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Abstract

This work introduces the novel task of Source-free Multi-
target Domain Adaptation and proposes adaptation frame-
work comprising of Consistency with Nuclear-Norm Max-
imization and MixUp knowledge distillation (CoNMix) as
a solution to this problem. The main motive of this work
is to solve for Single and Multi target Domain Adapta-
tion (SMTDA) for the source-free paradigm, which en-
forces a constraint where the labeled source data is not
available during target adaptation due to various privacy-
related restrictions on data sharing. The source-free ap-
proach leverages target pseudo labels, which can be noisy,
to improve the target adaptation. We introduce consis-
tency between label preserving augmentations and utilize
pseudo label refinement methods to reduce noisy pseudo
labels. Further, we propose novel MixUp Knowledge
Distillation (MKD) for better generalization on multiple
target domains using various source-free STDA models.
We also show that the Vision Transformer (VT) backbone
gives better feature representation with improved domain
transferability and class discriminability. Our proposed
framework achieves the state-of-the-art (SOTA) results in
various paradigms of source-free STDA and MTDA set-
tings on popular domain adaptation datasets like Office-
Home, Office-Caltech, and DomainNet. Project Page:
https://sites.google.com/view/conmix-vcl

1. Introduction

The advent of Deep Learning has brought significant
development in tasks like image classification, object de-
tection, semantic segmentation, etc. However, the perfor-
mance of the state-of-the-art methods trained with millions
of labeled images suffers significantly in the environment
where there is a mismatch between training and test dis-
tribution [39, 47], motivating researchers to design learn-
ing algorithms that are robust to shifts in data distribution.
One such popular research direction is Unsupervised Do-
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main Adaptation (UDA) for a labeled source domain to a
unlabeled target domain adaptation. UDA with only one
source and one target domain is termed Single Target Do-
main Adaptation (STDA) [52]. Multi-target Domain Adap-
tation (MTDA) consists of multiple unlabeled target do-
mains against a single labeled source. STDA can be thought
of as a special case of MTDA and is critical in solving a
practical task such as adaptation from Synthetic data dis-
tribution to Real-World data distribution. In contrast, the
MTDA framework is essential when we have multiple tar-
get domains with varying domain-shift.
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Figure 1: 1.(a) represents vanilla STDA approach where along
with unlabeled target data, labeled source data and source trained
model are available during adaptation stage. 1.(b) represents the
adaptation strategy when only source trained model is available,
but labeled source data is not available during adaptation stage.
1.(c) is an extension of Fig1.(a), which shows an approach for
UDA for the single source (always available) to multi-target do-
main adaptation (MTDA). 1.(d) (Ours) is an extension to MTDA
but without the access of labeled source data. Fig 1.(a), 1.(b), 1.(c)
are already widely studied but 1.(d) remains unexplored.

Most of the existing Domain Adaptation (DA) methods
assume availability of labeled source domain samples dur-
ing adaptation which may not be possible for several use
cases that mandate data privacy, such as biometrics, health-
care etc. Also, there can be situations where storing a large
dataset is not feasible, for instance, training and deploy-
ing domain adaptation applications on an embedded sys-
tem or on edge devices with limited memory. However, we
can store source trained models because they are relatively
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Figure 2: Architecture of CoNMix. In Stage-1, we prepare a source trained model and get rid of source data. In Stage-2, we use
previously source trained model and adapt to multiple target domains without having access to source. We store pseudo labels for all the
target domains with the help of single domain adapted models (teachers) obtained in Stage-2. Finally, we perform knowledge distillation
to a common student in Stage-3.

smaller in size compared to the dataset they are trained
with. Therefore, traditional domain adaptation methods
are not suitable in these situations and hence, we should
look for source-free methods. Source-free UDA methods
[20, 25, 27, 22, 54] aims to solve the adaptation problem
without access to labeled or unlabeled source data during
adaptation to a target domain. We show the high-level dis-
tinction of our proposed approach with respect to existing
unsupervised domain adaptation tasks in Fig. 1.

Source-free STDA works well for specified target do-
main; however, it may fail for many practical use-cases
where the test data can come from multiple target domains
or some unseen/open domains which were not present dur-
ing adaptation. One trivial extension would be to train spe-
cific source-free STDA models for each target domain. In
that case, we need to have the domain information for se-
lecting the appropriate model during inference. Still with
this constraint, it may not generalize well for open domains.
One such practical application is scene classification in au-
tonomous driving built by taking data from sunny weather
that should generalise well across different weather condi-
tions such as winter, rainy, foggy, etc where target labels are
not available. To alleviate the above problems, we propose
a novel source-free MTDA setting. In SF-MTDA setting,
there would be a single trained model that can generalize
well across different domains. This would reduce storage
costs and have a shorter inference time than having a spe-
cific model for each target domain. SF-MTDA poses the
additional challenge of bridging the gap between multiple

target domains by learning common representation. Exist-
ing state-of-the-art MTDA methods [41, 33] use a complex
adversarial training strategy that needs access to both source
and target datasets for learning domain invariant representa-
tion making them unsuitable for source-free tasks. We pro-
pose to leverage pseudo-label refinement [59] along with
novel consistency constraint for mitigating the uncertainty
associated with the pseudo-labels. To address SF-MTDA
setting, we propose MixUp based Knowledge Distillation
(MKD) to distill knowledge from multiple expert teach-
ers (STDA models) to a single student. The overall novel
framework for solving source-free domain adaptation tasks
is dubbed as CoNMix. Further, we also investigate the role
of different backbones on source-free adaptation tasks.

Almost all existing UDA methods use CNN based fea-
ture extractors [12, 4, 33, 28, 41] whose design includes
strong human inductive bias such as local connectivity and
pooling. Unlike CNN, VT has a global receptive field at ev-
ery stage. Therefore, the learned representations are more
meaningful for the downstream tasks. Self-attention in Vi-
sion Transformer is designed to assign more importance
to salient objects of interest and lesser importance to less
relevant information such as the background information.
Therefore, it can mitigate the spurious correlation between
prediction probability and domain dependent components
such as lighting condition thereby making the feature rep-
resentation more transferable, which is desirable in domain
adaptation [54]. In fact, in our experiments too, we observe
that the feature representation of VT has better domain-
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transferability (easy to transfer across different domains)
and class-discriminability (ability to distinguish between
classes) compared to CNN based architecture (e.g.,ResNet).
In summary, our main contributions are as follows:
• We propose a novel task of source-free multi-target do-

main adaptation and developed CoNMix, a novel frame-
work for solving source-free single and multi-target do-
main adaptation tasks. We also provide empirical in-
sights, backed by quantitative and qualitative results to
substantiate the use of VT backbone for SF-SMTDA.

• We introduce a novel augmentation based consistency
constraint and explore existing nuclear-norm maximiza-
tion in our learning objective and pseudo label refine-
ment strategy to mitigate the effect of noisy pseudo la-
bels. Further, we judiciously combine these with Mixup
knowledge distillation to propose the overall framework
of CoNMix.

• We are among the first to extensively study this important
SF-MTDA problem. We have advanced the SOTA for
SF-STDA and SF-MTDA settings on popular benchmark
datasets. We also provide a new baseline on the large-
scale DomainNet dataset for source-free single and multi-
target domain adaptation.

The insights we draw from our analysis constitute important
contribution of this paper. Compared to previous methods,
CoNMix also has various appealing aspects- (a) Safe: CoN-
Mix is developed to maintain complete data privacy, as it
keeps the data safe and avoids any leakages (b) Flexible: A
single algorithm can be extended for both source-free single
and multi target domain adaptation (SF-SMTDA) tasks.

2. Related Work
Single Target Domain Adaptation (STDA): One of the
popular methods for STDA is to try learning domain in-
variant features by minimising domain discrepancy [57, 30,
46, 31, 19]. Methods such as [3, 49, 29, 10] leverage ad-
versarial training for UDA. Generative modelling methods
like [2, 17] try to minimise the gap between source and tar-
get images by transforming one feature space to another.
Though these methods have been proven to be very effective
for STDA, their dependency on source data during adapta-
tion makes it undesirable for source-free approaches.
Source-free Domain Adaptation: Recently source-free
methods [1, 24, 25, 20, 54] are getting a lot of attention for
UDA tasks. In this setting, we only have access to source
trained model and unlabeled target data. Liang et al. [25]
uses information maximization and pseudo labeling to align
the target domain to the source domain. 3C-GAN[24] im-
proves the prediction through generated target-style data.
Noisy pseudo label is one of the major problems in source-
free adaptation tasks.
Multi Target Domain Adaptation: For MTDA, we need
to generalise for multiple unlabeled target data distribu-

tion with the help of single labeled source data distribution
[12, 4, 28, 35].Nguyen et al. [33] proposes training multiple
adaptation networks and simultaneously distil knowledge
from adapted models to small student network. The source-
free MTDA is an important research direction, which has
not been explored extensively yet to the best of our knowl-
edge. Our proposed framework CoNMix attempt to address
SF-STDA and SF-MTDA problems.
Vision Transformer (VT): Transformer achieved a lot of
success in natural language processing since it was first in-
troduced by Vaswani et al. [50]. Dosovitskiy et al. [8] rep-
resented image patch with position encoding as a sequence
dataset and reported improved performance on ImageNet.
Touvron et al. [48] uses smaller dataset for training com-
pared to [8] utilising distillation token for learning the in-
ductive bias. Kurmi et al. [21] proposes to get the weighted
feature representation by multiplying backbone output with
the attention map generated through the Bayesian discrim-
inator. Due to the absence of source sample during adap-
tation, we can not use domain discriminator based archi-
tecture, therefore these methods can not be extended for
source-free tasks. Yang et al. [54] uses the bigger vari-
ant of Vision Transformer (ViT-B) [8] along with student-
teacher architecture for solving SF-STDA problem. ViT-B
is overparameterized with 86M parameters, whereas exist-
ing methods use ResNet50 which has only 24M parameters.

3. Problem Setting and Proposed Approach
In this section we define the problem setting and our

proposed approach towards solving this problem. We are
trying to solve source-free single and multi-target domain
adaptation, which involves solving adaptation task on single
and multiple unlabeled target domain using source trained
model without accessing the source dataset during adap-
tation. We introduce CoNMix (Fig. 2), a three-stage ap-
proach that utilizes Vision Transformer along with consis-
tency constraint, nuclear norm maximization, pseudo la-
bel refinement and MixUp based knowledge distillation
(MKD), designed at solving source-free single and multi-
target domain adaptation problem.
Notation: We denote h as hypothesis or classifier.
ξS(h) and ξT (h) are expected risk/error of hypothe-
sis h for source domain and target domain respectively.
LCE , LNM , LCons, LPl

CE , LMKD represents cross-
entropy loss, Nuclear-norm Maximization loss, Consistency
loss, Pseudo label Cross-Entropy loss, and MixUp Knowl-
edge Distillation loss respectively. AW and AS are weak
and strong augmentation applied to input sample. We use
XS , YS , XT for representing source image, source label
and target image respectively. DS and DT are source and
target distribution. dH∆H(DS ,DT ) is divergence between
source and target domain distribution and d̂H∆H(XS ,XT )
is its empirical measure.

4180



3.1. Backbone Selection

In this section, we demonstrate that the attention based
backbone [8] provide tighter upper bound on ξT (h) com-
pared to popular ResNet [14] backbone. We provide empir-
ical insight to show that ξV T

T (h) < ξRN50
T (h), making Vi-

sion Transformer (VT) a more suitable candidate for solv-
ing domain adaptation tasks. Additional information and
comparison pertaining to the choice of backbone in our pro-
posed approach are provided in the following subsections.

3.1.1 Comparison of Backbone

A majority of current SOTA UDA techniques extract image
features using a CNN based backbone, such as Resnet50.
Given the recent success of VT [8, 48], we attempt to
analyse the feature representation of VT based backbone
for domain adaptation. We aim to show difference in
learned representations using RN50 and DeiT backbones.
In our experiments, we find that VT features are more
domain-transferable and class-discriminative compared to
ResNet. We corroborate above by explicitly measuring the
A-distance in Fig. 4 which is a popular way to measure the
feature alignment in adversarial learning [10]. We found
that A-distance of VT feature representation is smaller com-
pared to CNN based representation. This difference in
A-distance shown in Fig. 4 is significant and provides
a direct evidence to why DeiT backbone leads to substa-
tially better performance in UDA. Additionaly, we exam-
ined the t-SNE plot of the two representations and dis-
covered that VT based representation are relatively better
aligned (Fig. 3). We believe that the properties of VT
(DeiT-S) such as having the global receptive field at ev-
ery stage and self-attention help them learn more class-
discriminative and domain-transferable feature representa-
tion than CNN (ResNet).

We also observe that our suggested loss functions are
better suited for VT than ResNet. In supp. material, we per-
form an experiment to analyse the effect of loss functions
on two backbones. We discovered that VT backbone re-
sults in significantly increased performance compared to its
CNN counterpart. Based on this analysis, we can conclude
that VT serves as a better feature extractor alternative than
CNN for domain adaptation tasks. We also compare the ef-
fect of various VT models and better ImageNet models like
EfficientNetV2-B3 and EfficientNetV2-S in suppl. material
to further validate our analysis.

3.2. Source-Free Domain Adaptation

The CoNMix architecture attempt to solve two prob-
lems. Firstly, It can solve source-free Single-Target Domain
Adaptation (SF-STDA) by utilizing Stage-1 and Stage-2 of
the Architecture (Fig. 2). Secondly, by introducing Stage-3,

Figure 3: t-SNE plots (a) and (b) are t-SNE plots using features
of Cl images obtained by passing through Rw → Cl adapted model
for ResNet50 and VT respectively.

Figure 4: Plot compares A-distance of VT and RN50 backbone
for various Office-home splits (e.g., AC represents adaptation from
Art to Clipart). Small A-distance results in better feature align-
ment. VT features consistently shows smaller A− distance.

CoNMix can solve source-free Multi-Target Domain Adap-
tation (SF-MTDA) effectively.

3.2.1 Source Training

We aim to learn a model fs(θs, ϕs) : XS → YS where
θs, ϕs are parameter for backbone network and classi-
fier network respectively. Differing from traditional ap-
proaches, additional fully connected layer and batch norm
layer was used after the backbone for better alignment of
the projected features. We use VT backbone due to it’s dis-
cussed benefits over ResNet. We sample (XS , YS) ∼ DS
and train the complete network using cross-entropy LCE

loss as shown in Eq.1.

LCE = −E(xs,ys)

∑K

k=1
qk log δk(fs(xs : θs, ϕs)) (1)

where δk(a) = exp(ak)∑
i exp(ai)

denotes the k-th element in the
soft-max output of a K-dimensional vector a, and q is the
one-of-K encoding of ys where qk is ‘1’ for the correct class
and ‘0‘ for the rest. In practice, we have used label smooth-
ing [32] in place of one-hot encoding to avoid the network
being overconfident. It helps to improve model generaliza-
tion ability. qk will be replaced with qlsk = (1−α)qk+α/K
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where qlsk is the smoothed label and α is the smoothing pa-
rameter set to 0.1. Refer Supp. material for more discus-
sion on effect of smooth labels on adaptation. Post source
training, we freeze the classifier network. Please note that
the labeled source sample will not be available for the next
target adaptation stage because we are trying to solve the
source-free problem.

3.2.2 Source-free Single-target Domain Adaptation

We have access to sampled unlabeled target data (XT ) ∼
DT and source trained model fs(θs, ϕs). Stage-2 aims to
train T independent single source to single target domain
adaptation networks while having no access to source data
where T is a total number of target domains. Following
[25], we propose to freeze the classifier parameter ϕs and
update the backbone parameter θt which was initialized
from source backbone parameter θs. We use LPl

CE , LNM

and LCons for updating the backbone weights using back-
propagation with SGD [23].
Nuclear-norm Maximization (NM): Many label insuffi-
cient situations such as Semi-supervised learning [60] or
Unsupervised learning [13] suffers from higher data den-
sity near decision boundary, which results in poor class-
discriminability. Directly minimizing the Shannon entropy
[44] leads to uniformly smooth representation which im-
proves discriminability by pushing samples to one of the
class labels, however, it does not ensure diversity and may
result in undesirable solution where all the minority class
is pushed to the nearest majority class. Different vari-
ants such as Information maximization (IM) loss [16] ad-
dress this issue with limited success. Nuclear-norm maxi-
mization (NM) [5] uses batch-statistics to achieve function-
smoothing only in the required dimensions and to the re-
quired extent leading to superior representation therefore,
it improves both class-discriminability as well as predic-
tion diversity in a unified way making it desirable for SF-
SMTDA tasks.
Class-discriminability in NM: We define A ∈ RB×K

to be the classification-response matrix A, where B is the
batch size, and K is the number of classes. Frobenius norm
∥A∥F is defined in Eq.2.

||A||F =

√√√√ B∑
i=1

K∑
j=1

|Aij |2 (2)

where 0 ≤ Aij ≤ 1 and
∑K

j=1(Aij) = 1. We can obtain
the upper bound of ||A||F as shown in Eq.3

||A||F ≤

√√√√ B∑
i=1

(

K∑
j=1

Aij)(

K∑
j=1

Aij) =

√√√√ B∑
i=1

(1.1) =
√
B

(3)

Upper bound in ||A||F corresponds to the one-hot predic-
tion for each sample in a batch. Therefore, maximizing
||A||F leads to improved class-discriminability. Cui et al. in
[7] proved that maximum value of ∥A∥F comes where en-
tropy achieves its minimum value.
Prediction-diversity in NM: If we define ∥A∥∗ as nuclear
norm and r as the rank of A then Recht et al. [38] provide
relation between ||A||F and ||A||∗ , which we show in Eq.
4. We provide proof in supp. material.

∥A∥F ≤ ∥A∥∗ ≤
√
r∥A∥F (4)

If K < B, then the r approximates the number of classes
present in the batch by finding the linearly independent col-
umn vectors. Therefore, improving the rank of A is de-
sirable. Our objective is to maximize the rank (r) of A
which can be achieved by maximizing the nuclear-norm of
it. Inequality shown in Eq.4 suggest that we can achieve
the desired objective by maximizing the ||A||F because it
also provides the lower bound of ||A||∗. Cui et al. shows
that the approximation of NM using batch Frobenius norm
improves the model performance and reduces the training
time [6]. Hence, we define the Nuclear-Norm loss using its
Frobenius approximation as shown in Eq.5.

LNM = −∥A∥F = −∥(ft(XB
T ; θt, ϕs)∥F (5)

where ∥(ft(XB
T ; θt, ϕs)∥F is Frobenius norm of

classification-response matrix thereby minimizing LNM

improves class-discriminability as well as prediction-
diversity.
Initial Pseudo label (PL): To improve model performance
using self-training [45], we propose to use Pseudo label
based cross-entropy loss (LPl

CE in Eq.10). Pseudo labels are
inherently noisy, so directly computing target pseudo labels
using source trained model is not desirable [40]. We use it
along with nuclear norm maximization, which acts as soft
regularization for self-training. We follow an iterative strat-
egy similar to Liang et al. [25] to obtain pseudo labels. We
get the initial class c(init)k center using weighted k-means as
shown in Eq.6

c
(init)
k =

∑
xt∈XT

δk(ft(xt; θt, ϕs)) gt(xt; θt)∑
xt∈XT

δk(ft(xt; θt, ϕs))
(6)

We can find the pseudo label ∀xt ∈ XT based on their maxi-
mum cosine similarity with the initial class-center as shown
in Eq.7.

ŷinitt = argmax
k

⟨gt(xt; θt), c
(init)
k ⟩

∥gt(xt; θt)∥∥c(init)k ∥
(7)

This allows us to assign each target sample to only one
class. We can find the updated class center using the frac-
tion of sample belonging to each class. We use Eq.6 and
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Figure 5: Plot for Nuclear-Norm Maximization (NM) vs. In-
formation Maximization (IM) for Ar→Cl. Left and Right plot
compares target accuracy and pseudo label accuracy for IM and
NM with and without pseudo-label refinement (PLR) respectively.
NM+PLR used in CoNMix provides the best performance.

Eq.7 in an iterative manner to find the updated pseudo label.

Pseudo Label Refinement (PLR): In order to reduce the
noise in pseudo label, we refine pseudo labels using the
temporal ensemble and consensus based weighting scheme
[59]. Intuitively, If a pseudo label is consistent in two con-
secutive epochs then it should get more weight and vice-
versa. Let ỹn−1

z and ỹnz are pseudo label for zth sample in
epoch n and n− 1 respectively. Let W ∈ RK×K is cluster
consensus matrix where, K is the total number of classes. If
total number of samples in ith class at nth epoch is denoted
as In(i) then W (i, j) is shown in Eq.8

W (i, j) =
|In−1(i) ∩ In(j)|
|In−1(i) ∪ In(j)|

∈ [0, 1] (8)

Where |.| is cardinality of a set. Row normalized W (i, j)
captures the similarity between ith class and jth class in
epoch n − 1 and n. Ideally, off-diagonal entries of matrix
W should be close to zero. Finally, the updated pseudo label
is shown in Eq.9.

ŷnz = αỹnz + (1− α)WT ỹn−1
z (9)

where α is a hyper-parameter. We use refined pseudo label
to calculate the LPl

CE loss as shown in Eq.10 where ŷ is re-
fined pseudo label and 1[k=ŷt] is indicator function. Fig. 5
shows the effectiveness of PLR when used with NM and IM
loss.

LPl
CE = −E(xt,ŷt)∈XT ×ŶT

∑K

k=1
1[k=ŷt] log δk(ft(xt; θt, ϕs))

(10)
Consistency Loss: For learning domain invariant represen-
tation, we propose weak and strong augmentation of the
target image and seek consistent representation across the
two label preserving augmentations as shown in Fig. 2(b).
Let, XB

tw, X
B
ts are weak and strong augmentation for target

batch XB
t and Y B

tw, Y
B
ts are respective model softmax out-

put i.e Y B
tw = δk(ht(gt(X

B
tw)) and Y B

ts = δk(ht(gt(X
B
ts)).

We define an expectation ratio as Eratio = E[Y all
tw ]/E[Y B

tw].

Y B
tw is then normalized as Ŷ B

tw = δk(Y
B
twEratio) such that

the row sum is 1. Ŷ B
tw acts as soft label ground truth for

strong augmented output Y B
ts and we minimize soft label

based cross-entropy loss as shown below.

Lcons = −E(yts)∈Y B
ts

∑K

k=1
ŷktw log ykts (11)

Eratio ensures that first order batch statistic matches with
first order overall target data statistics. Overall loss for
Stage-2 training is given by Ltotal

Ltotal = λ1LNM + λ2LPl
CE + λ3Lcons (12)

where λ1, λ2, λ3 are weights associated w.r.t three losses
LNM ,LPl

CE and Lcons respectively. In Fig. 5 we show that
accuracy of pseudo label increases as training progresses
which will result in improved adaptation. IM loss has been
used in source-free domain adaptation task [25, 26] whereas
NM loss is not explored for this task.

3.2.3 Source-free Multi-target Domain Adaptation

For extending CoNMix for SF-MTDA task, we propose a
simple yet effective knowledge distillation based approach
to transfer knowledge from all SF-STDA trained models
(teachers) into a single student network (Stage 3 of Fig.
2). Seminal work in KD by Hinton et al. [15] showed that
the high temperature distillation is equivalent to minimizing
LKD = 0.5(Zt − Zl)

2 loss which pays significant atten-
tion in matching the logits from two networks. However,
simply using Hinton Loss tends to overfit the teacher pre-
dictions. To avoid memorization and sensitivity to training
examples, we propose MixUp Knowledge Distillation in-
spired from Zhang et al. work [58]. We first initialize a
student model gl(x; θl) with ImageNet trained weights. We
store target image and it’s corresponding pseudo label gen-
erated by each teacher network. An intermediate virtual do-
main image is generated by taking the convex combination
of two randomly sampled images x̃ij = λxi + (1 − λ)xj

and ỹij = λyi + (1 − λ)yj . Here (xi, yi) represents im-
age and pseudo label pairs sampled from ith domain. Here
λ ∈ [0, 1]. (x̃ij , ỹij) represents a sample from an inter-
mediate domain. We use all such pairs to train the student
network using as a knowledge distillation loss as shown in
Eq. 13. Derivation for Eq. 13 is shown in supplementary
(see Section 2.4).

LMKD = LPl
CE(x̃ij , ỹij)

LMKD = λ× LPl
CE(x̃ij , yi) + (1− λ)× LPl

CE(x̃ij , yj) (13)

Intermediate domain acts as an implicit regularizer which
helps to avoid over-fitting and generalize well on unlabeled
target domains (Refer split domain test in supp. material).
The proposed offline knowledge distillation allows us to
distil knowledge from the best available STDA model be-
cause we aren’t training teachers and students simultane-
ously. We can make inference with the final student model
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Method SF Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Source train (RN50) ✓ 45.1 67.5 74.7 52.4 61.7 65.7 52.6 39.7 71.8 64.4 44.5 77.4 59.8
G-SFDA (RN50) [55] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
CPGA (RN50) [37] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
SHOT (RN50) [25] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
SHOT++ (RN50) [26] ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
CoNMix (RN50) ✓ 57.6 77.2 82.2 68.4 78.8 78.3 67.1 54.7 81.5 74.0 60.2 85.3 72.1

Source train (DeiT-S) ✓ 51.7 74.2 79.3 62.6 72.5 74.7 64.0 47.5 79.6 69.9 49.8 80.9 67.2
CDTrans (DeiT-S) [53] ✗ 60.6 79.5 82.4 75.6 81.0 82.3 72.5 56.7 84.4 77.0 59.1 85.5 74.7
SHOT*(DeiT-S) [25] ✓ 60.6 82.6 83.2 74.2 83.2 81.4 71.8 59.2 83.3 74.9 60.6 86.1 75.1
SHOT++*(DeiT-S) [26] ✓ 62.6 83.4 83.9 74.7 83.3 82.7 72.2 59.0 83.7 74.7 60.6 86.7 75.6
CoNMix (DeiT-S) ✓ 63.4 83.5 84.6 73.7 83.3 82.2 73.4 59.9 84.4 75.6 62.3 85.9 76.0

Table 1: Accuracy (%) on Office-Home for SF-STDA. Methods that uses DeiT-S are compared within shaded region. * represents
experiments implemented by us. CoNMix (DeiT-S) achieves highest STDA average accuracy among all source-free methods.

without needing domain labels. Refer suppl. material for
more direct analysis on how multi domain features align.

Method SF A→D A→W D→A D→W W→A W→D Avg

Source train (RN50) ✓ 79.3 75.8 63.8 95.5 63.8 99.0 79.5
MA(RN50) [24] ✓ 92.7 93.7 75.3 98.5 77.8 99.8 89.6
CPGA(RN50) [37] ✓ 94.4 94.1 76.0 98.4 76.6 99.8 89.9
SHOT(RN50) [25] ✓ 94.0 90.1 74.7 98.4 74.3 99.9 88.6
SHOT(RN50)++ [26] ✓ 94.3 90.4 76.2 98.7 75.8 99.9 89.2
CoNMix (RN50) ✓ 88.8 94.0 77.3 98.1 75.2 100.0 88.9

Source train (DeiT-S) ✓ 79.9 82.3 70.3 96.6 71.2 99.8 83.3
CDTrans (Deit-S) [53] ✗ 94.6 93.5 78.4 98.2 78.0 99.6 90.4
CoNMix (DeiT-S) ✓ 90.6 94.1 77.2 98.1 77.0 99.6 89.4

Table 2: Accuracy (%) on Office-31 for STDA. Methods within
shaded regions use DeiT backbone.

4. Experiments
We conducted experiments using four popular bench-

marking datasets: Office-31 [42], Office-Home [51] and
large-scale like DomainNet [34] and VisDA [36] dataset.
After analyzing the benefits of VT over ResNet, we ex-
tended our analysis using VT as a backbone for CoNMix.
For a fair comparison, we conducted experiments on Office-
31 and Office-Home using a smaller VT network (DeiT-S
[48]) with 22M parameter for both student’s and teacher’s
backbone because DeiT-S is comparable to ResNet50 (25M
parameter). For DomainNet, we used Hybrid ViT [8]
for teacher models in Stage-1 and Stage-2. In Stage-3,
ResNet101 is used as student model. Please refer to suppl.
for additional training details.

4.1. Evaluation

Results for SF-STDA: We use Stage-2 of our proposed
framework CoNMix for the SF-STDA. Table.1 and 2 illus-
trates results obtained for SF-STDA task for all combina-
tions of domain pairs in Office-Home and Office-31. Our
method outperforms existing source-free SOTA results with
DeiT backbone in the case of the Office-Home dataset by a
margin of 0.4%. We have achieved significant improve-
ment for STDA in DomainNet by 6.0% (Refer supp. mate-
rial table 1). Existing works [56, 41] only provide results
for Real and Painting without comparing Quickdraw.

Office-Home
Method SF Ar Cl Pr Rw Avg

Source only (RN50) ✓ 62.5 61.2 55.1 61.8 60.1
Source only (DeiT-S) ✓ 68.4 71.2 63.6 66.4 67.4
Domain-Aggregation ✓ 69.5 77.2 66.4 67.0 70.0
SHOT STDA in Stage-3 ✓ 73.1 77.7 69.2 72.4 73.1
CoNMix (ours) ✓ 75.6 81.4 71.4 73.4 75.4

Table 3: SF-MTDA baselines. In Domain-Aggregation, we com-
bines multiple target domains and treat it as a single domain. In
SHOT STDA, we initialization for student network using SF-STDA
SHOT weight. Highest performance for CoNMix highlights the
importance of each design component in SF-MTDA.

We have compared against these works in Table.4. How-
ever, we also report STDA accuracy for all other possible
splits in suppl. material. Even though CoNMix is source-
free, we outperform non source-free method [53] by 0.3%
which showcases the efficacy of the proposed approach. We
have included SF-STDA results for VisDA datasets in suppl.
material (Table 4).
Results for SF-MTDA: There are no existing comprehen-
sive studies related to SF-MTDA. Therefore, we formulated
few baselines to evaluate SF-MTDA and reported the results
in the Table. 3. We have considered source only training as
a initial baseline, where we train on only on source dataset
and evaluate its performance on all the target domains. For
source train row in Table. 3 Art (Ar) represents training on
Ar domain and testing on remaining domains. From Table.
3, we can observe that we achieve test accuracy of 60.1 %

DomainNet
Model SF R → S R → C R → I R → P P → S P → R P → C P → I Avg (%)

CDAN [29] ✗ 40.7 51.9 22.5 49.0 39.6 57.9 44.6 18.4 40.6
HGAN [56] ✗ 34.3 43.2 17.8 43.4 35.7 52.3 35.9 15.6 34.7
CDAN + DCL [41] ✗ 45.2 58.0 23.7 54.0 45.0 61.5 50.7 20.3 44.8
D-CGCT [41] ✗ 48.4 59.6 25.3 55.6 45.3 58.2 51.0 21.7 45.6

CoNMix (ours) ✓ 52.9 63.5 27.7 59.5 53.3 71.8 59.7 24.0 51.6

Table 4: % Accuracy for SF-STDA on DomainNet Dataset.
Our source-free method (Shaded region) outperforms the exist-
ing SOTA with significant margin even though they access source-
dataset during target adaptation.
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and 67.4% using ResNet and DeiT-S backbone respectively.
Since, these results do not incorporate any adaptation, there-
fore, performing any adaptation using these models should
lead to improvement in accuracy. Secondly, we considered
aggregating all the target domain datasets together and train
SF-STDA model. We can see its performance in Row-3
(Domain-Aggregation) of Table. 3 is better than source only
but lesser than CoNMix. It shows that the proposed train-
ing strategy for CoNMix utilises domain information effec-
tively. In another baseline (Row-4: SHOT STDA in Stage-3,
we perform student training using SHOT SF-STDA weights
in place of CoNMix SF-STDA weights. We can observe
that its performance lies between domain aggregation and
CoNMix. Therefore, the main components in SF-MTDA
such as proposed teacher training and MixUp plays an im-
portant role in achieving the desired result.

Our SF-MTDA results on popular benchmark datasets
will serve as a new baseline for research in this direction.
Each cell in Table 5 and 6 reports classification accuracy of
model which is adapted from Source Domain → Rest of Tar-
get Domains. SF represents whether the algorithm supports
source-free method or not. We fine-tune the student net-
work using MKD objective on all the target domains. Ex-
periment with ResNet-101 provides initial baseline which
consists of source training using ResNet-101 backbone and
directly evaluating its performance on target dataset with-
out performing any adaptation. Our source-free method
achieves a significant improvement of 5.2% over existing
SOTA methods on the Office-Home dataset even though
other methods access the labeled source data during adapta-
tion. Our experiments with DomainNet dataset can be used
to validate the scalability of our SF-MTDA (Table 6). We
are the first to provide results for large-scale DomainNet
dataset for both SF-STDA and SF-MTDA.

Office-31 Office-Home
Model SF A D W Avg(%) Ar Cl Pr Rw Avg(%)

RevGrad [11] ✗ 78.2 72.2 69.8 73.4 58.4 58.1 52.9 62.1 57.9
CDAN [29] ✗ 93.6 80.5 81.3 85.1 59.5 61.0 54.7 62.9 59.5
AMEAN [4] ✗ 90.1 77.0 73.4 80.2 64.3 65.5 59.5 66.7 64.0
MT-MTDA [33] ✗ 87.9 83.7 84.0 85.2 64.6 66.4 59.2 67.1 64.3
HGAN [56] ✗ 88.0 84.4 84.9 85.8 - - - - -
CGCT [41] ✗ 93.9 85.1 85.6 88.2 67.4 68.1 61.6 68.7 66.5
D-CGCT [41] ✗ 93.4 86.0 87.1 88.8 70.5 71.6 66.0 71.2 69.8

Source train (RN50) ✓ 76.3 68.7 67.0 70.7 62.5 61.2 55.1 61.8 60.1
Source train (DeiT-S) ✓ 81.4 76.1 75.5 77.7 68.4 71.2 63.6 66.4 67.4
CoNMix (ours) ✓ 92.4 81.8 80.4 84.9 75.6 81.4 71.4 73.4 75.4

Table 5: % Accuracy for Office-31 and Office-Home dataset for
SF-MTDA. CoNMix outperforms SOTA in all possible splits of
Office-Home.

Ablation for loss function: For better understanding of the
effect of each loss function, we conducted an ablation study
for different losses and show the result in Table 7. If we use
LPl

CE or LCons individually, the performance is very poor.
We observe that the LNM is the most important loss com-

Office-Caltech
Method SF A C D W Avg

ResNet-101 [14] ✗ 90.5 94.3 88.7 82.5 89.0
SE [9] ✗ 90.3 94.7 88.5 85.3 89.7
MCD [43] ✗ 91.7 95.3 89.5 84.3 90.2
DANN [10] ✗ 91.5 94.3 90.5 86.3 90.7
DADA [35] ✗ 92.0 95.1 91.3 93.1 92.9

Source only ✓ 90.7 96.1 90.2 90.9 92.0
SHOT ✓ 96.2 97.3 96.3 96.2 96.5
CoNMix (ours) ✓ 96.4 97.4 96.9 96.8 96.9

DomainNet
Method SF Cli. Inf. Pai. Qui. Rea. Ske. Avg

SE [9] ✗ 21.3 8.5 14.5 13.8 16.0 19.7 15.6
MCD [43] ✗ 25.1 19.1 27.0 10.4 20.2 22.5 20.7
DADA [35] ✗ 26.1 20.0 26.5 12.9 20.7 22.8 21.5
CDAN [29] ✗ 31.6 27.1 31.8 12.5 33.2 35.8 28.7
MCC [18] ✗ 33.6 30.0 32.4 13.5 28.0 35.3 28.8
CGCT [41] ✗ 36.1 33.3 35.0 10.0 39.6 39.7 32.3
D-CGCT [41] ✗ 37.0 32.2 37.3 19.3 39.8 40.8 34.4

Source (RN101) ✓ 25.6 16.8 25.8 9.2 20.6 22.3 20.1
CoNMix (ours) ✓ 41.8 29.2 39.9 17.5 32.7 41.2 33.7

Table 6: Classification accuracy (%) on Office-Caltech and Do-
mainNet for MTDA. Methods in shaded region are source-free.

ponent in overall optimization objective. Relative gains due
to LPl

CE and Lcons may be smaller but we achieve best per-
formance when all the components are present. The usage
of both LPl

CE and Lcons together is not expected to handle
noise present in pseudo label during training and it will de-
teriorate the model performance. These observations are
consistent across various splits. We add additional analysis
on pseudo label refinement and loss function in supplemen-
tary material (supp. Fig. 1 & 5).

LNM LCons LPl

CE Ar→Cl Cl→Ar Pr→Cl Cl→Pr Rw→Cl Cl→Rw

✓ 6.3 15.7 8.8 5.5 2.9 13.9
✓ 3.8 6.7 4.1 1.2 4.3 5.4

✓ 59.5 71.1 55.9 78.6 58.3 78.7
✓ ✓ 60.3 72.7 57.6 80.4 59.8 78.6
✓ ✓ ✓ 63.8 73.7 59.9 83.3 62.3 82.2

Table 7: Ablation for target accuracy when various losses are
introduced sequentially across various splits of Office-Home.

5. Conclusion
In this work, we introduced a novel framework (CoN-

Mix) for solving source-free Single and Multi-target domain
adaptation. We achieved SOTA results for various datasets
and in some cases CoNMix performed better than even non-
source free methods. We provided baseline for source-free
STDA and MTDA methods on DomainNet for the first time,
which can help the domain adaptation research community
further investigate this novel direction. Further, we pro-
vided empirical insights along with quantitative and qual-
itative results highlighting the benefit of VT and suggest
that VT could be a potential choice for feature extractor in
designing novel domain adaptation algorithms. We showed
that our design choice, such as Nuclear-Norm Maximiza-
tion, consistency constraint and label refinement mitigate
uncertainty associated with noisy labels. CoNMix demon-
strated effectiveness through various experimental findings
across datasets, therefore we are keen to extend this further
for more challenging source-free online adaptation where
target domains are dynamic and continuously changing.
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