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Abstract

This study focuses on improving the quality of pseudo-
labeling in the context of semi-supervised semantic segmen-
tation. Previous studies have adopted confidence threshold-
ing to reduce erroneous predictions in pseudo-labeled data
and to enhance their qualities. However, numerous pseudo-
labels with high confidence scores exist in the early training
stages even though their predictions are incorrect, and this
ambiguity limits confidence thresholding substantially. In
this paper, we present a novel method to resolve the ambigu-
ity of confidence scores with the guidance of network prun-
ing. A recent finding showed that network pruning severely
impairs the network generalization ability on samples that
are not yet well learned or represented. Inspired by this find-
ing, we refine the confidence scores by reflecting the extent
to which the predictions are affected by pruning. Further-
more, we adopted a curriculum learning strategy for the
confidence score, which enables the network to learn grad-
ually from easy to hard samples. This approach resolves
the ambiguity by suppressing the learning of noisy pseudo-
labels, the confidence scores of which are difficult to trust
owing to insufficient training in the early stages. Extensive
experiments on various benchmarks demonstrate the supe-
riority of our framework over state-of-the-art alternatives.

1. Introduction

Thanks to the growth of deep supervised learning, we
have witnessed the remarkable advances of semantic seg-
mentation [34, 4, 5, 52] over the last decade. However, this
success is highly dependent on large-scale training datasets
[7, 9], the construction of which is labor intensive and time
consuming owing to the high cost of pixel-level labeling.
To address this problem, semi-supervised learning (SSL)
[27, 44, 42, 46, 47] has attracted attention for semantic seg-
mentation, in which it is assumed that only a fraction of the
entire dataset is labeled.

Input Confidence Ours
Figure 1. Heatmap visualizations of pixel-wise confidence scores
for foreground objects. The confidence scores are estimated by the
trained network for 10 epochs (out of a total of 80 epochs). The
predicted scores of the red region are higher than those of the blue
ones. This figure indicates that many confident pixels exist despite
their predictions being incorrect in the early training stage.

The key challenge in semi-supervised semantic segmen-
tation is the effective training of the network by leveraging
unlabeled data. Pseudo-labeling [28] is a typical solution
that assigns the most probable class that is predicted on the
unlabeled sample as the pseudo ground truth. Due to the
simple yet effective approach, recent studies [26, 1, 18, 54]
have commonly adopted pseudo-labeling. Unfortunately,
these methods suffer from the confirmation bias [2] that is
caused by incorrect pseudo-labels, which directly degrades
the performance of the training network. Previous stud-
ies tackle this bias by exploiting confidence thresholding
[1, 54, 36, 38]. They have attempted to prevent the learn-
ing of incorrect predictions by only reflecting highly con-
fident samples with confidence scores that exceed a prede-
fined threshold.

However, in practice, the effectiveness of confidence
thresholding is limited due to the ambiguity of confidence
scores, and we observed that this ambiguity is naturally fur-
ther intensified in the early training stages, as illustrated in
Fig. 1. This figure indicates that many highly confident pix-
els exist, although their predictions are erroneous, which
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cannot be filtered out by confidence thresholding. These
confident but erroneous predictions are assigned as pseudo-
labels and learned as noise for subsequent training epochs.
This noise accumulation directly causes a confirmation bias.

In the early training stages, the network lacks generaliza-
tion ability for specific samples owing to insufficient train-
ing. These samples directly cause noisy pseudo-labels with
high confidence scores, even though the predictions are in-
correct. Hence, we argue that if the extent to which the
samples are trained from the network in the current stage
can be estimated, it will be possible to reduce the noise
by refining their confidence scores effectively. To this end,
this study borrows the concept from recent empirical find-
ing [19] for image classification. They showed that network
pruning severely impairs deep neural network (DNN) gen-
eralization and memorization on insufficiently trained sam-
ples due to the sparsity of the training distribution. Inspired
by this finding, our study applied network pruning as a prac-
tical tool to identify samples that are not yet well trained in
the network.

In this study, we propose pruning-guided curriculum
learning (PGCL), which is a novel method for resolving the
ambiguity of confidence scores in the early training stages.
Specifically, we first measure the similarity of the features
that are extracted from the original and pruned networks for
the same pixel. The measured similarity is considered to be
the extent to which the samples have been trained in the cur-
rent stage. Subsequently, we refine the confidence score by
leveraging the similarity based on the curriculum policy so
that the network learns gradually from easy to hard samples.
This approach enhances the pseudo-labeling quality by pre-
venting the network from learning the noisy pseudo-labels,
the confidence scores of which are difficult to trust owing to
insufficient training. The proposed PGCL is beneficial for
being easily applied to the existing methods, and it effec-
tively improves the segmentation performance.

Following the well-known benchmarks, we conduct
extensive experiments on the PASCAL VOC [9] and
Cityscapes [7] datasets, and the results demonstrate the ef-
fectiveness of our proposed method. In summary, our main
contributions are three-fold:

» To enhance the quality of pseudo-labeling, we propose
a novel method to refine the ambiguity of confidence
score with the guidance of network pruning.

e We design PGCL framework that gradually trains the
segmentation network from easy to hard samples based
on the proposed refinement scheme. It is simple yet ef-
fective and can be easily incorporated into the existing
SSL methods.

» Extensive experiments on PASCAL VOC 2012 and
Cityscapes demonstrate that our proposed method sur-
passes current state-of-the-art alternatives.

2. Related Works

Semantic segmentation. Semantic segmentation [9, 7, 40,
29] is a fundamental task in computer vision that assigns se-
mantic labels to each pixel in an image. The introduction of
the FCN [34] achieved significant advances in the task, and
recent studies have exploited this method, in which the three
aspects of resolution, context, and edge have been studied.
Studies on resolution to obtain accurate high-resolution out-
puts have attempted to leverage the encoder-decoder struc-
ture [5, 41] or dilated convolutional layer [4, 49]. Studies
on context have aimed to obtain more diverse spatial con-
texts, for example, PSPNet [52] and ASPP [4]. Several stud-
ies have attempted to enhance the segmentation quality of
the edge area, including PointRend [24], and SegFix [50].
However, their performance relies heavily on large-scale
datasets, which require expensive label consumption.
Semi-supervised semantic segmentation. Early methods
[22, 30, 43] in semi-supervised semantic segmentation tend
to use generative adversarial networks [13], which train the
unlabeled data as an adversarial loss. In recent years, the
dominant streams have included consistency regularization
[27, 44, 38, 12] and self-training [46, 47, 18, 48]. Consis-
tency regularization enforces the consistency of the predic-
tions with different perturbations on the same input, and
hence, allows the learned decision boundary to be located
in the low-density region. Self-training assigns the predic-
tions on unlabeled data as pseudo-labels through the pre-
trained network using a labeled dataset and retrains the net-
work with both the labeled and pseudo-labeled data. Re-
cent attempts have exploited a holistic method [42, 54, 6]
that combines consistency regularization and self-training.
Moreover, several studies [26, 1, 32, 53] have employed
pixel-wise contrastive learning and the performance of
semi-supervised semantic segmentation has been improved
considerably.

Curriculum learning. Curriculum learning [3] is a training
strategy that gradually incorporates easier to harder samples
during training, thereby imitating the meaningful learning
order in human curricula. Previous studies have revealed
that curriculum learning offers the advantage of improving
the network generalization capacity and convergence speed
in several scenarios [39, 14, 20].

Network pruning beyond compression. Network pruning
[15, 31, 33] is a primary way of removing the redundant
weights of DNNSs, and it effectively prevents the wastage
of both computation and memory while preserving network
performance. By contrast, recent studies [19, 10, 11] have
attempted to explore network pruning beyond simply an ad-
hoc compression tool from the perspective of its deeper con-
nections with DNN memorization and generalization. The
study most relevant to ours is that of Hooker et al. [19], who
examined the impact of network pruning on the generaliza-
tion properties in image classification. The authors empir-
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Figure 2. Overview of our SSL framework incorporating PGCL, which consists of three branches: the student, teacher, and pruned teacher
networks. The student network is trained with pseudo-labels in two different manners, namely consistency loss (Eq. (8)) and pixel-wise
contrastive loss (Eq. (9)). The teacher network generates pseudo-labels and it is updated by an EMA of the weights the student network.
The pruned teacher network refines the generated pseudo-labels by leveraging the similarity between the output features extracted by the
teacher and pruned teacher networks for the same input, and it is updated by applying network pruning to the teacher network. PGCL
enables training on unlabeled data to be robust against noises on pseudo-labels by identifying and disregarding pixels with predictions that

are difficult to trust owing to insufficient training.

ically demonstrated that pruning the trained classifier had
a greater impact on certain examples or classes, such as the
most difficult and long-tailed images, owing to the introduc-
tion of sparsity. This provided novel insight into which net-
work pruning exposes the potential weakness of the trained
network, and several studies [21, 45] have adopted this in-
sight in their methods.

3. Proposed Method
3.1. Overview

Following the setting of semi-supervised semantic seg-
mentation [1, 37, 25], we train the network by leveraging
both a small set of labeled data D; and a large set of un-
labeled data D,,. The overall loss function is designed to
minimize the sum of the supervised loss Ly, for the la-
beled dataset and unsupervised 108 Ly, for the unlabeled
dataset:

L= Esup + ﬁunsup~ (1)

The supervised loss for the labeled dataset applies a stan-
dard pixel-wise cross-entropy loss between the predicted
logits and given ground truth labels:

N
1
Lop=—7 D_ ¥ loglgo f(Biz:)), @)
r;,€B;

where x; represents the i-th pixel-wise input of the labeled
dataset, y; represents the one-hot vector label of the pixel.
B; denotes the labeled data in each batch, and g o f denotes
the composition function of encoder f with the learnable
weights 6 and classifier head g.

In this study, we propose a novel framework for the ro-
bust learning of unlabeled data. An overview of the pro-

posed framework is presented in Fig. 2. Specifically, the
framework consists of three branches with the same archi-
tecture but different update rules, which are student, teacher,
and pruned teacher networks. The student network directly
learns the unlabeled data as the main branch and the weights
0 of the network are updated using gradient descent to op-
timize the unsupervised loss function. The teacher network
generates pseudo-labels for the supervision of the student
network. Following previous works [1, 12, 32], we adopt
the mean teacher framework [44], which enables the teacher
network to provide more stable pseudo-labels. The weights
0 of the teacher network are updated by the exponential
moving average (EMA) of the weights § with an update ra-
tio a: A R
0t = O[@t_l -+ (]. — 04)0,5, (3)
The pruned teacher network is used to refine the pseudo-
labels generated by the teacher network. The weights 67 of
the pruned teacher network are updated by applying net-
work pruning [15] to the teacher network with weights 0.
Both networks process the same input to obtain an out-
put pair, and the similarity of the pair is used to enable
adaptive training on the pseudo-label of each sample. In
the following sections, we introduce the details of the pro-
posed method (Sec. 3.2), and then describe how the learn-
ing of semi-supervised semantic segmentation is enhanced
by leveraging this method (Sec. 3.3).

3.2. Pruning-Guided Curriculum Learning

Confidence thresholding [1, 54, 36, 38] is a typical so-
lution for reducing noisy samples in the generated pseudo-
labels and enhancing their quality. However, this criterion
suffers from the ambiguity of confidence scores for insuf-
ficiently trained samples in the early training stages. For
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(a) Confidence (for motorbike) (b) Ground truth

(c) Pseudo-labels after filtering (d) Softmax probability (yellow cross)

Figure 3. Illustration of ambiguity of confidence scores. (a)
Heatmap of pixel-wise confidence scores for the motorbike, es-
timated by the trained network for 10 epochs (out of a total of 80
epochs). (b) Pixel-wise ground truth image. (c) Pixel-wise pseudo-
labels filtered by confidence thresholding (0.9), where the pix-
els within the white region are not assigned as pseudo-labels. (d)
Category-wise softmax probability of yellow cross pixel, which
has a high confidence score of over 0.9 despite its prediction being
incorrect.

example, the yellow cross pixel in Fig. 3 has a high confi-
dence score of over 0.9, although it is incorrectly predicted
as a motorbike. Fig. 3 (c) depicts the pseudo-label image
following filtering with a threshold of 0.9 applied to all pre-
dictions, and it indicates that several erroneous predictions
are still trained as supervision.

We design the novel PGCL method to resolve this am-
biguity and to improve the pseudo-labeling quality. The
key approach of our PGCL method is twofold: (1) refin-
ing the confidence score by leveraging the similarity of the
extracted features from the teacher and pruned teacher net-
works for the same pixel, and (2) applying the curriculum
policy to the refinement process, which enables the network
to train gradually from easy to hard samples. Through this
approach, we aim to prevent the network from learning on
noisy pseudo-labels, the predictions of which are difficult to
trust owing to insufficient training in the early stages.

Pruned teacher construction. To resolve the ambiguity of
the confidence score, we first construct a pruned teacher
network by leveraging network pruning. The crux of the
construction is to remove as many weights as possible
while maintaining the performance on the labeled dataset.
Through this approach, we aim to impair the generalization
ability of the network only on under-trained samples. To sta-
bilize the pruned network, network pruning is applied only
to the teacher encoder, whereas their projector heads share
the weights.

Specifically, we obtain a pruning mask M by applying
the simplest magnitude-based pruning [15] to the teacher
encoder f (9; ). To save on computational overheads, the
pruning mask is lazy-updated [21] at the beginning of ev-
ery epoch; that is, all iterations in the same epoch adopt
the same mask. The obtained pruning mask is applied to
the teacher encoder at every iteration to construct a pruned
teacher encoder, f(07;) = f(M o 6;).

Confidence score refinement. Network pruning signifi-
cantly impairs the network generalization or memorization
ability on poorly learned or poorly represented samples
[19]. Therefore, our method is designed to refine the confi-
dence score by reflecting the extent to which the individual
samples are affected by network pruning. Through this ap-
proach, our method prevents the learning of noisy pseudo-
labels, which may lead to incorrect predictions even though
their confidence scores are high, due to insufficient learning.

We first measure the similarity between the pixel embed-
ding pair of the teacher and pruned teacher networks for the
same pixel input i. Each pixel embedding is extracted by
the composition function of the encoder and projector head,
and the cosine similarity is applied as a similarity metric as
follows:

d(z, 20y =1+ 2z -20) /2, 4
where Z; and z? represent the normalized pixel embeddings
extracted by the teacher and pruned teacher networks, and
d(-,-) € [0,1] denotes the normalized similarity. The simi-
larity is closer to zero when the i-th sample is more strongly
affected by network pruning.

Subsequently, the measured similarity is embedded into
the confidence score estimated by the softmax probability
with hyperparameter (3 to control the influence of the prun-
ing:

si=pi-d(z,2), )

where p; denotes the softmax probability estimated by the
teacher network for pixel 7. Through this approach, our pro-
posed method resolves the ambiguity by reducing the con-
fidence for samples with a prediction that is difficult to trust
because of insufficient training in the current stage.

Using the refined score in Eq. (5), we employ confidence
thresholding, similar to previous methods [1, 54, 36, 38], as

follows:
_ 1’ 54 > Y
Wi = { 0, otherwise ©)

Curriculum policy. Although the proposed refinement
method can effectively reduce noisy pseudo-labels, a trade-
off exists in that it also suppresses the learning of hard sam-
ples. As such samples are more likely to be close to object
boundaries or belong to long-tail classes, they usually con-
tribute significantly to improving the class discriminative
ability. Therefore, we introduce a curriculum learning strat-
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egy that also considers the learning of hard samples to train
the unlabeled data effectively.

Specifically, we design a self-paced function to control
the influence of network pruning by adjusting /3 as a learn-
ing pace parameter in Eq. (5). By gradually decreasing
the pace parameter as learning progresses, the influence of
pruning is reduced on the confidence score:

Bt = Bmax — (ﬁmax + ﬁmin) <tt> ) (7N
where Sp.x and Bnin represent the maximum and mini-
mum values of B, respectively. ¢ denotes the current train-
ing epoch, and ¢,,,x denotes the epoch at the end of train-
ing. The hyperparameter o controls how rapidly the pace
parameter decreases during the training process. Through
this approach, the proportion of hard samples is gradually
increased during the entire training period while suppress-
ing the learning of noisy pseudo-labels in the early learning
phase.

3.3. Semi-Supervised Learning with PGCL

Our proposed PGCL can be easily applied to existing
methods, making their learning on unlabeled data more ro-
bust. Therefore, by applying the PGCL to previous SSL ap-
proaches, we aim to demonstrate that it can effectively im-
prove the segmentation performance. To this end, this study
leverages both pixel-wise contrastive learning [26, 32, 25],
which has recently exhibited remarkable performance, and
consistency [54, 38, 6], which is the most common ap-
proach for the task.

Pixel-wise cross-entropy loss is applied to the consis-
tency regularization loss L¢ons, similar to Eq. (2). To gen-
erate pseudo-labels and their indicator functions in Eq. (6),
we use weakly augmented unlabeled data for the teacher
and pruned teacher networks. For the student network, the
strongly augmented unlabeled data is processed to improve
the generalization ability as follows:

Loms = —3 S i log (7 (6:40m)), ®

z;€EBy

where y; denotes the one-hot vector of the pseudo label for
the pixel ¢, and A represents the strong augmentation oper-
ator. Let B,, denote the unlabeled data in each batch. Using
the proposed indicator function w;, the segmentation net-
work can only be trained on valid pixels.

We adopt the pixel-wise InfoNCE loss for the contrastive
learning loss Lcon- Let z;+ and z;- denote the positive and
negative keys for the anchor embedding z;, respectively.
The positive key z;+ is the mean representation of all pixel
embeddings with a predicted class same as the class of
pixel 7, and the negative key z;- is sampled from the rest
pixel embeddings in the same training batch. s (z;, z;+) =

exp (#; - 2+ /7) indicates the similarity metric between the
embedding pair, and 7 is the temperature hyper-parameter.
Formally, L., defined as:
N -
1 s (2, Zi+)
Leont = —— w;-lo - il -
cont NZ K3 gS(Zi,Zﬁ»)+Zi76Nis(2i,2i7)’

©)
where N; denotes the set of negative keys for the anchor
pixel ¢, and w; represents the indicator function for pixel ¢,
as in Eq. (8). z; and z; are normalized pixel embeddings
from the student and teacher networks, respectively.
Subsequently, the overall function of the unsupervised
loss is the weighted sum of the consistency regularization
loss Lcons and pixel-wise contrastive loss Loy as follows:

ﬁunsup = )\consﬁcons + )\contﬁconta (10)

where Acons and Aeone are the hyperparameters used to con-
trol the intensities of the two losses.

4. Experiments
4.1. Experimental Setting

Datasets. Our experiments are conducted on PASCAL
VOC 2012 [9] and Cityscapes [7] datasets. PASCAL VOC
2012 is a standard segmentation benchmark consisting of
20 semantic classes and 1 background class. The dataset
has three separate subsets which are training, validation,
and testing consist of 1464, 1449, 1456 images, respec-
tively. Following the common practice, we use Segmenta-
tion Boundary Dataset (SBD) [16] as the augmented set
with 9,118 additional training images. Cityscapes is a real
urban scene dataset with 19 semantic classes for foreground
objects and background stuffs. The training and valida-
tion splits contain 2975 and 500 images, respectively. We
compare our method on several portions of labeled data.
For PASCAL VOC 2012, we use the three partition pro-
tocols, 1/20, 1/8, and 1/4, while 1/8, 1/4, 1/2 are used for
Cityscapes.

Data augmentation. We employ the same data augmen-
tation strategy for training in PASCAL VOC 2012 and
Cityscapes. All training images are first randomly resized
by a ratio between 0.5 and 2, and then random cropping is
applied to them (320 x 320 for PASCAL VOC 2012 and
720 x 720 for Cityscapes). Random horizontal flip is ap-
plied to the cropped images with the probability of 0.5. Ran-
dom grayscale, random Gaussian blur, and color jittering
are adopted to strong augmentation in Eq. (8) and (9) with
the probability of 0.2, 0.5, and 0.8, respectively. Addition-
ally, we employ the CutMix [51] for strong augmentation
following the previous studies [12, 6, 32].
Implementation details. We use ResNet-50, 101 [17] pre-
trained on ImageNet [8] as the backbone and DeepLab v3+
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1720 1/8 1/4 Full

Methods SegNet  Backbone (530) (1323) (2645) (10582)
GCT [23] DL2 R101 - 72.14  73.62 75.73
ClassMix [37] DL2 R101 67.77 71.00 7245 -
Alonsoetal. [1] DL2 R101 70.00 71.60 - 74.10
ECS [35] DL3+ R50 - 7022 72.60 76.29
CAC [26] DL3+ R50 - 72.40  74.00 76.50
CPS [6] DL3+ R50 - 73.67 7490 -
ELN [25] DL3+ R50 70.52  73.20 74.63 -
Baseline DL3+ R50 62.10 68.20  70.40 77.00
Ours DL3+ R50 7090 7520 76.00 -
CAC [26] DL3+ R101 - 74.60  76.30 78.20
CPS [6] DL3+ R101 - 76.44  77.68 -
ELN [25] DL3+ R101 7252 75.10  76.58 -
Baseline DL3+ R101 67.30 71.50  74.00 78.80
Ours DL3+ R101 73.60 76.80 77.90 -

Table 1. Performance (mloU) on the PASCAL VOC 2012 valida-
tion set under different partition protocols. “Baseline” stands for
the results of supervised training on the labeled dataset only.

1/8 1/4 172 Full

Methods SegNet  Backbone (72)  (144)  (1487) (2975)
CutMix [12] DL2 R101 60.34  63.87 - 67.68
ClassMix [37] DL2 R101 61.35 63.63 66.29 -

Alonso etal. [1] DL2 R101 64.40 6590 - 67.30
ECS [35] DL3+ R50 67.38 70.70 72.89  74.76
CAC [26] DL3+ R50 69.70  72.70 - 77.50
Alonso etal. [1] DL3+ R50 70.00 71.60 - 74.20
ELN [25] DL3+ R50 70.33 73.52 7533 -

Baseline DL3+ R50 61.20 66.20 72.00 78.90
Ours DL3+ R50 71.20 7390 76.80 -

Table 2. Performance (mloU) on the Cityscapes validation set un-
der different partition protocols. "Baseline” stands for the results
of supervised training on the labeled dataset only.

[5] as the decoder. The projection head consists of two
”1x1 Conv-BN -ReL.U” blocks with a hidden and output di-
mensions of 128 and 256, respectively. For L oy in Eq. (9),
the 7 is set to 0.5, and the number of negative samples is set
to 19200 for PASCAL VOC 2012 and 14400 for Cityscapes.
We set both Acops and Aeone to 1.0, and a fixed threshold v in
Eq. (6) is set to 0.7.

We adopt mini-batch Stochastic Gradient Descent (SGD)
optimizer with momentum which is fixed as 0.9, and the
weight decay is set to 0.0001. The poly scheduling is used
to decay the learning rate during the training process: lr =
ITpase - (1 — iter/total,iter)o'g. For the training on PAS-
CAL VOC 2012, we set the base learning rates to 0.001 and
0.01 for backbone and the rest parameters respectively, and
the entire training epochs to 80 with batch sizes of 16. For
the training on Cityscapes, we use the base learning rate
with 0.01 and 0.1 for backbone and the rest parameters re-
spectively, and the entire training epochs as 200 with batch
sizes of 8. To stabilize training, the network is trained only
with supervised learning in the first 3 epochs for PASCAL
(while 5 epochs for Cityscapes).

4.2. Results

Comparison to state-of-the-art methods. To demonstrate
the superiority of our proposed method PGCL, we com-

Acc. Precision Recall Fl-score
Conf. | 92.73 77.50 84.12 79.94
Ours | 95.24 83.98 85.66 84.16

Table 3. Pixel-level accuracy, Precision, Recall, and F1 score on
the confidence thresholding (Conf.) and our proposed methods.
Reported scores are averages of all the results of each class. The
experiment is conducted on validation set of PASCAL VOC 2012.

(a) False (b) True
Figure 4. Probability density functions (PDFs) comparison be-
tween the confidence (Conf.) and our proposed scores. 'False’ and
"True’ represent the cases in which the predicted pseudo-labels are
wrong and right, respectively.

pare our method to the current state-of-the-art methods and
baseline (training on labeled data only). We adopt the mean
Intersection-over-Union (mloU) metric to evaluate the seg-
mentation performance. All results are reported on the vali-
dation set for both PASCAL VOC and Cityscapes datasets.
We abbreviate DeepLab v2 to DL2, DeepLab v3+ to DL3+,
and ResNet-50, 101 to R50, R101. Table 1 shows the com-
parison results on PASCAL VOC. PGCL achieves the high-
est performance for all partition protocols (1/20, 1/8, and
1/4) as well as for both ResNet-50 and ResNet-101 back-
bone networks. In particular, our PGCL surpasses ECS
[35] and ELN [25] by a large margin, and it is considered
that our approach from the perspective of DNN memoriza-
tion/generalization is more effective than error localization
and error correction schemes leveraging the auxiliary net-
works to be trained. Further, to demonstrate the general-
ization ability of our method, we conduct experiments on
Cityscapes with three partition protocols (1/8, 1/4, and 1/2),
as shown in Table 2. This table shows that our method still
outperforms other state-of-the-art methods.

Analysis on the quality of pseudo-labeling. To demon-
strate the effectiveness of our PGCL for improving the qual-
ity of pseudo-labeling, we compare our method to confi-
dence thresholding [1, 54, 36, 38]. We conduct experiments
on the validation set of PASCAL VOC with ResNet-50 and
DeepLab v3+. The trained network for 10 epochs only (out
of a total of 80 epochs) is used, and hyper-parameters
and ~y are set to 1.0 and 0.7, respectively. ‘Conf.’ represents
the filtering method using the confidence score estimated
by softmax probability same as previous works, and ‘Ours’
is the proposed method leveraging the refined confidence
score that is introduced in Eq. (5) and Eq. (6). As shown in
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Lunsyp Ref.  Cur. CutMix | 1/8 1/4

Sup. only 68.2 70.4
v 73.1 74.1

v v 728 742

v v v 742 751

v v 740 75.1

v v v v 752 176.0

Table 4. Ablation study on the effectiveness of each component in
PGCL. The experiment is conducted on the unlabeled data of the
given ratio of 1/8 and 1/4 to PASCAL VOC 2012. Ref: Pruning-
guided confidence score refinement in Eq. (5). Cur.: Curriculum
policy in Eq. (7). CutMix: CutMix augmentation for strongly aug-
mented images.

Table 3, our proposed method outperforms the confidence
thresholding by +2.51%, +6.48%, +1.54%, and +4.22% in
pixel accuracy, precision, recall, and F1-score, respectively.
These results demonstrate that our method effectively dis-
regards the noisy pseudo-labels in the early training stages.
Fig. 4 shows probability density functions (PDFs) of the
confidence (Conf.) and our proposed scores exceeding the
pre-defined threshold ~ (0.7). *False’ and 'True’ represent
the cases in which the predicted pseudo-labels are incor-
rect or correct respectively, and ‘Area’ indicates the ratio of
pseudo-labels reflected in training. As shown in this figure,
the area of false pseudo-labels is greatly suppressed from
0.753 to 0.457 (-0.296), whereas the area of true pseudo-
labels is almost preserved from 0.976 to 0.942 (-0.034).

4.3. Ablation Studies

We report the ablation studies and experiments for the

setting of hyper-parameters in this section. All experiments
are conducted with the ResNet-50 and DeepLab v3+ for the
segmentation network.
Effectiveness of each component. We conduct ablation
studies to investigate the contributions of each component
in our proposed method. All the ablations are under 1/8
and 1/4 partition protocols on PASCAL VOC validation set,
and Table 4 shows the results. We use the model trained
with only the supervised loss as our baseline, achieving
mloU of 68.2% and 70.4% under 1/8 and 1/4 proportions
of labeled data, respectively. Leveraging unsupervised loss
without PGCL improves the baseline by +4.9% under the
1/8 split (+3.7% under the 1/4 split). Simply applying the
proposed refinement scheme even worsens the performance
from 73.1% to 72.8% under the 1/8 split. It is considered a
limitation caused by the lack of training on hard samples, as
mentioned in Sec 3.2. After applying the curriculum policy
to overcome the limitation, the proposed PGCL surpasses
the case of simply applying the unsupervised loss as well as
the baseline by a large margin. In addition, the table shows
that the proposed method effectively improves performance
with CutMix augmentation as well.

Econs Ecom Econs + ‘Ccont
Conf. | 73.6 73.1 74.0
Ours | 73.9 742 75.2

Table 5. Ablation study on the effectiveness of our PGCL in dif-
ferent loss components. Lcons and Lecon: r€presents consistency reg-
ularization loss and pixel-wise contrastive loss in Eq. (8) and (9),
respectively.

g

Bmax | 0.1 | 03 [ 05 [ 1.0 | 1.5
05 | 740 | 73.8 | 740 | 741 | 74.4
1.0 | 743 | 752 | 74.8 | 74.1 | 73.8
1.5 | 74.1 | 743 | 746 | 742 | 73.6

Table 6. Performance (mloU) on PASCAL VOC validation set un-
der different Smax and o for self-pacing function in Eq. (7).

(a) PASCAL VOC (b) Cityscapes
Figure 5. Pixel-level accuracy of training sets under different prun-
ing ratios. “Baseline” stands for the results without applying net-
work pruning, i.e., the pruning ratio of “baseline” equals to zero.

Ablation study on the different loss functions. Table 5
shows the mloU performance over different loss compo-
nents, consistency regularization loss Lons and pixel-wise
contrastive loss L.on. The experiments are conducted on
PASCAL VOC with aratio of 1/8. ‘Conf.’ and ‘Ours’ denote
the different filtering methods using the confidence score es-
timated by softmax probability and our proposed score in-
troduced in Eq. (5) and (6), respectively. In the case of Lops,
applying our method brings an improvement by +0.3%,
while in the case of L, the performance improves by
+1.1%. Since the proposed method considers similarity in
feature space, it demonstrates that our proposed method is
more effective in contrastive learning, which directly learns
the similarity between embedding features.

Ablation study on hyper-parameters. Table 6 shows the
results of a grid search varying two hyper-parameters [pax
and o (Bmax is fixed to 0) for self-pacing function in Eq.
(7). The experiments are conducted on PASCAL VOC val-
idation set using a 1/8 split. As can be seen, we found that
Bmax = 1.0 and 0 = 0.3 achieve the best result, therefore
adopting these values in all other experiments. Moreover, to
set up the appropriate pruning ratio, we study the pixel-level
accuracy under different pruning ratios for training sets of
PASCAL VOC and Cityscapes using 1/8 and 1/4 partition
protocols, respectively. We set the pruning ratio to 0.6 for
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Image Ground Truth Baseline

CAC [26]

CPS [6] ELN [25] Ours

Figure 6. Qualitative results for comparison PGCL to previous state-of-the-art methods on PASCAL VOC 2012 validation set. “Baseline”
stands for the results of supervised training on the labeled dataset only. For a fair comparison, all models are trained with a 1/8 split.

Image Ground Truth

Prediction

Confidence Ours

Figure 7. Qualitative results for comparison the pseudo-labeling quality between confidence thresholding and our PGCL on PASCAL VOC
2012 validation set. All predictions are estimated by the trained network for 10 epochs (out of a total of 80 epochs) with a 1/8 split. The
white region indicates pixels that are not assigned as pseudo-labels, i.e., their scores are lower than the predefined threshold (0.7).

PASCAL VOC and 0.5 for Cityscapes to reduce as many
weights as possible while preserving the performance of the
training set.

Qualitative results. Fig. 6 presents the qualitative results
for comparison of our proposed method PGCL to cur-
rent state-of-the-art methods [26, 6, 25] and baseline (i.e.,
trained with supervised training on labeled dataset only)
on PASCAL VOC validation set. For a fair comparison,
all models are composed of the DeepLab v3+ decoder and
ResNet-50 backbone, and they are trained with a 1/8 split.
As can be seen, we observe that the results of our PGCL
are generally superior to others. To analyze pseudo-labeling
quality, we further display some qualitative pseudo-labeling
results of confidence thresholding [1, 54, 36, 38] and our
PGCL on PASCAL VOC validation set. This figure shows
that our method effectively suppresses the learning of noisy
pseudo-labels compared to confidence thresholding.

5. Conclusion

In this paper, we proposed a novel pruning-guided cur-
riculum learning for semi-supervised semantic segmenta-

tion. In order to resolve the ambiguity of the confidence
score in the early training stages, our method refines the
score by reflecting the similarity of the features that are
extracted from the original and pruned networks for the
same pixel. Through this approach, our method effectively
enhances the quality of pseudo-labeling by preventing the
learning of noisy pseudo-labels that are difficult to trust due
to insufficient training. To the best of our knowledge, this
study is the first work utilizing network pruning for robust
learning on unlabeled data in semi-supervised semantic seg-
mentation. Extensive experiments show that our approach
outperforms the previous state-of-the-art methods.
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