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Abstract

We present a novel method, SALAD, for the challeng-
ing vision task of adapting a pre-trained “source” domain
network to a “target” domain, with a small budget for an-
notation in the “target” domain and a shift in the label
space. Further, the task assumes that the source data is
not available for adaptation, due to privacy concerns or
otherwise. We postulate that such systems need to jointly
optimize the dual task of (i) selecting fixed number of sam-
ples from the target domain for annotation and (ii) trans-
fer of knowledge from the pre-trained network to the target
domain. To do this, SALAD consists of a novel Guided At-
tention Transfer Network (GATN) and an active learning
function, HAL. The GATN enables feature distillation from
pre-trained network to the target network, complemented
with the target samples mined by HAL using transfer-ability
and uncertainty criteria. SALAD has three key benefits: (i)
it is task-agnostic, and can be applied across various vi-
sual tasks such as classification, segmentation and detec-
tion; (ii) it can handle shifts in output label space from
the pre-trained source network to the target domain; (iii)
it does not require access to source data for adaptation.
We conduct extensive experiments across 3 visual tasks,
viz. digits classification (MNIST, SVHN, VISDA), synthetic
(GTA5) to real (CityScapes) image segmentation, and doc-
ument layout detection (PubLayNet to DSSE). We show that
our source-free approach, SALAD, results in an improve-
ment of 0.5%−31.3% (across datasets and tasks) over prior
adaptation methods that assume access to large amounts of
annotated source data for adaptation. Code is available
here.

1. Introduction
Deep learning solutions for visual applications such as

semantic segmentation [43, 40], image classification, and
document layout analysis [18, 32] require a large amount of

annotated data. Two popular trends to deal with the lack of
sufficient annotated data are Domain Adaptation (DA) and
Active Learning (AL). In Active Learning (AL) [2, 28, 36,
33], the model mines and annotates samples within a fixed
budget (e.g. 5% of the available corpus of unlabeled data
[7]) to maximize the models performance. Typical active
learning strategies include modelling diversity and uncer-
tainty for efficient sampling [7, 4]. Domain adaptation [43]
aims at transferring knowledge from a “source” domain to
the “target” domain of interest.

An amalgamation of active learning and domain adap-
tation, Active Domain Adaptation (ADA) [4, 39, 28] has
explored the use of annotated “source”-data from a related
domain to adapt to the “target”-domain dataset, within a
fixed budget of annotating the “target” data. The drawback
of ADA is that it requires access to annotated source data,
which might be prohibitive due to privacy issues or stor-
age constraints [16, 17]. Recently, there have been explo-
rations on source-free adaptation as well [12, 1]. However,
these methods don’t generalize across label shifts and tasks,
which can be enabled by annotating a small budget of sam-
ples from the target domain via active learning.

1.1. Main Contributions:
In this work, we focus on the novel problem of Source-

free Active Domain Adaptation, SF-ADA, where we have
access to a pre-trained “source” network, but the source
data is not available due to privacy concerns or otherwise.
Further, an unlabeled target dataset, and a small budget for
acquiring labels in the target domain is specified. More-
over, the target domain may also have a shift in the label
space from the source domain. We propose SALAD, a
generic novel framework for SF-ADA, which jointly opti-
mizes sampling target data for annotation and source-free
adaptation of the neural network to the target domain.

SALAD holistically addresses two key challenges of the
problem setting via two complementary components: the
Guided Attention Transfer Network (GATN) for source-free
adaptation from the pre-trained network to the target do-
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main and an active learning algorithm, HAL, for mining
samples from the target domain for annotation:

• Source-free Adaptation: GATN enables adaptation at
the feature level from the pre-trained network to the
target network (Figure 1). GATN uses a transformation
network to modulate the features of the pre-trained net-
work, in alignment with the target domain, followed by
guided attention for selective distillation to the target
network. The target network is guided in adaptation
via samples selected through active learning.

• Active Learning: The effectiveness of GATN depends
on the samples selected for annotation from the target
dataset. While it is important to choose samples that
are similar to the source distribution, we need to en-
sure that the chosen samples are informative to the net-
work w.r.t. the target dataset. To do so, HAL combines
adaptability from the pre-trained network, as well as
uncertainty w.r.t. the target network.

Our method does not attempt to emulate source data
using generative approaches, which is common in task-
specific source-free domain adaptation [16, 21]. This makes
our neural networks easy to train. SALAD has multiple
benefits. (i) The architecture is task-agnostic, and can be
applied across various visual tasks such as classification,
detection and segmentation. (ii) Adaptation happens at the
feature space (output of the network before the decoder).
Thus, our architecture is label space-agnostic and can han-
dle shifts in label space, where the source and target do-
mains contain different number and types of classes (iii)
The source data is not required for adaptation. Further, the
pretrained source network is not required while testing and
can be discarded after training.

We evaluate SALAD across three tasks. On classifica-
tion datasets (MNIST, SVHN), we demonstrate that even
without the source data, SALAD performs similar to or bet-
ter than the prior active domain adaptation methods [39, 28]
that use large amounts of annotated source data. Next, we
evaluate on MNIST under 2 distinct cases of shift in output
label space and show that SALAD is able to achieve 99.4%
of the accuracy in case of no shift in the label space, thus es-
tablishing the effectiveness of our model in scenarios with
label shift. Our experiments on the CityScapes dataset for
semantic segmentation improves accuracy by 5.57% over
fine-tuning. We also highlight the benefits of SALAD over
other adaptation paradigms in Table 7. Finally, we conduct
experiments on adaptation for document layout detection
from PubLayNet to DSSE, where there is a shift in label
space. SALAD imparts a relative improvement of 31.3%
over fine-tuning of the target network on the small dataset.

Problem Src. Data Src. Model Lab. Tar. Un. Tar.

Semi Supervised DA (SSDA) [46] ✓ ✓ ✓ ✓
Unsupervised DA (UDA) [40] ✓ ✓ ✗ ✓
Source-Free DA (SFDA) [16] ✗ ✓ ✗ ✓

Active DA (ADA) [39] ✓ ✓ ✓ ✓
Source Free Active DA (SF-ADA) ✗ ✓ ✓ ✓

Table 1: Problem Settings: We highlight various domain adapta-
tion settings. Src. Data, Src. Model, Lab. Tar., and Un. Tar. refer
to abundant labeled source data, Source Model, Scarce Labeled
Target Data and Unlabeled Abundant Target Data, respectively.

2. Related Work
To the best of our knowledge, there is not much prior

work on an approach for source-free active adaptation that
can generalize across different tasks like classification and
detection.
Active Learning Active Learning (AL) aims to acquire a
given small budget of labeled data while maximizing su-
pervised training performance. Uncertainty-based meth-
ods select examples with the highest uncertainty [44, 31],
using entropy [44], minimum classification margins [31],
least confidence, etc. Diversity-based methods choose
some points representative of the data, e.g. core-set se-
lection [36, 38]. Recent approaches combine these two
paradigms [2, 28, 51].
Domain Adaptation Domain adaptation aims to transfer
the knowledge learned by a source domain model to an un-
labeled target domain. Some of the existing works align
feature spaces of the source and target domains by learn-
ing domain invariant feature representations by divergence-
based measure minimization [13, 24], adversarial train-
ing [35, 37, 41], source or target domain data reconstruction
[3, 9], image-to-image translation [26, 11] or normalization
statistics [27, 20]. However, domain adaptation methods
typically require access to annotated source data.
Active Domain Adaptation Active domain adaptation
aims to adapt a model trained on source domain data to tar-
get domain by annotating a fixed budget of target domain
samples. [30] introduced the task of ADA with applications
to sentiment classification for textual data. They proposed a
method employing a sampling strategy based on model un-
certainty and a learned domain separator. More recently,
[39] studied ADA in the context of CNNs and proposed
a method wherein samples are selected based on their un-
certainty and targetedness, followed by adversarial domain
adaptation. [34] proposed an algorithm that identifies un-
certain and diverse instances for labeling followed by semi-
supervised DA. [52] proposed a three-stage active adversar-
ial training of neural networks using invariant feature space
learning, uncertainty and diversity-based criteria for sample
selection and re-training. [4] addressed the problem of lack
of guarantee of good transfer-ability of features in domain
adaptation. However, all of the above works use source do-
main data, which is prohibitive in terms of data privacy.
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Source-free Domain Adaptation [19] introduced the
paradigm of domain adaptation where source domain data
is not available due to privacy issues and only a model
pre-trained on the source domain data is available. Ex-
isting works employ generative approaches where the
trained model is used to generate source samples using
batch normalization [12] or energy-based methods [17]
for classification task [48, 14, 1]. Others use a combi-
nation of distillation-based approach [23] or information
maximization-based approach [21]. However, these meth-
ods do not consider using active learning to boost the per-
formance, and typically do not generalize across tasks.

3. SALAD
We propose a novel method, SALAD , for the problem

statement where we assume (i) a network, NS , pre-trained
(and frozen) on a source-domain, S (the source data is not
available for adaptation) and (ii) an unlabeled target domain
T from which we are allowed to annotate B images. The
goal is to mine B images in total TotAL cycles, from the
target domain for adapting network NS to a target network,
NT which learns robust task-specific features for the tar-
get domain. For each cycle, c = 1, 2, ..., T otAL of ac-
tive learning, the labeled set in target domain is denoted
as IT,L,c and unlabeled set as IT,UL,c. The proposed so-
lution, SALAD (Figure 1), consists of two components:
(i) Guided Attention Transfer Network (GATN) for adapta-
tion from the pre-trained network (ii) active learning strat-
egy, HAL, for optimized acquisition of samples from the
target domain.

3.1. SALAD Description
SALAD consists of two complementary components:

an adaptation strategy, Guided Attention Transfer Network
(GATN) and an active learning strategy HAL. GATN com-
bined with HAL enables domain-specific learning for tar-
get network using chosen samples, where relevant domain-
agnostic knowledge is transferred from the pre-trained
source network via guided attention. GATN performs adap-
tation at the feature level.

As shown in Figure 1, the frozen pre-trained network,
NS is first split into a frozen feature encoder which gener-
ates feature maps FP and a frozen task head THP . Simi-
larly, the trainable feature encoder of the target network, NT

is split into target feature map FT and a trainable task head,
THT . FP and FT are passed through the Guided Atten-
tion Transfer Network (GATN), which constrains the target
network via a transfer learning loss LTr. The guided atten-
tion enables transfer of the domain-agnostic features from
the pre-trained network, and discard domain-specific fea-
tures. The GATN, as well as the pre-trained network, NS ,
can be discarded after training, i.e. they are not required in
the evaluation phase.

The active learning strategy, HAL chooses samples us-
ing a combined metric of adaptability from source network
and uncertainty in the target network, indicating the infor-
mativeness w.r.t. the target domain [28].

3.2. Guided Attention Transfer Network (GATN)
In this section, we describe the Guided Attention Trans-

fer Network (GATN) in details. The GATN first transforms
FP to FP−tr through a modulation network τ , which is a
4-layer fully convolutional network. Despite the transfor-
mation of the features from the pre-trained network, not all
knowledge contained in FP−tr is useful to the target do-
main. This is because τ is a CNN and has no filtering lay-
ers. It is important to transfer only domain agnostic features
from FP−tr. This is done by the guided attention networks.
The transformed features FP−tr and target network features
FT are then fed to two guided attention modules to compute
attention across spatial and channel dimensions.

The guided attention modules consist of Guided Spa-
tial Attention (GSA) and Guided Channel Attention (GCA)
[47, 8] to compute attention across spatial and channel di-
mensions respectively. FP−tr, along with FT , are passed to
spatial guided attention (GSA) and channel guided attention
(GCA) modules. The attention modules compute alignment
at the spatial and channel levels for the modulated source
feature map FP−tr and the target network feature map FT .
The target network contains finite domain-specific knowl-
edge through the labeled target subset, that can be leveraged
to guide adaptation. We build a guided attention module
to do this, which builds on the math synonymous to self-
attention [50]. We wish to reflect that the notion of guided
attention is built on the idea described in co-attention [49].
Attention literature [42, 47, 8] describes the attention func-
tion as mapping a query and a set of key-value pairs to an
output, where key, query, value, and output are all vectors.
We denote FP−tr as the query vectors and, key and value
are assigned to target network feature maps FT .

We incorporate the notion of guided spatial and channel
attentions [47] using spatial and channel level feature vec-
tors [8]. The goal of the Guided Spatial Attention (GSA)
module (which generates attention representations AGSA)
is to highlight spatial regions of the transformed pre-trained
network feature map, FP−tr that align well with the tar-
get feature map, FT . The goal of the Guided Channel At-
tention module (which generates attention representations
AGCA) is to highlight attributes (or channel level features
at each spatial location) of transformed source network fea-
tures FP−tr at each spatial location that align well with the
target network feature maps FT . Let the dimensions of the
feature maps be C×H×W . In spatial guided attention, 1x1
convolution layers first transform the key, query, and value
feature maps. This is followed by reshaping these feature
maps to the shape C×(H×W ), which are used to compute
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Figure 1: We present a generic method, SALAD, for the task of adapting from a pre-trained source network to a target domain with a
small budget for acquiring annotation, under a possible shift in label space. SALAD consists of two complementary components: Guided
Attention Transfer Network (GATN) and an active learning strategy HAL.

Figure 2: Overview of the computations for guided spatial atten-
tion and channel attention representations.

attention weights, AGSA. For channel attention AGCA, re-
shaped feature maps of dimensions C×(H×W ) are used to
compute attention maps without any convolution. Figure 2
shows the computation of these attention maps. Mathemat-
ically,

AGSA = S(Cq(F
⊤
P−tr)⊙ Ck(FT ))

⊤ ⊙ Cv(FT ),

AGCA = S(FP−tr ⊙ F⊤
T ))⊤ ⊙ FT . (1)

where ⊤, S, and ⊙ denote transpose operation, softmax and
matrix multiplication operations, respectively. Ck, Cq, Cv

denote trainable 1 × 1 convolutions followed by reshaping
of the key, query, and value feature maps respectively.

3.3. Training Losses
We jointly train GATN (consisting of τ and the guided

attention networks), and the target network, NT with the
following loss terms:

• Transfer learning loss LTr: LTr is computed as the
attention weighted mean squared difference between
transformed pre-trained feature maps FP−tr and target
network feature maps FT . Mathematically,

LTr =
∑

AGSA ∗ [FP−tr − FT ]
2+∑

AGCA ∗ [FP−tr − FT ]
2. (2)

This loss is applied to all target images, labeled as well
as unlabeled, and scaled by hyper-parameters λTr,L

and λTr,UL, empirically chosen to 0.1 or 0.01 depend-
ing on the task. Hence, the total loss for labeled and
unlabeled images is:

λTr,L

∑
IT,L,c

LTr + λTr,UL

∑
IT,UL,c

LTr

.

• Task-specific loss LTask: To learn target domain-
specific information, we compute the task specific loss
for the target domain images, viz. multi-class cross
entropy for classification and semantic segmentation,
and focal loss for object detection. This is computed
for both labeled and unlabeled target samples. For un-
labeled samples, pseudo label is computed by thresh-
olding the soft max output of NS . Overall task-specific
loss is: ∑

IT,L,c

LTask + λpseudo

∑
IT,UL,c

LTask

.

• Overall Loss: The overall training loss is sum of the
transfer and task losses computed above.
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3.4. Active Learning Strategy HAL

The training of GATN and the target network involves a
task specific loss on the labeled subset of the target domain.
Hence, the effectiveness of domain adaptation from the pre-
trained network, and learning of domain specific features
by the target network depend on the samples mined by the
AL strategy HAL. Thus, it is important to for HAL to an-
notate samples (i) that facilitate adaptation from the pre-
trained network as well as (ii) encode all aspects of target
domain-specific knowledge.

• Adaptability from the pre-trained network: The pre-
diction confidence of the pre-trained network, NS , in
computing the outputs for target domain samples im-
plies the similarity of target samples to the source do-
main. Samples with high similarity facilitate knowl-
edge transfer from the pre-trained network to the tar-
get network. We quantify ‘similarity’ by defining an
‘adaptability score’. For computing the adaptability
score, we threshold the final softmax output of the pre-
trained network, NS , to compute the pseudo label map
for the target samples. The task-specific loss is com-
puted between the output of the pre-trained network
and the pseudo-labels. The gradient score or adaptabil-
ity score, AG is the total l2 norm of the gradient (with-
out any gradient update - since the network is frozen)
of the network NS wrt the computed loss. Low gradi-
ent implies high confidence and hence high adaptabil-
ity from NS .

• Uncertainty of the target network: We need to choose
target domain samples that provide the target network
with exhaustive information about the domain. Hence
it is important to choose target domain samples that the
network is unsure about, which can be quantified us-
ing the entropy of predictions from the target network.
The softmax output of the target network provides the
class-wise probability score map p. This is used to
compute the entropy score AE as −

∑
plogp. High

entropy for a target sample indicates high uncertainty
and hence should be selected for labeling.

A combination of the above two measures is maximized
greedily to mine the samples for labeling:

HAL = −λG logAG + λE logAE (3)

where λG, λE , are binary variables (0/1) that toggle the
metrics used for sampling. For the first batch of AL, we
set λG = 1, and λE = 0, as the target network, NT is not
trained. For further epochs, we set λG, λE = 1.

3.5. SALAD Training Overview
We train the target network, NT and GATN network to-

gether by mining samples from the target domain dataset

in mini-batches using HAL until the desired budget B is
achieved. We use the SGD optimizer with a learning rate
of 2.5e − 4, and momentum of 0.9 and weight decay for
0.0005 for the training. The steps in the training routine are
as follows:

• Initialize target network, NT with parameters of the
pre-trained source network, NS

• For active learning cycles, c in range(0, TotAL):

– Use the AL strategy HAL, the pre-trained net-
work NS and the target network NT to mine
B/TotAL samples from the target dataset, and
accumulate labeled target subset IT,L,c and un-
labeled target subset IT,UL,c.

– Create batches of images combining IT,L,c and
IT,UL,c. Optimize overall training loss for NT

and GATN for given number of epochs or till
convergence.

– Sample for next active learning cycle using HAL,
using the current version of NT and GATN.

4. Experiments and Results
We present results across the classification, detection and

segmentation tasks, with standard evaluation metrics. Un-
der classification settings, SALAD, even without access to
annotated source data, performs similar to or better than
(with a variance of 0.5% in accuracy) prior active domain
adaptation methods [39, 28] that use large volume of an-
notated source data. Furthermore, we conduct experiments
on MNIST under 2 distinct cases of shift in output label
space, and show that SALAD can achieve 99.4% of the ac-
curacy achieved when trained with all the labels, with only
5% sampling budget. Thus, SALAD can handle shifts in
label space. Our experiments on CityScapes for seman-
tic segmentation at various budgets reveal an improvement
of 5.57% over fine-tuning (i.e. training the model without
Ltr). Finally, we conduct experiments on document lay-
out adaptation from PubLayNet to DSSE where there is a
shift in output label space, SALAD imparts a improvement
of 31.3% over fine-tuning (i.e. training the model without
Ltr). We set number of cycles TotAL to be equal to 3 for
MNIST, 1000 for SVHN, 50 for CityScapes, more imple-
mentation details can be found in the supplementary mate-
rial.

4.1. Image Classification
We present our results on digits classification datasets

under two settings: (i) shared label space, and (ii) shift in la-
bel space. In the shared label space setting, the label space
that the pre-trained network was trained on and the label
space of the target domains are the same. In the label space
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Method Source Data B=100 B=200 B=300

Source only accuracy: 62.25

O-ALDA [33] ✓ 79.10 81.40 82.70
CDAN [25] + Entropy [39] ✓ 93.10 94.60 95.00
CDAN [25] + BvSB [39] ✓ 94.20 95.00 95.90

CDAN [25] + Uniform [28] ✓ 90.00 94.00 94.50
CDAN [25] + BADGE [2] ✓ 92.90 94.90 96.50

SSDA MME [34] ✓ 93.00 95.00 95.50
AADA [39] ✓ 94.20 95.20 95.50
CLUE [28] ✓ 95.50 96.20 96.50
SALAD ✗ 91.64 95.96 97.16

(a) Results on adapting from SVHN to MNIST: With a
budget of 300 images (0.5% of target data MNIST, last
column of table), we show that, even without source data,
SALAD outperforms prior work on active domain adapta-
tion, using annotated source data. The fully supervised ac-
curacy is 99.2%, we achieve accuracies comparable to fully
supervised accuracies using just 0.5% of the dataset.

Method 1000 2000 4000 10000

Source only accuracy: 27.27

FT+Uniform 68.0 76.2 80.0 84.7
FT+Entropy 68.0 75.1 81.2 87.8

FT+BADGE [2] 70.1 79.2 83.7 88.1
FT+Coreset [36] 70.0 78.8 82.8 88.2
FT+Margin [31] 71.0 78.0 83.2 88.4
FT+CLUE [28] 72.1 76.4 83.0 87.8

SALAD 74.2 82.2 86.6 88.6

(b) Results on adapting from MNIST to SVHN: We
compare with prior methods on active learning, and
demonstrate state-of-the-art performance. The fully su-
pervised accuracy is 90.44%, we achieve accuracies
comparable to fully supervised accuracies using just
1.8% of the dataset.

Table 2: Results on digits classification in the shared label
space setting

shift space setting, the target dataset contains labels not used
for training the source network. We used ResNet-101 fea-
tures for the experiment, consistent with the baselines. We
set λTr = 0.01, and λG to 1.0 and λE to 1.0 after first round
of sampling. We set λpseudo = 1.0 for the dataset. We use
feature heads from the penultimate layer of the ResNet-101
[10] classifier backbone.
Shared label-space setting, SVHN to MNIST: Table 2a
contains results of adapting from SVHN to MNIST, at var-
ious budgets. Concurrent with our intuition, the accuracy
is better at higher budgets. When benchmarked at a bud-
get of 300 samples, which is 0.5% of the total samples that
MNIST contains, we observe that SALAD, even without
any annotated source data, outperforms prior work on ac-
tive domain adaptation which use large amounts of anno-
tated source data (600000 images). Moreover, we observe
that the accuracy of 97.16% with 300 images is 97.64% of
fully supervised accuracy with 60k images.
Comparisons with SFDA methods (Table 3 SALAD out-
performs prior art on SFDA by a large margin using a very
small proportion of annotated target samples.
Comparisons with SFDA + AL methods. SALAD out-

Method Budget Accuracy

SDDA (WACV 2021) [17] - 75.5
SDDA-P (WACV 2021) [17] - 76.3

SALAD 0.16% 91.64

(a) SVHN to MNIST

Method Budget Accuracy

SDDA (WACV 2021) [17] - 42.2
SDDA-P (WACV 2021) [17] - 43.6

SALAD 0.18% 74.2

(b) MNIST to SVHN

Table 3: Comparing SALAD with prior art on SFDA on digits
datasets. Budget reflects the percentage of total number of target
samples used for active learning. We demonstrate that our SF-
ADA approach outperforms prior art on SFDA by a large margin
using a very small proportion of annotated target samples.

Class/Exp. mean 0 1 2 3 4 5 6 7 8 9

Case 1: Remove the digits ‘3’ and ‘9’ from source SVHN

Source only 56.88 69.20 86.80 79.10 0.00 53.80 95.70 41.00 78.20 63.00 0.00
B=100 88.29 97.80 98.90 94.60 83.80 94.30 96.60 84.90 91.00 93.80 48.20
B=200 96.27 98.50 98.60 98.10 94.30 96.70 97.80 97.90 93.60 92.80 94.40
B=300 96.61 99.10 98.70 98.10 95.00 97.50 97.90 98.00 91.30 95.40 97.10

Case 2: Remove the digits ‘7’, ‘5’, ‘4’, ‘1’ from source SVHN

Source only 41.90 0.00 70.80 65.60 89.60 0.00 0.00 83.00 0.00 66.00 47.60
B=100 87.11 98.80 99.40 93.80 97.30 82.70 49.90 94.20 85.60 66.40 95.40
B=200 92.53 97.60 98.90 94.10 97.40 96.10 60.80 95.90 90.50 94.50 94.60
B=300 97.00 99.20 98.90 97.20 99.10 96.20 95.70 97.50 95.30 94.70 96.30

Table 4: Results on adaptation from SVHN to MNIST, for
label space shift. We consider two scenarios: case 1 - source data
does not contain digits ‘3’ and ‘9’, case 2 - source data does not
contain digits ‘7’, ‘5’, ‘4’, ‘1’. SALAD, with HAL and GATN,
achieves 99.4% and 99.8% of the accuracy in the scenario with no
label shift. The accuracy at a budget of 300 images, without label
shift, is 97.16%

performs prior work on ADA. Since ADA (or AL + DA)
methods are better than AL + SFDA methods, by transi-
tivity, a holistic solution for SF-ADA, such as SALAD , is
more beneficial than a naive combination of SFDA and AL.
Shared label-space setting, MNIST to SVHN: We show
results on adaptation from MNIST to SVHN in Table 2b.
The complexity of SVHN is higher than that of MNIST,
reflected in the source-only accuracy which stands at 27%.
As per the prior work, we cap the net budget for mining
samples via active learning at 10000 images, which is 1.8%
of the total size of the dataset. We demonstrate state-of-
the-art performance at varying budget of 1000, 2000, 4000
and 10000 images. Moreover, the accuracy at 10k images
is 93.44% of fully supervised accuracy, which uses around
500k images.
Shift in label space, SVHN to MNIST: In Table 4, we
present results on adapting from SVHN to MNIST under
a shift in label space. In case 1, we train the source net-
work on SVHN after removing samples corresponding to
two classes (class 3 and class 9, randomly chosen). Simi-
larly, in case 2, we remove 4 classes from the source dataset.
Direct testing reveals that the accuracy for these classes is 0.
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GATN Specification AL Specification Budget Acc
λTr,L λTr,UL AG AE

Baseline source-free accuracy: 62.25%

0 0 ✓ ✗ 300 88.96
0 0.01 ✓ ✗ 300 89.56

0.01 0.01 ✓ ✗ 300 92.56
0.01 0.01 ✓ ✓ 300 97.16

Table 5: Ablation Experiments for variations in transfer loss pa-
rameters (λTr,L, λTr,UL) and active learning strategies (AG, AE)
from SVHN to MNIST.

Sampling with our AL strategy §3.3 and gradually training
with GATN gradually up to a budget of 300 images (again,
0.5% of target samples) restores accuracy to 96.61% and
97.00%, respectively, which is 99.4% and 99.8% of the ac-
curacy achieved in the scenario with no label shift. The
term AE in HAL ensures class balance, i.e., samples cor-
responding to classes not learnt by the pre-trained network
are selected, along with classes with high prediction uncer-
tainty. Thus, our method works well when there is a shift in
label space.
Ablation experiments on HAL and GATN. We present ab-
lation experiments on adaptation from SVHN to MNIST in
Table 5. We set the net active learning budget at 300 images.
Since the network has no prior knowledge about the target
domain, the uncertainty metric can be applied only from the
second round of active sampling. In the first round of active
sampling, we apply only the adaptability metric. In the first
experiment, we study the impact of training the target net-
work, without GATN, with all samples mined using just the
adaptability score, the accuracy is 88.96%. This proves that
even in the absence of adaptation from the pre-trained net-
work, samples mined using the pre-trained networks’ confi-
dence score is advantageous since the target network is ini-
tialized with the weights of the pre-trained network. Next,
we apply the distillation loss dictated by GATN only on the
labeled subset and correspondingly set LL,Tr = 0.01. We
observe that knowledge transfer, in addition to sampling us-
ing the adaptability score improves performance by 0.6%
points. This reinforces the quality of samples mined by the
pre-trained network. Next, we apply the distillation loss to
the unlabeled subset as well (LTr,UL), which leads to an
absolute improvement of 3%. This is an indicator of se-
lective distillation capabilities of GATN, where only useful
features are distilled to improve performance. Finally, we
experiment by using the uncertainty score, as well as the
diversity score, to achieve an accuracy of 97.16%, an im-
provement of 34.91% points over the baseline and an im-
provement of 5.6% points over Experiment 3. Hence, the
best adaptation using GATN is obtained when samples are
mined intelligently (Experiment 4).
Ablation experiment on the modulation network τ . The
accuracy on MNIST −→ SVHN, with 300 images, without

the modulation network is 94.15% while the accuracy with
the modulation network is 97.16%.

4.2. Autonomous Driving: Synthetic to Real Seg-
mentation on CityScapes

We conduct experiments on a dense pixel-level task, seg-
mentation, where we adapt from GTA5 (25000 images) to
CityScapes. To effectively transfer from GTA5 and address
uncertainty of the target network while sampling, we set
λG = λE = 1 from the second round of sampling. We
set λTr = 0.01. We use feature heads from the layer 3 of
the underlying DeepLabv2 ResNet-101 backbone [5]. We
present the results in Table 6. In the first row, we directly
test the pre-trained GTA5 model, which gives an mIoU of
34.91. We next apply HAL for batch active learning, and
train the network using GATN after each round of sampling.
A cumulative budget of 50 images, 100 images, 200 images,
and 500 images leads to relative improvements (over the
source only mIoU) of 31.5%, 46.03%, 52.5% and 62.1% re-
spectively. Classes like ‘Sidewalk’, ‘Wall’, ‘Fence’, ‘Pole’,
‘Sign’, ‘Rider’, ‘Train’, ‘MBike’, ‘Bike’ have very low
mIoU (∼ 20% or less) when directly transferred from the
source model. We show that SALAD improves perfor-
mance by 3× to 25×. Class-wise comparisons with prior
art on SFDA reveal that our AL heuristic HAL strategically
chooses classes like Bike and MBike with low confidence
or high uncertainty to boost performance, while not com-
promising on performance w.r.t. transferable classes like
road and sky.
Comparisons with SFDA methods: Table 7 shows
the comparison of SALAD with prior SFDA methods.
SALAD performs better with a budget of only 50 images
(1.5%).
Ablation experiments We present ablation experiments in
Table 8. In Table 8(a), we study the effectiveness of GATN
at various budgets. In the second column, we apply LTr

to only the labeled subset, along with active learning us-
ing HAL. The third column reflects mIoUs obtained by
using our complete model, through training on labeled as
well as unlabeled subsets along with active learning using
HAL. A comparison of the second and third columns indi-
cates the benefits of selective transfer learning using GATN.
Moreover, our model results in improvements of 16.27%,
16.92%, 13.24% and 5.57% over the baseline numbers [46]
obtained by naively fine-tuning the target network (with
pre-trained weights initialization) without GATN, and by
random sampling [46], at budgets of 50 images, 100 images,
200 images, and 500 images respectively. In Table 8(b),
we study the effectiveness of the different components of
GATN, at a budget of 50 images. In the first experiment,
we do not use either GCA or GSA [46]. Without GATN,
our system will reduce to simple fine-tuning of the target
network with the annotated target samples. GATN forms a
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Source only 34.91 77.84 70.14 21.6 76.27 18.8 16.27 21.31 27.85 15.40 77.67 31.29 74.83 49.47 3.60 79.45 28.71 31.39 4.70 12.43 2.10
TENT [45] (Source-free) 38.9 - 87.3 39.0 79.8 24.3 19.6 21.2 25.1 16.6 83.8 34.7 77.7 57.9 17.8 85.0 24.9 20.8 2.0 16.6 4.5
S4T [29] (Source-free) 43.98 - 88.2 44.2 84.4 28.9 27.6 38.6 41.5 8.4 86.3 41.0 79.2 58.7 25.3 85.4 20.1 26.4 6.3 10.8 8.4

B=50 45.93 89.22 92.09 52.57 83.43 23.72 18.37 33.33 35.90 44.01 84.24 39.23 85.82 55.39 20.16 84.02 38.57 37.77 2.72 16.09 25.26
B=100 50.98 90.33 93.6 57.79 84.16 23.4 21.98 36.07 38.12 45.8 85.39 41.33 86.34 57.67 30.41 86.1 43.81 45.02 26.02 19.15 46.48
B=200 53.34 91.18 94.82 63.83 85.29 29.01 27.85 36.84 39.84 47.53 86.33 42.16 88.4 60.16 31.85 86.88 48.64 48.45 26.29 20.46 48.91
B=500 56.59 92.09 95.59 68.77 86.41 33.08 34.88 39.49 42.54 52.44 87.30 48.17 89.73 62.96 33.91 88.18 53.67 52.41 29.08 23.46 53.15

Table 6: GTA5 to CityScapes Adaptation: We show that SALAD imparts a relative improvement of 31.5%, 46.03%, 52.5% and 62.1%
over the baseline source model with budgets of 50, 100, 200, and 500 images, with 3×−25× improvement on specific classes like “Bike”,
“Train”, “MBike”, “Sidewalk”, etc.

Method mIoU

UBNA [15] (WACVW 2022) 36.1
UBNA+ [15] (WACVW 2022) 36.5

TENT [45] (ICLR 2021) 38.86
TENT + MS [45] (ICLR 2021) 36.89

SFDA (w/o IPSM) [23] (CVPR 2021) 41.35
SFDA [23] (CVPR 2021) 43.16
URMA [6] (CVPR 2021) 45.1
S4T [29] (ArXiv 2021) 43.98

S4T + MS [29] (ArXiv 2021) 44.83
SALAD 45.93

Table 7: Comparisons with the state-of-the-art SFDA ap-
proaches for adaptation from GTA to CityScapes. We show
that SALAD achieves state-of-the-art mIoU with a small budget
of 50 images, the mIoU obtained by naive finetuning [46] on 50
images is 39.5.

Budget B (λTr,L, λTr,UL)
(0.1,0) (0.1,0.1)

50 44.62 45.93
100 48.72 50.98
200 50.49 53.34
500 53.46 56.59

(a)

GSA GCA mIoU

✗ ✗ 39.50
✓ ✗ 45.43
✗ ✓ 45.45
✓ ✓ 45.93

(b)

HAL mIoU

AG 50.29
AG + AE 56.59

(c)

Table 8: Ablation experiments for adaptation from GTA5 to
CityScapes. In table (a), we study ablations on transfer loss for
GATN, Table (b) shows ablations on GATN components at a bud-
get of 50 images. In table (c), we ablate on the active learning
heuristic, HAL at a budget of 500 images.
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FT w/o SALAD 23.11 36.12 13.49 25.60 22.24 29.57 11.64
FT w. SALAD 30.36 44.59 11.61 35.57 24.80 37.48 28.18

Table 9: Adaptation for document layout detection from Pub-
LayNet to DSSE: Fine-tuning with SALAD improves perfor-
mance by 31.3% over fine-tuning without SALAD.

bridge between the pre-trained network and the target net-
work, and removing it would break the adaptation process.
In the subsequent experiments, we show the impact of using
channel and spatial features. In Table 8(c), we demonstrate
the effectiveness of using the fusion AL heuristic compris-

ing of the adaptability score w.r.t. the pre-trained network
as well as the uncertainty score w.r.t. the target network, as
opposed to using just the adaptability score.

4.3. Document Layout Detection: DSSE
In Table 9, we adapt from the medical documents dataset

PubLayNet to documents belonging to DSSE, a dataset con-
taining magazines, receipts and posters. The documents in
the two domains are quite different. Medical documents
are written in a two-column format, with uniform text, fig-
ures and tables. In contrast, the target domain, DSSE, a
new unseen dataset, is small (only 150 documents) and is
extremely diverse. Moreover, PubLayNet has 5 classes,
while DSSE has 6 classes. Hence, there is a shift in la-
bel space. Direct testing of PubLayNet on DSSE results
in a mAP of 15.67. Since the dataset is very small, we
do not apply HAL, and instead directly use all 150 images
for GATN. We use feature heads from the FPN of the un-
derlying RetinaNet ResNet-101 backbone [22]. Fine-tuning
without SALAD results in a mAP of 23.11, and fine-tuning
with SALAD improves performance by 31.3%, to 30.36.

5. Conclusions, Limitations and Future Work
We propose a generic source-free method, SALAD, for

the task of adapting from a pretrained network to target do-
main, under a possible shift in label space, with the pro-
vision to annotate a small budget of samples in the target
domain. SALAD consists of two complementary compo-
nents: an active learning strategy HAL, and GATN for ef-
fective adaptation and sampling. We evaluate the perfor-
mance across 3 tasks and show improved or on par perfor-
mance with methods using source data. One drawback of
our method is that we use binary weights for the scores in
HAL, using learnable weights could be an interesting direc-
tion for future work. Moreover, we expect that SALAD can
be extended to tasks and modalities where traditional do-
main adaptation has been useful. These include text classifi-
cation, neural machine translation, sentiment analysis, cross
lingual question answering, and domain stylization.
Acknowledgements: This research has been supported
by ARO Grants W911NF2110026 and Army Cooperative
Agreement W911NF2120076
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