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Abstract

With the recent advances in NeRF-based 3D aware

GANs quality, projecting an image into the latent space

of these 3D-aware GANs has a natural advantage over

2D GAN inversion: not only does it allow multi-view

consistent editing of the projected image, but it also enables

3D reconstruction and novel view synthesis when given

only a single image. However, the explicit viewpoint

control acts as a main hindrance in the 3D GAN inversion

process, as both camera pose and latent code have to be

optimized simultaneously to reconstruct the given image.

Most works that explore the latent space of the 3D-aware

GANs rely on ground-truth camera viewpoint or deformable

3D model, thus limiting their applicability. In this work, we

introduce a generalizable 3D GAN inversion method that

infers camera viewpoint and latent code simultaneously to

enable multi-view consistent semantic image editing. The

key to our approach is to leverage pre-trained estimators

for better initialization and utilize the pixel-wise depth

calculated from NeRF parameters to better reconstruct

the given image. We conduct extensive experiments

on image reconstruction and editing both quantitatively

and qualitatively, and further compare our results with

2D GAN-based editing to demonstrate the advantages

of utilizing the latent space of 3D GANs. Additional

results and visualizations are available at https://

3dgan-inversion.github.io/.

1. Introduction

Recent Generative Adversarial Network (GAN) [14]

architectures show incredible results in synthesizing

unconditional images with a diverse range of attributes.

Especially, StyleGAN [23, 24] has achieved photorealistic

visual quality on high-resolution images. Moreover, several

works have explored the latent space W and found its

disentangled properties, which enable the control of certain

*Equal contribution.
†Corresponding Author.

image features and semantic attributes such as gender or

hair color. However, its real-world application is only

possible with GAN inversion by bridging the generated

image space with real image domain. GAN inversion

inverts a real image back into the latent space of a pre-

trained GAN, extending the manipulation capability of the

model to real images.

However, editing an image by projecting it onto the

latent space of a 2D GAN makes the task vulnerable to the

same set of problems of 2D GANs. As training methods of

2D GANs do not take into account the underlying geometry

of an object, they offer limited control over the geometrical

aspects of the generated image. Thus, manipulating image

viewpoint using the latent space of 2D GANs always runs

into the issue of multi-view inconsistency.

On the other hand, 3D-aware image synthesis addresses

this issue by integrating explicit 3D representations into

the generator architecture and enabling explicit control over

the camera pose. With the success of neural radiance

fields (NeRF) [31] in novel view synthesis, recent 3D-

aware generation models employ a NeRF-based generator,

which condition the neural representations on sample noise

or disentangled appearance and shape codes in order to

represent diverse 3D scenes or object. More recent attempts

address the quality gap between 3D GANs and 2D GANs

by adopting 2D CNN-based upsampler or efficient point

sampling strategy, which enables the generation of high-

resolution and photorealistic images on par with 2D GANs.

Projecting a 2D image onto the learned manifold of these

3D GANs unlocks many opportunities in computer vision

applications. Not only can it generate multi-view consistent

images from the acquired latent code, but it can also gather

the exact surface geometry from the image. Furthermore,

recent 3D GANs adopted a style-based generator module to

learn the disentangled representations of 3D geometry and

appearance. Similar to the latent-based image editing tasks

of 2D GANs, by manipulating the latent code of a style-

based 3D-aware generator, we can manipulate the semantic

attributes of the reconstructed 3D model.

Despite its usefulness, few research has been conducted
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on 3D GAN inversion. Since 3D-aware GANs initially

require a random vector and camera pose for their image

generation, an inversion process to reacquire the latent

code of a given image necessitates the camera pose of the

image, information that real-life images usually often lack.

Most of the existing methods require ground-truth camera

information or must rely on the off-the-shelf geometry and

camera pose from the 3D morphable model, which limits

their application to a single category.

In this work, we propose a 3D-GAN inversion method

that iteratively optimizes both the latent code and 3D

camera pose of a given image simultaneously. We build

upon the recently proposed 2D GAN inversion method that

first inverts the given image into a pivot code, and then

slightly tunes the generator based on the fixed pivot code

(i.e. pivotal tuning [38]), which showed prominent results

in both reconstruction and editability. Similarly, we acquire

both the latent code and camera pose simultaneously as

a pivot and fine-tune the pre-trained 3D-GAN to alter the

generator manifold into pivots. Note that this is non-trivial

since shape and camera direction compromise each other

during optimization.

Recognizing the interdependency between latent code

and camera parameter, we use a hybrid of learning and

optimization-based approach by first using an encoder to

infer a rough estimate of the camera pose and latent code,

and further refining it to an optimal destination. As can

be seen in our experiments, giving a good initial point for

optimizing pivots much less falls into the local minimum.

In order to further enforce the proximity of the camera

viewpoint, we introduce regularization loss that utilizes

traditional depth-based image warping [51].

We demonstrate that our method enables high-quality

reconstruction and editing while preserving multi-view

consistency, and show that our results are applicable to a

multitude of different categories. While we evaluate our

proposed method on EG3D [7], the current state-of-the-art

3D-aware GAN, our method is also relevant to other 3D-

aware GANs that leverage NeRF for its 3D representation.

2. Related Work

Generative 3D-Aware Image Synthesis. 3D-aware

GANs aim to generate 3D-aware images from 2D image

collections. The first approaches utilize voxel-based

representation [32], which lacks fine details in image

generation, due to memory inefficiency from its 3D

representation. Starting from [39], several works achieved

better quality by adopting NeRF-based representation, even

though they struggle on generating high-resolution images

due to the expensive computational cost of volumetric

rendering. Some approaches proposed an efficient point

sampling strategy [39, 11, 46], while others adopted 2D

CNN-layers to efficiently upsample the volume rendered

feature map [34, 15, 50]. Recently, other methods proposed

hybrid representations to reduce the computational burden

from MLP layers, while achieving high-resolution image

generation [7, 47, 40, 42]. Especially, our work is

implemented on EG3D [7], which achieved state-of-the-art

image quality while preserving 3D consistency.

2D GAN Inversion. The first step in applying latent-

based image editing on real-world images is to project the

image to the latent space of pre-trained GANs. Existing

2D GAN inversion approaches can be categorized into

optimization-based, learning-based, and hybrid methods.

Optimization approaches [1, 9] directly optimize the latent

code for a single image. This method can achieve high

reconstruction quality but is slow for inference. Unlike

per-image optimization, learning-based approaches [37,

43, 3] use a learned encoder to project images. These

methods have shorter inference time but fail to achieve high-

fidelity reconstruction. Hybrid approaches are a proper

mixture of the two aforementioned methods. [16, 53] used

the cooperative learning strategy for encoder and direct

optimization. PTI [38] fine-tunes StyleGAN parameters for

each image after obtaining an initial latent code, solving the

trade-off [43] between reconstruction and editability.

3D GANs Inversion. 3D GAN inversion approaches

share the same goal as 2D GAN inversion with the

additional need for extrinsic camera parameters. Few

existing methods solving inverse problems in 3D GANs

propose effective training solutions of their own. [10]

proposed regularization loss term to avoid generating

unrealistic geometries by leveraging the popular CLIP [36]

model. [27] can animate the single source image to

resemble the target video frames, but is limited to human

face as it requires off-the-shelf models [13] to extract

expression, pose, and shape. [6] proposes a joint distillation

strategy for training encoder, which is inadequate for 3D

GANs that contain mapping function.

Image Manipulation. Image manipulation can be

conducted by changing the latent code derived from GAN

inversion. Many works have examined semantic direction

in the latent spaces of pre-trained GANs and then utilized it

for editing. While some works [41, 2] use supervision in the

form of semantic labels predicted by off-the-shelf attribute

classifiers or annotated images, they are often limited to

known attributes. Thus, other researchers resorted to using

an unsupervised approach [17] or contrastive learning

based methods [48, 35] to find meaningful directions. In

this work, we leverage GANSpace [17], which performs

principal component analysis in the latent space, to

demonstrate latent-based manipulation of 3D shape.
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3. Preliminaries

2D GANs Inversion and Pivotal Tuning. Given a pre-

trained 2D generator G2D(· ; θ) parameterized by weights θ,

2D GANs inversion aims to find the latent representation w

that can be passed to the generator to reconstruct a given

image x:

w
∗ = argmin

w

L(x,G2D(w; θ)), (1)

where the loss function L(·, ·) is usually defined as pixel-

wise reconstruction loss or perceptual loss [49] between the

given image x and reconstructed image G2D(w; θ).
To improve the performance, some other methods aim to

optimize an encoder E(x; θE) with parameters θE that maps

images to their latent representations such that:

θ∗E = argmin
θE

L(x,G2D(E(x; θE); θ)). (2)

Some recent methods [53, 5, 52] take a hybrid approach of

leveraging the encoded latent representation θE(x; θE) with

learned parameters θE as an initialization for a subsequent

optimization process for (1), resulting in a faster and more

accurate reconstruction.

Furthermore, it has been recently well studied that

existing GANs inversion methods [43, 54, 2] struggle on

the trade-offs between reconstruction and editability. To

overcome this, [38] proposed a pivotal tuning stage in a

manner that after finding the optimal latent representation

w
∗, called the pivot code, the generator weights θ are fine-

tuned so that the pivot code can more accurately reconstruct

the given image while keeping its editability:

θ∗ = argmin
θ

L(x,G2D(w
∗; θ)). (3)

By utilizing the pivot code w∗ and the tuned weights θ∗, the

final reconstruction is obtained as y∗ = G2D(w
∗; θ∗).

NeRF and 3D-aware GANs. Neural Radiance Fields

(NeRF) [31] achieves a novel view synthesis by employing

a fully connected network to represent implicit radiance

fields that maps location and direction (x,d) to color and

density (c, σ). Specifically, along with each projected ray r

for a given pixel, M points are sampled as {ti}
M
i=1, and with

the estimated color and density (ci, σi) of each sampled

point, the RGB value c(r) for each ray can be calculated

by volumetric rendering as:

c(r) =
M
∑

i=1

Ti(1− exp(−σiδi))ci, (4)

where Ti = exp
(

−
∑i−1

j=1 σjδj

)

, and δi is the distance

between adjacent sampled points such that δi = ti+1 − ti.

Furthermore, per-ray depth d(r) can also be approximated

as

d(r) =

M
∑

i=1

Ti(1− exp(−σiδi))ti. (5)

While NeRF trains a single MLP on multiple posed images

of a single scene, NeRF-based generative models [15, 7]

often condition the MLP on latent style code w that

represents individual latent features learned from unposed

image collections. These style-based 3D GANs have been

popularly used in 3D aware image generation [15, 7, 50],

and we denote this generator G3D(w, π; θ) with a given

latent code w, which can be formally represented as the

conditional function: {c, d} = G3D(w, π; θ), where c is

rendered RGB image and d is depth map.

4. Method

4.1. Overview

Our objective, which we call 3D GAN inversion, is to

project a real photo into the learned manifold of the GAN

model. However, finding the exact match for w∗ and π∗ for

a given image x is a non-trivial task since one struggles to

optimize if the other is drastically inaccurate. To overcome

this, we follow [53, 5, 52] to first construct two encoders

that approximately estimate the initial codes from x by w =
E(x; θE) and π = P(x; θP) (Sec. 4.2), and further solving

optimization problem(Sec. 4.3). In particular, we introduce

loss functions employed in (Sec. 4.3) and further discuss the

effects and purposes of employing these loss functions(Sec.

4.4). An overview of our method is shown in Fig. 1.

4.2. Latent Encoder E and Pose Estimator P

For better 3D GANs inversion, utilizing a well-trained

estimator for initialization should be considered [19, 44],

but it is a solution limited to a single category. To obtain

category-agnostic estimator, we first generate a pseudo

dataset and its annotation pair {(wps, πps), xps} to pre-train

our encoders, where xps = G3D(wps, πps; θ). Thanks to

the generation power of 3D-aware GANs, we can generate

nearly unlimited numbers of pairs within the generator’s

manifold. More specifically, for given latent encoder E , let

△w = E(xps; θE) denote the output of the encoder, where

w ∈ R
1×512. Following the training strategy of [43], we

employ the generator G3D and its paired discriminator D
to guide encoder to find the best replication of xps with

w̄ + △w, where w̄ is an average embeddings of G3D. We

provide more detailed implementation procedure of pre-

training each network in the Appendix.

4.3. Optimization

After the pre-training step, given an image x, the

learnable latent vector and camera pose are first initialized
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Figure 1: Overall architecture. This figure shows our

method using depth-based warping to optimize latent code

and camera pose simultaneously 4.3.

from trained estimators as winit = w̄+E(x; θE) and πinit =
P(x; θP). Subsequently, they are further refined for a

more accurate reconstruction. In this stage, we reformulate

optimization step in (1) into the 3D GAN inversion task,

in order to optimize the latent code and camera viewpoint

starting from each initialization {winit, πinit}, such that:

w
∗, π∗, n∗ = argmin

w,π,n
Lopt(x,G3D(w, π, n; θ)), (6)

where n denotes the per-layer noise inputs of the

generator and Lopt contains employed loss functions on

the optimization step. Note that, following the latent code

optimization method in [38], we use the native latent space

W which provides the best editability.

In addition, in the pivotal-tuning step, using the

optimized latent code w
∗ and optimized camera pose π∗,

we augment the generator’s manifold to include the image

by slightly tuning G3D with following reformulation of (3):

θ∗ = argmin
θ

Lpt(x,G3D(w
∗, π∗, n∗; θ)). (7)

In this optimization, following [38], we unfreeze the

generator and tune it to reconstruct the input image x

with given w
∗ and π∗, which are both constant. We also

implement the same locality regularization in [38]. Again,

Lpt denotes a combination of loss functions on the pivotal-

tuning step.

4.4. Loss functions

LPIPS and MSE Loss. To reconstruct the given image x,

we adopt commonly used LPIPS loss for both optimization

and pivotal tuning step. As stated in (6), the loss is used to

train the both latent code w and camera pose π. Additional

mean square error is given only at the pivotal tuning step,

which is commonly used to regularize the sensitivity of

LPIPS to adversarial examples. Formally, our losses can

be defined by:

Llpips = Llpips(x,G
c
3D(w, π, n; θ)), (8)

LL2 = LL2(x,G
c
3D(w, π, n; θ)). (9)

Depth-based Warping Loss. Similar to [51], every point

on the target image can be warped into other viewpoints.

We consider the shape representation of w latent code

plausible enough to fit in the target image. Given a

canonical viewpoint πcan, we generate a pair of image and

depth map {ycan, Dcan} = G3D(w, πcan; θ). Let ycan(r)
denote the homogeneous coordinates of a pixel γ in the

generated image of a canonical view πcan using (4). Also

for each ycan(r) we obtain the depth value Dcan(r) by using

(5).

Then we can obtain ycan(r)’s projected coordinates onto

the source view πx denoted as ŷx(r) by

ŷx(r) ∼ Kπ̂can→xDcan(r)K
−1ycan(r), (10)

where K is the camera intrinsic matrix, and π̂can→x is the

predicted relative camera pose from canonical to source. As

x̂(r) for every pixel r are continuous values, following [51],

we exploit the differentiable bilinear sampling mechanism

proposed in [21] to obtain the projected 2D coordinates.

For simplicity of notation, from a generated image

ycan = Gc
3D(w, πcan; θ), we denote the projected image

as ycan→x = ycan⟨proj(Dcan, πcan→x,K)⟩, where proj(·)
is the resulting 2D image using the depth map Dcan and

⟨·⟩ denotes the bilinear sampling operator, and define the

objective function to calculate πcan→x:

Lwarp = Llpips (x, ycan⟨proj(Dcan, π,K)⟩) , (11)

again using an LPIPS loss to compare the two images.

Depth Regularization Loss. Neural radiance field is

infamous for its poor performance when only one input

view is available. Although tuning the parameters of 2D

GANs seem to retain its latent editing capabilities, we found

the NeRF parameters to be much more delicate, and tuning

them to a single view degrades the 3D structure before

reaching the desired expressiveness, resulting in low-quality

renderings at novel views.

To mitigate this problem, we take advantage of the

geometry regularization used in [33] and encourage the

generated depth to be smooth, even from unobserved

viewpoints. The regularization is based on the real-world
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Input Ours SG2 SG2 W+ PTI SG2† SG2† W+ PTI†

Figure 2: Comparison of novel view synthesis of out-of-domain samples. Given the optimized camera pose π̂ and latent

code ŵ obtained by each method, we explicitly control the viewpoint of the generated facial scene, by differing π for

different camera viewpoint. We compare our 3D GAN inversion method to standard 2D GAN inversion methods by applying

the gradient-based optimization to both the latent code and the camera pose. We also leverage the same methods only on the

latent code with the given ground-truth camera pose, and show the results labeled with †.

observation that real geometry or depth tends to be smooth,

and is more likely to be flat, and formulated such that

depth for each pixel should not be too different from those

of neighboring pixels. We enforce the smoothness of the

generated depth D(r) for each pixel r with the depth

regularization loss:

LDR(D) =

H−1,W−1
∑

i,j=1

(

(D(ri,j)−D(ri+1,j))
2

+ ((D(ri,j)−D(ri,j+1))
2
)

,

(12)

where H and W are the height and width of the generated

depth map, and ri,j indicates the ray through pixel

(i, j). Note that while [33] implements the geometry

regularization by comparing overlapping patches, we utilize

the full generated depth map D for our implementation.

Overall Loss Function. Ultimately, we define the entire

optimization step with a generated image and depth

{y,D} = G3D(w, π, n; θ):

Lopt = Llpips(x, y)

+ λwarpLwarp(x, ycan, D) + λnLn(n),
(13)

and the pivotal tuning process is defined by:

Lpt = Llpips(x, y)

+ λL2LL2(x, y) + λDRLDR(D),
(14)

where Ln denotes the noise regularization loss proposed

in [25], which prevents the noise from containing crucial

signals of the target image.

5. Experimental Results

5.1. Experimental Settings

Datasets. We conduct the experiments on two 3D object

types, human faces and cat faces, as they are the two most

popular tasks in GAN inversion. For all experiments, we

employ the pre-trained EG3D [7] generator. For human

faces, we use the weights pre-trained on the cropped FFHQ

dataset [23], and we evaluate our method with the CelebA-

HQ validation dataset [22, 29]. We also use the pre-trained

weights on the AFHQ dataset [8] for cat faces and evaluate

on the AnimalFace10 dataset [28].

Baselines. Since the current works [10, 27] do not provide

public source code for reproduction and comparison of their

work, we mainly compare our methods with the popular 2D

GAN inversion methods: The direct optimization scheme

proposed by [25] to invert real images to W denoted as

SG2, a similar method but extended to W+ space [1]

denoted as SG2 W+, and the PTI method from [38]. We

adopt these methods to work with the pose-requiring 3D-

aware GANs, either by providing the ground-truth camera

pose during optimization or using the same gradient descent

optimization method for the camera pose.

5.2. Reconstruction

Quantitative Evaluation. For quantitative evaluation,

we reconstruct 2,000 validation images of CelebA-HQ

and utilize the same standard metrics used in 2D GAN

inversion literature: pixelwise L2 distance using MSE,
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Input Ours SG2 SG2 W+ PTI SG2† SG2† W+ PTI†

Figure 3: 2D and 3D Reconstruction of out-of-domain samples. We compare both the image reconstruction and 3D

reconstruction capabilities of each method, where the 3D shapes are iso-surfaces extracted from the density field using

marching cubes. Methods labeled with † use ground-truth camera pose.

Method MSE↓ LPIPS↓ MS-SSIM↑ ID Sim.↑ FID ↓

SG2 0.0277 0.3109 0.5889 0.0957 36.0291

SG2 W+ 0.0163 0.2398 0.6833 0.2906 32.3971

PTI 0.0036 0.0789 0.8221 0.6671 32.7366

SG2† 0.0232 0.2898 0.6151 0.1125 34.7612

SG2† W+ 0.0117 0.2029 0.7349 0.3972 31.1732

PTI† 0.0033 0.0722 0.8309 0.6737 28.5911

Ours 0.0035 0.0777 0.8280 0.7013 30.1192

Table 1: Qualitative reconstruction results measured over

the CelebA-HQ test set. The best and runner-up values are

marked bold and underlined, respectively. Methods labeled

with † use ground-truth camera pose.

perceptual similarity metric using LPIPS [49] and structural

similarity metric using MS-SSIM [45]. In addition, for

facial reconstruction, we follow recent 2D GAN inversion

works [12, 4] and measure identity similarity using a pre-

trained facial recognition network of CurricularFace [20].

Furthermore, we measure the 3D reconstruction ability of

our method, as the clear advantage of 3D GAN inversion

over 2D GAN inversion is that the former allows for novel

view synthesis given a single input image. In other words,

the latent code acquired by a successful inversion process

should be able to produce realistic and plausible images

at random views. In order to measure image quality,

we calculate the Frechet Inception Distance (FID) [18]

between the original images and 2,000 generated images

from randomly sampled viewpoints.

The results are shown in Table 1. As can be seen,

compared to the 2D GAN inversion methods that use

the same gradient-based optimization for camera pose,

using the depth-based warping method better guides the

camera viewpoint to the desired angle, showing higher

reconstruction metrics. Furthermore, while methods

designed for high expressiveness such as SG2 W+
and PTI achieve comparable pixel-wise reconstruction

abilities, our method has the upper hand when it comes

to 3D reconstruction, producing better quality images

Input

Figure 4: Reconstruction and novel view synthesis on

AnimalFace10 dataset. Our method is not limited to

human face and can be applied to other domains.

for novel views of the same face. Even compared to

inversion methods using ground-truth camera pose, our

method achieves competitive results without external data

and reliably predicts the camera pose, showing similar

reconstruction scores for each metric.

Qualitative Evaluation. We visualize the reconstruction

and novel view synthesis results in Fig. 2. While our

method performs significantly better at generating images

in novel views, our method also achieves comparable

results even to methods using ground-truth camera pose.

Not only do we provide qualitative comparison of the

visual quality of inverted images, but we also show the

reconstructed 3D shape of the given image as a mesh using

the Marching Cubes algorithm [30], as demonstrated in Fig.

2. Different from 2D GAN inversion, we also compare

the 3D geometry quality of each face by comparing the

rendered views of different camera poses. Furthermore,

we evaluate reconstruction and novel view synthesis on cat

faces in Fig. 4

While SG2 W+ and PTI show reasonable reconstruction

results at the same viewpoint, when we steer the 3D model
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Figure 5: Editing Quality Comparison. We perform various edits [17] over latent codes and camera pose acquired by each

method. Benefiting from the capabilities of 3D-aware GANs, we also compare edited 3D shape generated from the edited

latent codes. Our method achieves both realistic and accurate manipulation and is also more capable of preserving the identity

and geometry of the original input. Methods labeled with † use ground-truth camera pose.

to different viewpoints, the renderings are incomplete and

show visual artifacts with degraded 3D consistency. In

contrast, we can see that by using our method, we can

synthesize novel views with comparable quality to methods

requiring ground-truth viewpoints.

5.3. Editing Quality

We employ GANSpace [17] method to quantitatively

evaluate the manipulation capability of the acquired latent

code. In Fig. 5, we compare latent-based editing results to

the 2D GAN-inversion methods used directly to 3D-aware

GANs. Consistent with 2D GANs, the latent code found

in the W+ space produces more accurate reconstruction

but fails to perform significant edits, while latent codes

in W space show subpar reconstruction capability. Using

pivotal tuning [38] preserves the identity while maintaining

the manipulation ability of W space. Reinforcing [38] with

our more reliable pose estimation and regularized geometry,

our method best preserves the 3D-aware identity while

successfully performing meaningful edits. We also provide

quantitative evaluation in the supplementary material.

5.4. Comparison with 2D GANs

We demonstrate the effectiveness and significance of

3D-aware GAN inversion by comparing the viewpoint

manipulation using the explicit camera pose control for

EG3D and latent space. Even though [26] points out

that 3D GANs lack the ability to manipulate semantic

2
D

3
D

Figure 6: Simultaneous attribute editing and viewpoint

shift comparison of 2D and 3D GANs. We compare

editing results of applying attribute editing (smile) and

viewpoint interpolation at the same time on the latent code

acquired by PTI [38] on StyleGAN2 [25] and the latent code

acquired by our method on EG3D [7].

attributes, recent advancements of NeRF-based generative

architectures have achieved a similar level of expressiveness

and editability to 2D GANs. As recent 3D-aware GANs

such as EG3D can generate high-fidelity images with

controllable semantic attributes while maintaining a reliable

geometry, image editing using 3D GANs offers consistent

multi-view results which are more useful.

In Fig. 6, we compare the simultaneous manipulation

abilities of 2D and 3D-aware GANs. While pose

manipulation of 2D GANs only allows for implicit control

by the editing magnitude, 3D-aware GANs enable explicit
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Figure 7: Importance of initialization. We selectively

employ the latent encoder E and pose estimator P and

compare their optimization process.

E P MSE↓ LPIPS↓ MS-SSIM↑ ID Sim.↑ θ φ

✗ ✓ 0.0036 0.0782 0.8263 0.6958 3.19 2.90

✓ ✗ 0.0038 0.0790 0.8219 0.6810 5.73 5.93

✓ ✓ 0.0035 0.0777 0.8280 0.7013 3.16 2.70

Table 2: Importance of initialization. We state

the importance of utilizing pre-trained networks as

an initialization for optimization, by comparing the

optimization results that started from network outputs(✓)

and those that started from random initialization(✗).

control of the viewpoint. Also, the edited images in 2D

GANs are not view-consistent and large editing factors

result in undesired transformations of the identity and

editing quality. In contrast, pose manipulation of 3D GANs

is always multi-view consistent, thus producing consistent

pose interpolation even for an edited scene.

5.5. Ablation Study

Importance of initialization. We test the effectiveness

of our design by comparing our full hybrid method to the

single-encoder methods and show the results in Fig. 7 and

Table 2. We show that using a hybrid approach consisting of

a learned encoder E and gradient-based optimization is the

ideal approach when obtaining the latent code. Similarly,

leveraging a pose estimator P for initialization for the pose

refinement also shortens the optimization time.

Effectiveness of Geometry Regularization. We study

the role of depth smoothness regularization in the pivotal

tuning step by varying the weight λDR. We show the

generated geometry and its pixelwise MSE value after

fine-tuning the generator in Fig. 8. While solely using

the reconstruction loss leads to better quantitative results,

novel views still contain floating artifacts and the generated

geometry has holes and cracks. In contrast, including the

depth smoothness regularization with its weight as λDR =
1 enforces solid and smooth surfaces while producing

Input λDR = 0 λDR = 1 λDR = 50

L2: 0.1233 L2: 0.1255 L2: 0.1257

Figure 8: Comparison of different weights of depth

smoothness loss during the pivotal tuning stage.

Although excluding depth smoothness shows the best

reconstruction result (first row), the reconstructed geometry

is distorted (third row) and provides malformed renderings

for novel views (second row). Best viewed in zoom.

accurate scene geometry. It should be noted that a high

weight for the depth smoothness blurs the fine segments of

the generated geometry such as hair.

6. Conclusion

We present a geometric approach for inferring both the

latent representation and camera pose of 3D GANs for a

single given image. Our method can be widely applied

to the 3D-aware generator, by utilizing hybrid optimization

method with additional encoders trained by manually built

pseudo datasets. In essence, this pre-training session helps

the encoder acquire the representation power and geometry

awareness of 3D GANs, thus finding a stable optimization

pathway. Moreover, we utilize several loss functions and

demonstrate significantly improved results in reconstruction

and image fidelity both quantitatively and qualitatively. It

should be noted that whereas previous methods used 2D

GANs for editing, our work suggests the possibility of

employing 3D GANs as an editing tool. We hope that

our approach will encourage further research on 3D GAN

inversion, which will be further utilized with the single view

3D reconstruction and semantic attribute editing.
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