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Abstract

Aerial imagery is widely utilized in visual data de-
pendent applications such as military surveillance, earth-
quake assessment, etc. For these applications, minute
texture in the aerial image are essential as any distur-
bance can cause inaccurate prediction. However, atmo-
spheric haze severely reduces the visibility of the scene to
be analysed, and hence takes a toll on accuracy of higher
level applications. Existing methods either utilize addi-
tional prior while training, or produce sub-optimal out-
puts on different densities of haze degradation, due to ab-
sence of local and global dependencies in the extracted
features. Therefore, it is essential to have a texture pre-
serving algorithm for aerial image dehazing. In light of
this, we propose a work that introduces a novel deformable
multi-head attention with spatially attentive offset extrac-
tion based solution for aerial image dehazing. Here, the de-
formable multi-head attention is introduced to reconstruct
fine level texture in the restored image. We also intro-
duce spatially attentive offset extractor in the deformable
convolution for focusing on relevant contextual informa-
tion. Further, edge boosting skip connections are proposed
for effectively passing edge features from shallow layers to
deeper layers of the network. Thorough experimentation
on synthetic as well as real-world data, along with exten-
sive ablation study, demonstrate that the proposed method
outperforms the prevailing works on aerial image dehaz-
ing. The code is provided at https://github.com/
AshutoshKulkarni4998/AIDTransformer.

1. Introduction

Steep development in aerial imaging technology in the
recent past has lead to ameliorated quality of aerial images
which can be applied to many fields, e.g. building extraction
[9], earthquake damage assessment [3], and image decom-
position [44]. Significant performance of these applications
mainly depends on the clean aerial data. Taking into ac-
count the fact that aerial images are captured from a long
distance, they are susceptible to low visibility, color shifts,
and blurriness as a result of changes in atmospheric condi-
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Figure 1: Sample results for aerial image dehazing (top row)
and performance comparison (bottom row) of the proposed
method with existing state-of-the-art methods (Huang et
al.[17] and SkyGAN [28]) on Sate1K dataset. As seen from
the results, the proposed method is effective in both quanti-
tative and qualitative evaluations.

tions and presence of the clouds or fog. Due to diminished
visibility in haze or cloud affected scene, monitoring and
assessment of the situations such as disaster management
becomes a challenging task. Hence, there is a dire need for
a robust aerial image visibility enhancement method.

Working towards this, existing method [48] attempted
usage of a correction technique assisted by finding the cor-
relation between the low and high-frequency color bands.
Further, Liu et al. [24] used virtual cloud point method for
haze removal. Long et al. [27] utilized dark channel prior
(DCP) proposed by He et al. [16] for removing haze from
natural scene images.
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The emergence of deep learning [19, 20, 29, 31, 32,
33, 34] further promoted the research towards aerial im-
age restoration. With the generalization capability of con-
volutional neural networks (CNNs), authors have proposed
methods which include conditional generative adversarial
networks (cGAN) [17], unsupervised learning [28], chan-
nel refinement [15], efc. for aerial image dehazing. The
rapid growth of transformers due to their ability to capture
global dependencies in an image has resulted in different
architectures [43, 47] for image restoration tasks such as
deblurring, denoising, deraining, efc. Yet, the transformers
have not been explored to deal with haze degraded aerial
images.

Huang et al. [17] utilized synthetic aperture radar (SAR)
prior for training the network. In contrast to this, the pro-
posed method only utilizes RGB haze and haze free aerial
images while training the proposed network, hence avoiding
additional requirement of data priors. The existing meth-
ods for aerial [17, 28] and outdoor [10, 22, 49] image de-
hazing do not consider geometric adaptability for feature
extraction which leads to improper restoration of crucial
structures in the image. In contrast to this, the proposed
method achieves geometric adaptability with the proposed
novel space aware deformable convolution block. Further,
traditional deformable convolutions [8] may extract irrele-
vant features because the offsets may extend beyond rele-
vant regions. To avoid this, we introduce a novel spatially
attentive offset extractor which leads to spatially relevant
feature extraction. Edge boosting skip connections are pro-
posed (instead of simple skip connections) to preserve edge
information in the restored image. Conceptual differences
between the proposed method and existing methods are dis-
cussed in the supplementary material. The main contribu-
tions of this work are summarized as:

e We introduce an end-to-end trainable attentive trans-
former network for aerial image de-hazing. In that, we
leverage space aware deformable convolution based
multi-head self attention to preserve crucial texture
while de-hazing an image.

e We propose spatially attentive offset extractor for ex-
tracting relevant spatial information from the features.

e We propose edge boosting skip connections for ef-
fectively passing edge features from shallow layers to
deeper layers of the network.

Extensive experiments on various synthetic datasets and
real-world images demonstrate that the proposed method
outperforms the existing state-of-the-art methods on all the
evaluation metrics. Sample results of the proposed method
are provided in Figure 1.

2. Related Works
2.1. Prevailing Methods for Image De-hazing

Initial attempts were directed towards image de-hazing
using hand-crafted priors [1, 12, 16, 40, 41, 51]. He et al.
[16] proposed a baseline haze relevant prior to get the im-
age coarse-level depth information for de-hazing. However,
it fails in sky regions and exhibits halo effect near compli-
cated edge structures. Salazar-Colores et al. [36] combined
DCP with mathematical morphology operations, e.g., ero-
sion and dilation, to compute transmission maps efficiently.
Researchers [4, 35, 37, 45, 46, 10, 49, 21, 26] have been de-
veloping CNNSs to calculate the transmission map of a scene
followed by atmospheric scattering models to reconstruct
the haze-free image for the past decade. Cai et al. [4] have
proposed deep network to estimate the transmission map
followed by atmospheric scattering model to recover the
haze-free image. A boosted decoder was proposed by Dong
et al. [10], where, only reconstruction error calculated us-
ing ground truth is used as supervision for gradually obtain-
ing the haze-free image. Zhao et al. [49] proposed a weakly
supervised two stage framework which utilizes unpaired ad-
versarial learning. Recently, Jia et al.[18] proposed a meta-
attention based network for restoration of hazy images. Liu
et al. [25] proposed a multi-branch feature extraction based
method for integrating all characteristic information and re-
constructing the haze-free image. Chen et al. [7] proposed
generalization of a pre-trained network on synthetic data to
adapt on real-world images. Li et al. [22] proposed an
unsupervised learning based approach with compact multi-
scale feature attention and multi-frequency representations.
These methods have been mainly applied on hazy images
taken at surface level.

Particularly for aerial image de-hazing, various methods
have been proposed. Zhang et al. [48] found correlation be-
tween low and high color bands using correction technique.
Further, Liu et al. [24] used virtual cloud point method for
haze removal. Long et al. [27] utilized DCP proposed by
He et al. [16] for removing haze from natural scene images.
Guo et al. [15] availed residual learning strategies for fast
convergence of the network along channel attention mod-
ules to achieve strong channel correlation. In [30], a model
which focuses on the cloudy area with local-to-global spa-
tial attention is proposed for cloud and haze removal. With
the fusion of SAR information and multi-spectral image
data, Grohnfeldt et al. [13] proposed a cGAN for cloud re-
moval. Huang ef al. [17] utilized information from both
RGB and SAR prior and proposed a dilated convolution
based generative adversarial network. Mehta et al. [28] put
forward a GAN framework named SkyGAN which incorpo-
rates hyper-spectral images (HSI) guidance in an image-to-
image translation network for aerial image de-hazing. Al-
though the existing de-hazing approaches have shown some
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Figure 2: Architectural illustration of the proposed network for aerial image de-hazing. The input is cropped into patches and
passed through input projection which contains a convolution layer. These features are passed through series of proposed
attentive deformable transformer blocks. Features from the upper part of the architecture are downscaled and passed to the
lower part of the architecture. After processing through all the layers, output residual is obtained from output projection layer

involving a 3 channel convolution filter and finally, output image is obtained with addition of the residual with the input.

significant improvements, they lack in consideration of si-
multaneous local and global dependencies required for ro-
bust de-hazing, which we address in the proposed work.

2.2. Transformers for Low Level Computer Vision

Due to the proven superiority of the Transformers over
CNNs in capturing long-range dependencies, they have
been vastly used for several applications. Initial work for
computer vision using transformers was done in the form
of Vision Transformers (ViT) [11] for visual recognition.
It uses flattened patches of images for training the Trans-
former network. The transformers are also utilized for low-
level vision applications. Using the image processing trans-
former, [6] illustrated how pre-training on large datasets can
lead to improved performance for low-level applications.
Uformer [43] utilized a U-Net like structure using trans-
formers for image restoration problems i.e., deraining, de-
blurring and denoising. To the best of our knowledge, the
proposed approach is the first transformer based approach
specifically designed for aerial image de-hazing.

3. Proposed Method

This section reveals several contributing elements in-
volved in the proposed network for aerial image de-hazing.

3.1. Overview

As aerial image de-hazing is a texture susceptive task,
it is essential to have processing modules which preserve
textural information. Existing methods for aerial image de-
hazing [17, 28, 30] produce sub-optimal outputs due to lack
of local and global dependencies in the extracted feature
maps. Furthermore, the way of conveying features from
encoder layers to decoder layers determines the robustness
of the output image. Taking this into account, we propose
deformable attention based transformer for aerial image de-
hazing. We induce spatially attentive offset extraction in the
deformable attentive transformer block to extract relevant
spatial features crucial for effective de-hazing. Further, we
provide edge boosting skip connections in the network to
propagate significant edge features. All of these core com-
ponents are explained in the proceeding subsections.

3.2. Attentive Deformable Transformer Block

Compared to traditional CNNs, transformers have
proven their superiority on various tasks such as restora-
tion [43], segmentation [50], object detection [39], efc. This
performance is derived due to the capability of transformers
to capture long range dependencies with the help of multi-
head self attention. Furthermore, deformable convolutions
have shown superior performance because of their ability to
adapt to the geometric variations of the objects. Therefore,

6307



2N
3N
An
Spatial
Attention Split
Input
Features Offset Am
Conv
N
0 Multiply
@Sigmoid
GConcatenate

Spatially Attentive Offset Extractor

ge

Features 2

Offsets

Spatially Attentive x| 2|~
Offset Extractor L1 Y bl
w| ¥ |«

Conv2D
Kernel
Size=1x1

""" Deformable Output
Features

Convolution

Space Aware Deformable Convolution (SADC)

Figure 3: Detailed illustration of the proposed spatially attentive offset extractor and space aware deformable convolution.

in contradiction to prevailing transformer methods [42, 43],
we use space aware deformable convolution as a feature
extractor for queries (Q), keys (K) and values (V). Col-
lectively, we call the space aware deformable convolution
based multi-head self attention as deformable multi-head
self attention (DMSA) which can be represented as:

DMSA = X;, + Convixi (6 (QK")-V) (1)

Here, § (+) represents Softmax activation layer. The queries,
keys and values are obtained as:

Q,K, V= SADCSXB(Conlel(TNorm)) 2)

where, SADCj3.3 is space aware deformable convo-
Iution (explained in Sec.3.3) with kernel size 3 x 3,
Convixi is convolution with size 1 x 1 and Tnorm
are input features after layer normalization. Fur-
ther, the process flow of feed forward network (FFN)
is: Convl —> Reshape —-> DepthwiseConvsgyxsz—>
Flatten —->Conv2-> Add(Convl,ConvZ2). Here,
Conv1 and ConvZ2 are convolution filters with kernel size
1 x 1. With this implementation, we provide the network
with enough spatially rich contextual information due to
double provision of spatial attention in the offset extrac-
tion for deformable convolution and long range capturing
ability of multi-head self attention. In summary, the atten-
tive deformable transformer block can capture both, long
range (global) dependencies through multi-head self at-
tention and feature dependent local contextual information
through space aware deformable convolutions.

3.3. Spatially Attentive Offset Extractor and
Space Aware Deformable Convolution

The deformable convolutions alone have proven to adapt
with the geometric variations in the input features. How-
ever, the offsets may extend beyond relevant regions. This
may cause irrelevant feature propagation [52] resulting in
partially restored image. To avoid this, we introduce spa-
tially attentive offset generation module called as spatially

attentive offset extractor. In that, the offsets and modulation
values are extracted from the same offset convolution, with
spatially attentive features as the input (please see Figure
3). This makes the deformable convolutions focus on rel-
evant image regions by providing texture-relevant offsets.
We collectively call such setting as space aware deformable
convolution (SADC). The SADC can be explained mathe-
matically as:

N
SADC (X,) =Y _ DefConvsxs (Xnin,+an,) * A,

i=1

3)
where, N is sampling location in a 3x3 convolution
grid. DefConuvsxs(+) is deformable convolution with
kernel size 3x3, n is location in the feature, An are
the offsets extracted from spatially attentive offset ex-
tractor and Am are the modulator scalars extracted from
the spatially attentive offset extractor block and n; €
{(-1,-1),(-1,0)...(1,1)}. Such practice of spatially
attentive offset extraction leads to adept texture attentive
queries, keys and values are passed to the multi-head self-
attention and avoids the problem of irrelevant feature prop-
agation faced in prevailing method [8].

3.4. Edge Boosting Skip Connections

Aerial images usually contain edge sensitive regions
such as roads, buildings, efc. and it is a crucial task to
reconstruct these texture after restoring the image. Also,
skip connections are well-known for their capability to
avoid the problem of vanishing gradients. Previous meth-
ods [17, 28, 43] provide simple skip connections from shal-
low to deeper layers in the network. This may neglect the
edge information present in the initial layers of the network.
To avoid this, we propose edge boosting skip connections
(EBSC) in the network. This is achieved by extracting high
frequency edge information through learnable layers. The
output of EBSC can be obtained as:

OrBsc(Xin) = Xin—TrConvs—2(Convs=2(Xin)) (4)
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Figure 4: Qualitative results comparison of the proposed method with existing state-of-the-art methods DCP [16], Huang et
al. [17], DehazeNet [4], SkyGAN [28] and UFormer [43] on Sate1K dataset.

Methods Publication Thin Haze Moderate Haze Thick Haze
PSNR \ SSIM | PSNR \ SSIM | PSNR \ SSIM
Original - 12.77 | 0.7241 | 12.58 | 0.7399 | 8.58 | 0.4215
DCP [16] TPAMI-10 | 13.15 | 0.7246 | 9.78 | 0.5735 | 10.25 | 0.5850
SAR-Opt-cGAN [13] | IGARSS-18 | 20.19 | 0.8419 | 21.66 | 0.7941 | 19.65 | 0.7573
DehazeNet [4] TIP-18 19.75 | 0.8950 | 18.12 | 0.8552 | 14.33 | 0.7064
Huang et al. [17] WACV-20 | 24.16 | 09061 | 25.31 | 0.9264 | 25.07 | 0.8640
SkyGAN [28] WACV-21 | 2538 | 0.9248 | 25.58 | 0.9035 | 23.43 | 0.8925
UFormer [43] CVPR-22 | 25.79 | 0.9270 | 26.11 | 0.9308 | 25.15 | 0.9017
Proposed Method - 27.68 | 0.9511 | 27.03 | 0.9472 | 26.72 | 0.9290

Table 1: Quantitative results comparison of the proposed method with existing methods on Satel1K dataset for non-uniform

satellite image haze removal.

here, X, represents input to EBSC, TrConvs and Conuvs
represents transposed convolution and convolution respec-
tively having stride = s. These outputs of the EBSC are pro-
vided to deeper layers of the proposed network. Adapting
such edge boosting skip connections overcomes the limita-
tion of normal skip connections. The effectiveness of all of
the explained blocks is scrutinized in ablation study (Sec-
tion 4.5).

3.5. Loss Functions

Our network is trained in an end-to-end fashion using L1
loss (IL;) between the output and ground truth. To maintain
edge consistencies, we have used edge loss (Lggge). Fur-
thermore, we have used a perceptual loss (ILp) that mea-
sures the deviation between the features of the predicted
output and the ground truth. We extract features from in-
termediate layers (viz. 3", 8" and 15'") of a pretrained
VGG-16 [38] model for loss calculation. We provide sepa-
rate weights (A,s5) to the individual loss functions to con-
trol their contribution in the overall loss function (IL7,t47)
which is formulated as:

Lrotar = Ar1lln + Apdgellgdge + ApLLp &)

We set the weights as Ay = 1, Aggge = 5 and Ap = 10
which are set empirically. The detailed equations of loss
functions are given in supplementary material.

4. Experimental Discussion

In this section, we discuss the datasets, training details,
comparative analysis and ablation study of the proposed
network.

4.1. Datasets

e SatelK Dataset [17]: This dataset contains pairs of
clean and degraded aerial images with different (thin, mod-
erate and thick) densities of haze. With data augmentation,
we have used a total of 640 pairs (hazy and clean) for train-
ing and 45 pairs for testing in each haze density. Degra-
dations present in the images of this dataset mimic non-
uniform haze present in the aerial images.

o RICE Dataset [23]: This dataset consists of haze de-
graded aerial images covering different types of earth sur-
faces i.e., urban scenes, ocean, desert, mountains, efc. With
data augmentation, we have used 800 pairs of training im-
ages and 100 pairs of testing images. The images in this
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Figure 5: Qualitative results comparison of the proposed method with existing state-of-the-art methods GCANet [5], USID
[22], MSBDN [10], TSDNet [25], RDNet [49], SPA-GAN [30] and UFormer [43] on RICE dataset.

Methods | Publication | PSNR | SSIM
GCANet [5] WACV-19 22.13 | 0.7917
MSBDN [10] CVPR-20 24.58 | 0.8341
RDNet [49] TIP-21 28.81 | 0.9193
USID [22] TMM-22 26.77 | 0.8733
TSDNet [25] TII-22 29.07 | 0.9274
SPA-GAN [30] - 30.23 | 0.9540
UFormer [43] CVPR-22 30.17 | 0.9531
Proposed Method - 33.79 | 0.9703

Table 2: Quantitative analysis of the proposed method with
existing state-of-the-art methods on RICE dataset for uni-
form haze removal from aerial images.

#Par | FLOPs | Run-time
Methods M) | (x10') | (sec/image)
USID [22] 3.70 1.60 0.15
MSBDN [10] | 31.35 0.83 0.12
RDNet [49] 65.13 1.54 0.20
UFormer [43] | 50.88 0.89 0.16
Ours 20.32 0.98 0.13

Table 3: Comparative analysis of the proposed method with
existing state-of-the-art methods in terms of number of pa-
rameters, FLOPs and run-time (on image with size 256 x
256).

dataset have haze degradation which mimics uniform haze
present in aerial images.

4.2. Training Details

Traditional transformer used key-query dot-product
which results in quadratic growth of with the spatial res-
olution of the input. To avoid this problem, we use non-
overlapped patches of inputs with resolution of MxM
= 256256 for processing through the multi-head self-
attention [43]. While training, the ADAM optimizer is used
having initial learning rate of 2x10~* varying with cosine
annealing strategy. The proposed network is implemented
using Pytorch library, and trained on NVIDIA-DGX sta-

tion with 2.2 GHz processor, Intel Xeon E5-2698, NVIDIA
Tesla V100 16 GB GPU for an average of 120 epochs (~
22 GPU hours).

4.3. Quantitative Analysis

We evaluate performance of the proposed method quan-
titatively in terms of average PSNR and SSIM with sev-
eral existing methods for aerial image de-hazing. Quantita-
tive results on Sate1K dataset are provided in Table 1. The
quantitative results on RICE dataset are provided in Table 2.
For fair comparison, the quantitative and qualitative values
in the manuscript are provided after re-training the existing
methods on RICE and Sate1K datasets. Apparently, the pro-
posed method pushes the quantitative scores by a noticeable
amount for both datasets. Furthermore, comparison based
on computational complexity is provided in Table 3 in terms
of number of trainable parameters, floating point operations
(FLOPs) and run-time. Although being moderately com-
plex, the proposed method outperforms the existing meth-
ods qualitatively and quantitatively.

4.4. Qualitative Analysis

The results of the proposed method are compared in a
qualitative manner with existing state-of-the-art methods to
scrutinize its improved perceptual quality. The qualitative
results on SatelK dataset are compared in Figure 4 and re-
sults on RICE dataset are compared in Figure 5. In the
research of image restoration task such as de-hazing, we
know that there is significant gap between synthetic and
real data. Hence, we evaluate the proposed method on real-
world aerial image de-hazing and display the results in Fig-
ure 6. As seen from the highlighted regions in the respective
comparison figures, the proposed method is able to dehaze
the aerial images while preserving more textural content,
color balance and perceptual quality. More qualitative re-
sults are provided in the supplementary material.

4.5. Ablation Study

In this section, we discuss the contribution of each block
and loss function in the proposed method. The analysis is
carried out on the Sate1 K-Moderate Haze dataset.
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Figure 6: Qualitative results of the proposed method in comparison with existing methods GCANet [5], USID [22], RDNet

[49], MSBDN [10], TSDNet [25], SPA-GAN [30] and UFormer [43] on real-world hazy aerial images.
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Figure 7: Qualitative results of different network settings mentioned in ablation study. As observed, the proposed method
produces plausible outputs as compared to other network settings.

Attention Type PSNR| SSIM
Vanilla Attention 24.13 {0.8957
Depthwise Convolution MSA | 25.77 [0.9160
Attentive Deformable MSA | 27.03 |0.9472

Table 4: Quantitative analysis of the performance of various
types of attention modules settings.

Offset Type PSNR | SSIM
Deformable Offset 25.9510.9176
Modulated Deformable Offset 26.69 |0.9217
Spatially Attentive Deformable Offset| 27.03 |0.9472

Table 5: Quantitative analysis of the performance of various
offset settings.

Setting PSNR | SSIM
No Skip Connections 23.89 | 0.8821
Skip Connections 26.46 | 0.9258
Edge Boosting Skip Connections | 27.03 | 0.9472

Table 6: Quantitative analysis of the various types of skip
connections.

e Analysis of the proposed Attentive Deformable
Transformer Block: The proposed attentive deformable
transformer block focuses more on adapting geometrical
variations in the input features and hence, preserves more
texture in the dehazed image. This can be scrutinized with

Loss Setting PSNR | SSIM
Ly 2490 | 09211
Ly + Ledge 25.88 | 0.9325
Ly + ]LEdge +Lp | 27.03 0.9472

Table 7: Quantitative analysis of the performance of various
loss settings.

Input Deformable Modulated Deformable
Image Offset Offset

Spatially Attentive
Deformable Offset (Ours)

Figure 8: Feature map visualization with different offset ex-
traction methods.

DeHamer

UFormer

Input Ground Truth

Figure 9: Results of the proposed network on the tasks of
outdoor de-hazing compared with UFormer [43] and De-
Hamer [14] trained on N-Haze dataset [2].

comparative analysis with traditional transformer blocks
and the proposed attentive deformable transformer block
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Methods | UFormer [43] | DeHamer [14] Ours
PSNR 19.73 20.66 21.08
SSIM 0.6751 0.6844 0.7013

Table 8: Quantitative results comparison of the proposed
method with existing methods on N-Haze [2] dataset.

Ground Truth MSBDN UFormer
PSNR: Inf PSNR: 25.41 dB PSNR: 26.12 dB

TSDNet SPA-GAN Ours

Input

PSNR: 19.58 PSNR: 25.50 dB PSNR: 22.71 dB PSNR: 27.50 dB

Figure 10: Impact of noise on the performance of the pro-
posed method.

provided quantitatively in Table 4 and visually in Figure 7
(b), (c) and (j). The analysis shows that the proposed trans-
former block works more effectively than existing trans-
former blocks.

e Analysis on influence of the proposed Spatially
Attentive Offset Extractor: The proposed spatially atten-
tive offset extractor provides offsets which influence the de-
formable convolution to focus on relevant contextual infor-
mation. To evaluate this, we have experimented with differ-
ent types of offsets for extracting queries, keys and values
to be passed in multi-head self attention block. The quan-
titative result comparison of this experiment is provided in
Table 5 and qualitative comparison is provided in Figure
7 (d), (e) and (j). Further, feature visualization of vari-
ous offset extraction schemes are provided in Figure 8. As
seen from the results, the performance of the proposed de-
formable convolution with spatially attentive offset extrac-
tion is better than other types of offset extraction schemes.

e Analysis on the capability of the Edge Boosting Skip
Connections in comparison with traditional skip con-
nections: Edge boosting skip connections help in edge en-
hancement by passing edge features from shallow layers to
the deeper layers of the network. This can be justified by
comparison of the performance with different types of fea-
ture passing modalities (i.e. no skip connections and normal
skip connections). The quantitative outcomes of the exper-
imental comparison are provided in Table 6 and Figure 7
(f), (g) and (j). Upon analysis of the values, it is verified
that passing of features with edge boosting skip connections
perform better than other modalities.

e Analysis on different loss functions and their im-
pact for training of the proposed network: Loss func-
tions are used to minimize the discrepancies between the
dehazed output and expected ground truth while optimizing
the network. We have used a combination of loss functions
as stated in Sec. 3.5. We study the effect of these loss func-
tions on the training of the proposed network and provide

the results in Table 7 and Figure 7 (h), (i) and (j). From the
reported values, it is verified that the combination of various
losses performs better. The detailed information about each
network configuration used in ablation study is provided in
supplementary material.

5. Applicability of the Proposed Network

In this paper, we have analysed the proposed network
mainly for aerial image de-hazing. For exploring the pos-
sible applicability of the proposed network, we carry out
experiment on outdoor non-uniform haze removal. The re-
sults of the proposed and existing methods after training on
N-Haze dataset [2] (for outdoor non-uniform haze removal)
are provided in Figure 9 and quantitative results are pro-
vided in Table 8. As seen from the results, the proposed
method can be adopted for various image restoration tasks
like general as well aerial image de-hazing.

6. Limitation

Aerial images are susceptible to introduction of noise oc-
casionally. As seen from the results given in Figure 10, the
proposed as well as existing methods are unable to remove
the noise completely, however, the proposed method per-
forms better visually and quantitatively. The performance
may be improved upon training the network on images con-
taining combined hazy and noisy degradations, which can
be considered in the future work.

7. Conclusion

In this paper, we proposed a novel attentive deformable
transformer network for aerial image de-hazing. In this net-
work, a deformable convolution based multi-head self atten-
tion is utilized for preserving crucial textural content in an
image. We introduce spatially attentive offset extractor for
extracting relevant spatial information from the input fea-
tures. Along with these, edge boosting skip connections
are utilized for passing enhanced edge information from
shallow layers to deeper layers in the network. Through
comparative quantitative and qualitative analysis on various
datasets, we evaluated the superior performance of the pro-
posed network. Extensive ablation study demonstrated the
contribution and influence of each block in the introduced
network. We also discussed the application of the proposed
method for general and aerial image de-hazing.
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