], the gray-
edges [65, 39], the bright-and-dark colors PCA [22], the
bright pixels [47], the gray pixel [60] and the grayness in-
dex [59]. Recently proposed learning-based methods can
produce more accurate results, due to the usage of the
information from real-world examples, which better rep-
resent the real-world illumination. Learning-based illu-
minant estimation methods include gamut-based methods
[27, 30, 28, 37], Bayesian methods [15, 14, 34, 42], and
neural network-based methods [31, 20, 55]. Advanced neu-
ral network-based methods further involve different learn-
ing strategies such as patch-wise learning [61, 45], achro-
matic pixel detection [13], metric learning [67], contrastive
learning [54], cross-camera illumination estimation [1] and
weighting map blending [4].

2.2. WB Correction

Given the estimated illumination color of the scene, a
simple diagonal-based correction matrix [38] is employed
for white-balancing the raw images. In real-world sce-
narios, multiple illuminants may occur in the same scene,
hence the AWB modules are prone to misinterpret the inten-
sity and the color of the illuminant in particular parts of the
scene. This makes WB correction a challenging problem
in post-capture. To overcome this problem in multiple illu-
minant cases, a few attempts are proposed that replaces the
diagonal-based correction matrix with a non-linear correc-
tion function [3, 5, 7]. Moreover, the recent deep learning-
based strategies [2, 4] take in place to perform WB in mul-
tiple illuminant scenarios.

2.3. Learning Style Factor

Separating the content and style factors is a well-known
topic that aims to process the content and the style informa-
tion independently. With the help of this idea, the content
of an observation can be expressed in a more compact way
[63, 44, 24, 43, 63], the style of an observation can be rec-
ognized [23, 48, 66] and manipulated to the desired style
[32, 36, 46, 53] or even novel contents can be generated with
a particular style [33, 41, 51, 49, 50]. For image domain,
the style representation can be captured by designing a ded-
icated feature space of the images [32]. This feature space is
mainly built on top of the correlations between different fil-
ter responses extracted by a particular layer of a pre-trained
network, generally VGG-16 [62]. Intuitively, the style may
refer to an abstract concept. Depending on how the learning
objective shapes the space, the feature space can model the
artistic painting style of an artwork, the hairstyle of a per-
son, the texture of a clothing item, or the color of a cat as
style. The prior work [53] demonstrates that image filters
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Figure 1: Overall design of proposed learning mechanism for the weighting maps. The latent representations of the images
with different WB settings (i.e. daylight (D), shade (S), tungsten (T)) are fed into the style extractor module, then the affine
parameters are computed, and sent to the corresponding AdaIN layer to discard the external style from the feature maps. The
decoder part generates the weighting maps for all WB settings (i.e. WD, WS , WT ).

that corrupt the original version of the image can be mod-
eled as style. From this point of view, we propose a method
that models the lighting in the scenes with single or multiple
illuminants as style. Note that this method does not trans-
fer the particular style of an image to the another one, but
aims to normalize the additional injected style information,
in which the illumination is considered as the style factor.

3. Methodology
Our proposed AWB strategy models the lighting in the

scenes with multiple illuminants as style injected to the
scene by different light sources. The weighting maps of dif-
ferent WB settings are extracted by using the affine param-
eters learned by a style extractor module, which is adapted
from [53]. Proposed network adaptively normalizes differ-
ent filter responses in any layer of the encoder by a particu-
lar style latent code. To finalize the capture, we follow the
methods used in [4] for the inference-time post-processing.

3.1. Modified Camera Image Signal Processor

Following the prior work on modified camera ISP [2, 4],
we employ a method for producing the high-resolution im-
age with a fixed WB settings (i.e. daylight) and additional
small images rendered with a set of pre-defined WB set-
tings. The formula for rendering the small images can be
described as follows

  \hat {I}_{c_i} = M_{c_i}\phi (I_{init})    (1)

where Iinit is the initial high-resolution image rendered
with a fixed WB setting (i.e. daylight), Îci represents the

output image mapped to the target WB setting, Mci is the
matrix that maps the colors of the initial image represented
in a higher-dimensional space, and ϕ(·) is a polynomial ker-
nel function projecting the colors of the initial image into
the higher-dimensional space. ϕ(·) is optimized by mini-
mizing the sum-squared error between the colors of target
and source images, as in [4]. As distinct from [4], we con-
sider this part as a pre-processing for training, and save the
target images before training, instead of computing them
on-the-fly.

After extracting the small images, following the method
in [4], we employ a learning mechanism for the weighting
maps of different scenes with a pre-defined set of WB set-
tings. The details of the learning mechanism are explained
in Section 3.2. We use this learned weighting maps for gen-
erating the final sRGB output image by linearly combining
them with the small images, as shown in the following equa-
tion:

  \Tilde {I}_{corr}=\sum _{i}W_i\odot \Tilde {I}_{c_{i}} 



   (2)

where Ĩcorr is the corrected small sRGB image, ⊙ is
Hadamard product, Wi represents the weighting map for
ith WB setting (i.e. ci), and Ĩci denotes the small image
rendered with ci.

3.2. Learning Weighting Maps by Style

Given a set of small images Ĩci , the learning mechanism
learns to estimate {Wi}. In this work, we adapt a style re-
moval network proposed in [53] as the learning mechanism
of the weighting maps. This network consists of an encoder-
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Figure 2: Example of predictions for the weighting maps and AWB results by blending these maps. We render the linear raw
DNG files for the images in MIT-Adobe FiveK dataset [18] (id: 2808) in different WB settings. The rendered images with
given WB settings and the AWB results of traditional camera pipeline are presented in the first row. The predicted weighting
maps and the AWB correction results of our method are demonstrated in the second row.

decoder structure that employs adaptive feature normaliza-
tion strategy to all layers of the encoder part. With the help
of this strategy, any internal factor in the images can be
modeled as an external style, which needs to be discarded or
adjusted into another style. The main component to achieve
this is Adaptive Instance Normalization (AdaIN) [46] for
each encoder layer, which transfers the feature statistics
computed across spatial locations. AdaIN simply aligns the
channel-wise mean µ and variance σ of the feature maps of
the content image x to the statistics of the style input y, as
formulated in Equation 3.

  \label {eq:adain} \text {AdaIN}(x, y) = \sigma (y) \left (\frac {x - \mu (x)}{\sigma (x)}\right ) + \mu (y)   







  (3)

To extract the style input for the images, we use a multi-
head mapping module that maps the feature representations
encoded by a pre-trained VGG network to the style latent
space. The style latent code w is fed into different heads
for different encoder levels, and each head hi is attached
to a projection layer pi (i.e. fully-connected), which adapts
the affine parameters yi of each normalization layer in the
encoder.

  \textbf {w} &= M(\textbf {z}), y_i &= p_i(h_i(\textbf {w}))      (4)

where z is the feature representation of the input image x
extracted by VGG, and M denotes the style extractor mod-
ule mapping the input latent space to the style latent space.

In our design, the style extractor module is composed
of 5-layer MLP. The encoder contains 5 residual blocks,
each of which has specific AdaIN layer to normalize the fea-
ture maps with the affine parameters projected by the corre-
sponding head. The network takes the concatenated feature
representations of the small images rendered with different
WB settings as input, and learns to produce the weighting

maps for these WB settings. As suggested in [53], we use
skip-connections between encoder layers to preserve the re-
lated information while distilling the style. Overall design
of proposed learning mechanism is shown in Figure 1.

We optimize this network by minimizing the reconstruc-
tion error between the ground truth and corrected patches,
as shown in Equation 5.

  \label {eq:recon} \mathcal {L}_r = || P_{gt} - \sum _{i}{\hat {W}_i \odot P_{c_i}} ||^2_F   



    (5)

where Pgt and Pci denote the ground truth patch and input
patch rendered with WB setting of ci, Ŵi is the weighting
map of ci, as the output of the network. We include the
smoothing loss [4] to our final objective function.

  \label {eq:smooth} \mathcal {L}_s = \sum _{i}{|| \hat {W}_i * \nabla _x ||^2_F + || \hat {W}_i * \nabla _y ||^2_F } 



         (6)

where ∇x and ∇y are the horizontal and vertical Sobel fil-
ters with 3 × 3 kernel size. We did not include the percep-
tual loss since it dramatically increases the computational
complexity of training. Our final objective function can be
represented as follows:

  \mathcal {L} = \mathcal {L}_r + \lambda \mathcal {L}_s     (7)

where λ denotes the regularization coefficient, which is set
to 100 in our experiments.

3.3. Post-processing

We have two post-processing operations that can be ap-
plied to the learned weighting maps to further improve the
quality of the final sRGB image. Following the prior work,
we first apply the multi-scale ensembling for the weight-
ing maps. This strategy is mainly based on generating a set
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(A) Camera AWB (B) Deep WB (C) Mixed WB (D) Ours

Figure 3: Comparison of the qualitative results of our AWB method and the other methods on the selected samples from
MIT-Adobe FiveK dataset [18]. We compare our results with the traditional camera AWB, Deep WB [2] and Mixed WB [4].
Image indices from top to bottom: 2882, 606, 659, 2431, 2550.

of multi-scale weighting maps, bilinear upsampling to the
high-resolution, then averaging them for each WB setting.
Secondly, we apply edge-aware smoothing (EAS) –with the
help of the fast bilateral solver [11]– to the weighting maps
with the guidance of high-resolution input image. In our
experiments, we pick to apply both operations as the per-
formance noticeably increases, as shown in the prior work.

4. Experiments
4.1. Experimental Details

In our experiments, we have employed RenderedWB
dataset [5] as the training set. The dataset contains 65,000

sRGB images captured by different cameras, each of which
has a specific pre-defined WB settings. Following the
setup in the prior work, we have two sets of pre-defined
WB settings, which are {t,f,d,c,s} and {t,d,s}.
{t,f,d,c,s} refers to tungsten (2850K), fluorescent
(3800K), daylight (5500K), cloudy (6500K), and shade
(7500K), respectively. Each image has a corresponding ac-
curately white-balanced sRGB image as ground-truth. We
did not apply any data augmentation technique to the im-
ages. For all settings, we have trained each building block
of our proposed model from scratch by using Adam opti-
mizer [52] (β1 = 0.9, β2 = 0.999). The learning rate is set
to 1e − 4 and we did not employ any scheduling strategy.
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Table 1: Benchmark on single-illuminant Cube+ dataset [9]. Following the prior work [5], we reported the mean, first (Q1),
second (Q2) and third (Q3) quantile of mean-squared error (MSE), mean angular error (MAE) and color difference (∆E
2000) metrics. Different WB settings are denoted as {t,f,d,c,s}, which refers to tungsten, fluorescent, daylight, cloudy,
and shade, respectively. p refers to the patch size. The top results are indicated with colored cells as, the best: green, the
second: yellow, the third: red.

Method MSE MAE ∆E 2000 SizeMean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
FC4 [45] 371.90 79.15 213.41 467.33 6.49◦ 3.34◦ 5.59◦ 8.59◦ 10.38 6.60 9.76 13.26 5.89 MB
Quasi-U CC [13] 292.18 15.57 55.41 261.58 6.12◦ 1.95◦ 3.88◦ 8.83◦ 7.25 2.89 5.21 10.37 622 MB
KNN WB [5] 194.98 27.43 57.08 118.21 4.12◦ 1.96◦ 3.17◦ 5.04◦ 5.68 3.22 4.61 6.70 21.8 MB
Interactive WB [3] 159.88 21.94 54.76 125.02 4.64◦ 2.12◦ 3.64◦ 5.98◦ 6.20 3.28 5.17 7.45 38 KB
Deep WB [2] 80.46 15.43 33.88 74.42 3.45◦ 1.87◦ 2.82◦ 4.26◦ 4.59 2.68 3.81 5.53 16.7 MB

Mixed WB [4] results
p = 64, WB={t,d,s} 168.38 8.97 19.87 105.22 4.20◦ 1.39◦ 2.18◦ 5.54◦ 5.03 2.07 3.12 7.19 5.09 MB
p = 64, WB={t,f,d,c,s} 161.80 9.01 19.33 90.81 4.05◦ 1.40◦ 2.12◦ 4.88◦ 4.89 2.16 3.10 6.78 5.10 MB
p = 128, WB={t,f,d,c,s} 176.38 16.96 35.91 115.50 4.71◦ 2.10◦ 3.09◦ 5.92◦ 5.77 3.01 4.27 7.71 5.10 MB

Our results
p = 64, WB={t,d,s} 92.65 6.52 14.23 35.01 2.47◦ 0.82◦ 1.44◦ 2.49◦ 2.99 1.36 2.04 3.32 61.0 MB
p = 64, WB={t,f,d,c,s} 151.38 29.49 56.35 125.33 4.18◦ 2.13◦ 3.03◦ 4.81◦ 5.42 3.11 4.42 6.76 61.1 MB
p = 128, WB={t,d,s} 88.03 7.92 17.73 45.01 2.61◦ 0.93◦ 1.58◦ 2.85◦ 3.24 1.50 2.30 3.95 61.2 MB
p = 128, WB={t,f,d,c,s} 100.24 10.77 37.74 70.18 3.09◦ 1.15◦ 2.61◦ 3.87◦ 3.96 1.59 3.55 5.51 61.3 MB

Table 2: Benchmark on mixed-illuminant evaluation set [4]. Highlights and symbols are the same as in Table 1.

MSE MAE ∆ E 2000Method Mean Q1 Q2 Q3 Mean Q1 Q2 Q3 Mean Q1 Q2 Q3
Gray Pixel [60] 4959.20 3252.14 4209.12 5858.69 19.67◦ 11.92◦ 17.21◦ 27.05◦ 25.13 19.07 22.62 27.46
Grayness index [59] 1345.47 727.90 1055.83 1494.81 6.39◦ 4.72◦ 5.65◦ 7.06◦ 12.84 9.57 12.49 14.60
KNN WB [5] 1226.57 680.65 1062.64 1573.89 5.81◦ 4.29◦ 5.76◦ 6.85◦ 12.00 9.37 11.56 13.61
Interactive WB [3] 1059.88 616.24 896.90 1265.62 5.86◦ 4.56◦ 5.62◦ 6.62◦ 11.41 8.92 10.99 12.84
Deep WB [2] 1130.60 621.00 886.32 1274.72 4.53◦ 3.55◦ 4.19◦ 5.21◦ 10.93 8.59 9.82 11.96

Mixed WB [4] results
p = 64, WB={t,d,s} 819.47 655.88 845.79 1000.82 5.43◦ 4.27◦ 4.89◦ 6.23◦ 10.61 9.42 10.72 11.81
p = 64, WB={t,f,d,c,s} 938.02 757.49 961.55 1161.52 4.67◦ 3.71◦ 4.14◦ 5.35◦ 12.26 10.80 11.58 12.76
p = 128, WB={t,d,s} 830.20 584.77 853.01 992.56 5.03◦ 3.93◦ 4.78◦ 5.90◦ 11.41 9.76 11.39 12.53
p = 128, WB={t,f,d,c,s} 1089.69 846.21 1125.59 1279.39 5.64◦ 4.15◦ 5.09◦ 6.50◦ 13.75 11.45 12.58 15.59

Our results
p = 64, WB={t,d,s} 868.01 649.36 889.00 1026.98 5.73◦ 4.48◦ 5.42◦ 6.34◦ 12.11 10.42 12.12 13.36
p = 64, WB={t,f,d,c,s} 1051.07 760.86 1024.00 1332.50 6.30◦ 4.43◦ 6.01◦ 7.69◦ 14.43 11.90 13.11 16.15
p = 128, WB={t,d,s} 822.77 576.52 840.67 1025.26 5.11◦ 3.93◦ 4.85◦ 5.51◦ 11.65 10.63 11.86 13.02
p = 128, WB={t,f,d,c,s} 834.28 629.95 842.71 1005.59 5.71◦ 4.57◦ 5.54◦ 6.19◦ 11.79 9.84 12.19 13.00

We have applied two post-processing operations, which are
ensembling of multi-scale weighting maps and edge-aware
smoothing. We have used the cropped images with the size
of 64 and 128 for training, and the batch size is set to 32.
We have conducted our experiments on a single NVIDIA
RTX 2080Ti for 200 epochs. Our implementation is built
on top of prior works [4, 53], and done in PyTorch [58].

Inference: During inference, we produce low-resolution
version (i.e. 384 × 384) of the input images with the pre-
defined WB settings, and concatenate them in order to feed
into the proposed model. The model produces the weight-
ing maps as output, to blend the final sRGB output. Before
post-processing, we resize the weighting maps to the input
resolution.

4.2. Evaluation Sets

To evaluate our method, we have used four different eval-
uation sets for both scenarios, which are namely Cube+ [8]
and MIT-Adobe FiveK [19], and mixed-illuminant evalu-
ation set proposed by [4] and night photography render-
ing set [26]. The Cube+ contains 1,707 single illumination
color-calibrated images taken with Canon EOS 550D cam-
era during various seasons. The MIT-Adobe FiveK dataset
contains 5,000 images captured by different DSLR cam-
eras where each image is manually retouched by multiple
experts to correct the white-balance of the images. More-
over, we have used mixed-illuminant cases for our evalua-
tion. The mixed-illuminant test set has 150 synthetic im-
ages composed of multiple illuminantions, which is ren-
dered from 3D scenes modeled in Autodesk 3Ds Max [64].
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(a) WD (b) WT (c) WS (d) AWB

Figure 4: Comparison of the performance of the prior work
[4] and our method on mixed-illuminant dataset. Rows:
(odd) Mixed WB results, (even) Our results. Weighting
maps for WD: Daylight, WT : Tungsten, WS : Shade.

4.3. Results

In this work, we propose to model the lighting in single-
and mixed-illuminant scenes as style to improve the AWB
strategy proposed in [4]. To demonstrate the qualitative re-
sults of our strategy, we use a set of images containing mul-
tiple illuminant scene from MIT-Adobe FiveK dataset [18].
At this point, we first render the linear raw DNG image files
with different WB settings (e.g. daylight, tungsten, shade)
by using the MATLAB code shared by [6]. Then, we feed
these rendered images to proposed network for extracting
their weighting maps to blend the final AWB corrected im-
age. Note that using different re-touched versions of these
images may produce different results. Moreover, for single-
illuminant scenes, we compare the performance of our pro-
posed strategy with the recent studies [45, 13, 5, 3, 2, 4]
on Cube+ dataset [9]. Next, we include our results to the
benchmark on mixed-illuminant evaluation set [4]. Follow-
ing the prior work, we reported the mean, first (Q1), second
(Q2) and third (Q3) quantile of mean-squared error, mean
angular error and the color difference error on both datasets.

Figure 2 demonstrates the examples of predicted weight-
ing maps of different WB settings and the AWB results
blended by these maps. Samples are selected from MIT-

Models MSE MAE ∆E 2000

Single-illuminant dataset, WB = {t,d,s}, p = 64

ms = 0, eas = 0 98.55 2.71◦ 3.32
ms = 1, eas = 0 93.78 2.59◦ 3.15
ms = 0, eas = 1 97.20 2.66◦ 3.28
ms = 1, eas = 1 92.65 2.47◦ 2.99

Mixed-illuminant dataset, WB = {t,d,s}, p = 128

ms = 0, eas = 0 878.58 5.05◦ 12.12
ms = 1, eas = 0 843.50 5.04◦ 11.70
ms = 0, eas = 1 843.64 5.04◦ 11.98
ms = 1, eas = 1 822.77 5.11◦ 11.65

Table 3: The ablation study on using multi-scale weight-
ing maps and applying edge-aware smoothing to weighting
maps. p: patch size, ms: multi-scale weighting maps, eas:
edge-aware smoothing.

Adobe FiveK dataset [18] where their indices are 323 and
2808 in a top-down order. The results indicate that style
factor can represent the illuminant in a more detail-oriented
way, and thus producing more interpretable weighting
maps. Instead of roughly representing the region of the
light falling to the objects in the captured scene, our method
can differentiate the different illuminants on the same ob-
ject accurately. This leads to improve the performance of
the AWB strategy proposed in the prior work [4]. Note that
our method does not require any illuminant estimation step.
Moreover, in Figure 3, we introduce the comparison of the
qualitative results of our AWB method and the recent meth-
ods [2, 4] on the selected samples from the same dataset. It
shows that our proposed method achieves competitive per-
pixel performance on AWB correction in sRGB space when
compared to the recent methods.

Table 1 presents the quantitative results of our method
and the recent methods, which are evaluated on Cube+
dataset. We have conducted our experiments with different
patch sizes (i.e. 64 and 128) and different sets of WB set-
tings (i.e. {t,d,s} and {t,f,d,c,s}). All of our results
outperform the results of the other compared methods over
the most parts of all metrics. Particularly, the model trained
with the patch size of 64 and on WB settings of {t,d,s}
achieves the best performance among the other models with
different settings. As also stated in [4], we state that smaller
patch sizes lead to better model the illuminant. However, in
contrast to [4], increasing the number of WB setting in the
set of training WB settings does not provide any advantage
on modeling the lighting in single-illuminant scenarios. We
think that less number of WB settings to blend for the final
output makes easier to build the knowledge on the corre-
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(a) Standard ISP (b) ISP with [4] (c) ISP with ours

Figure 5: Comparison on the night photography rendering
results of the standard camera pipeline, the prior work [4]
and our method.

lation between pixels by weighting maps. We also believe
that using the input with more channels for training may in-
crease the required complexity of the architecture to model
the illuminant, and it may not be fair to compare them with
the exact same architecture. Lastly, due to the style extrac-
tion part of the proposed network, our method has larger
memory overhead when compared to the recent methods.

We have conducted the same experiments on synthetic
mixed-illuminant evaluation set [4], and the overall results
are reported in Table 2. According to these results, it is hard
to pick a superior method over all other methods, as depend-
ing on the metric. Our method performs better when evalu-
ated on mean-squared error, while achieving competitive re-
sults compared to the recent methods for mean angular error
and color difference metrics. Moreover, Figure 4 demon-
strates the visual comparison of the weighting maps and
the blended AWB results of the prior work and our method
on this synthetic dataset. As several illumination sources
can affect the different parts of a single object at the same
time, modeling the lighting as style helps to produce more
detailed weighting maps, especially for the parts contain-
ing objects. The weighting maps produced by our proposed
network give more detail-oriented results when compared to
the prior work, even if it falls behind the prior work on some
quantitative metrics. Synthetic data could have more sharp
edges than the real-world images. When we use this kind of
blending strategy with detail-oriented weighting maps and
not including such samples to training, it may have caused
the color discrepancy on the edges of the final output. This

may reduce the quantitative performance of our method on
this dataset.

As ablating the effects of two post-processing methods
proposed in [4] on the performance of our strategy, we have
conducted additional experiments on our best-performed
settings for both datasets where the post-processing meth-
ods are alternately excluded during inference time. Table
3 presents the results of different combinations of the post-
processing methods applied. It verifies that these methods
help to improve the quality of the weighting maps, so do
the qualitative results. At this point, one may argue that
adding total variation regularization term to the final objec-
tive function can also achieve a similar improvement, and
resolve the need of post-processing. This addition would
require re-considering the smoothing loss and the pipeline
proposed by [4], which is beyond the scope of this study.

Moreover, night photography rendering [26] is another
challenging task containing different scenarios affected by
multiple illuminants. Correcting AWB for the images cap-
tured at night may not be easily handled by assuming the
illuminant in the scene is global. To show the validity of
our strategy, we integrate our AWB method into the cam-
era ISP for processing night images. Figure 5 presents
the rendered night images by the standard camera pipeline,
and its variants that include Mixed WB [4] and our AWB
method. Results show that the pipeline including our AWB
method produces more natural and realistic images over a
wide range of night images. At this point, we assess the
results according to how similar the produced colors of the
objects in the scene to the human visual perception, not vi-
sual plausibility. Note that we include the same operations
(i.e. denoising [21, 56], gamma correction, tone mapping
and auto-contrast) to the pipeline in the same order, except
white-balancing strategies.

5. Conclusion

In this work, we have proposed a novel idea of mod-
eling the lighting as style factor for improving the recent
AWB correction methods for single- and mixed-illuminant
scenes. Our proposed network extracts the additional style
information injected by the lighting sources to the scene,
and learns to weight the maps of different WB settings to
blend them for AWB correction. We have conducted sev-
eral experiments on the datasets containing mostly single-
illuminant scenes, the synthetic mixed-illuminant evalua-
tion set and night photography rendering set. The results
indicate the illuminant can be modeled by the style fac-
tor, and our method produces promising correction results
in both real-world scenarios and the synthetic scenes with-
out requiring illuminant estimation. The next steps for this
task could be to design a style extraction module with lower
memory overhead without sacrificing the performance.
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