This WACYV 2023 paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

FLOAT: Fast Learnable Once-for-All Adversarial Training for Tunable
Trade-off between Accuracy and Robustness

Souvik Kundu!?* Sairam Sundaresan', Massoud Pedram?, Peter A. Beerel?

Intel Labs, USA

Abstract

Existing models that achieve state-of-the-art (SOTA)
performance on both clean and adversarially-perturbed
images rely on convolution operations conditioned with
feature-wise linear modulation (FiLM) layers. These lay-
ers require additional parameters and are hyperparameter
sensitive. They significantly increase training time, mem-
ory cost, and potential latency which can be costly for
resource-limited or real-time applications. In this paper,
we present a fast learnable once-for-all adversarial train-
ing (FLOAT) algorithm, which instead of the existing FiLM-
based conditioning, presents a unique weight conditioned
learning that requires no additional layer, thereby incur-
ring no significant increase in parameter count, training
time, or network latency compared to standard adversar-
ial training. In particular, we add configurable scaled noise
to the weight tensors that enables a trade-off between clean
and adversarial performance. Extensive experiments show
that FLOAT can yield SOTA performance improving both
clean and perturbed image classification by up to ~6% and
~10%, respectively. Moreover, real hardware measurement
shows that FLOAT can reduce the training time by up to
1.43x with fewer model parameters of up to 1.47x on iso-
hyperparameter settings compared to the FiLM-based al-
ternatives. Additionally, to further improve memory effi-
ciency we introduce FLOAT sparse (FLOATS), a form of
non-iterative model pruning and provide detailed empiri-
cal analysis in yielding a three-way accuracy-robustness-
complexity trade-off for these new class of pruned condi-
tionally trained models.

1. Introduction

With the growing usage of DNNs in safety-critical and
sensitive applications including autonomous-driving [4]
and medical image analysis [11], it has become crucial that
they have high classification accuracy on both clean and

*Part of the work was done when the first author was with USC.

*Universiy of Southern California, Los Angeles, USA

{souvikk.kundu, sairam.sundaresan}@intel.com

{pedram, pabeerel}@usc.edu

ResNet34 on CIFAR-10

WRN16-8 on SVHN
[] 3 [

100 WRN40-2 on STL10

._.
o
S

100{ o

g LS L] 3 u . e
< g0 < < 8o
> Performance: > 80 Perk e > Performance;
€ go| JParams:269x] uptd ~3%] @ Params: 2.5x |, UPto Lg 601 params. 24X upto~10%
g T | g oot 340 BT
< < Params: 14x], | &)
< a0 (a) Pamslaand | < < Params: 1.43x [
g 7 40 (6 o 720 Gl
[[[

20 ® , °

0.2 1.0 9.2 1.0 0.2 1.0

4 06 08 04 06 08
Normalized memory Normalized memory
FLOAT RA-A=0 (ours) m FLOATS-i CA-A=0 (ours)
FLOAT RA-A=1 (ours) FLOATS-i CA-A=1 (ours)

04 06 08

Normalized memory
® OATCAA=0 @ OATRAA=0 @ FLOAT CA-A=0 (ours)
® OATCAA=1 @ OATRAA=1 FLOAT CA-A=1 (ours)

FLOATS-/ RA-A=0 (ours)
FLOATS-/ RA-A=1 (ours)

Figure 1. Normalized memory vs. test accuracy for FLOAT and
FLOAT with irregular sparsity (FLOATS-%) compared to the exist-
ing state-of-the-art OAT for (a) ResNet34, (b) WRN16-8, and (c)
WRN40-2, respectively. CA and RA represent clean-image clas-
sification accuracy and robust accuracy (accuracy on adversarial
images), respectively. For each model we normalized the memory
requirement with the maximum memory needed to store corre-
sponding model.

adversarially-perturbed images [43]. To improve the DNN
model performance against these adversarial samples, vari-
ous defense mechanisms have been proposed including hid-
ing gradients [41], adding noise to parameters [15], and de-
tection of adversaries [32]. In particular, adversarial train-
ing [31, 17, 26] has proven to be a consistently effective ap-
proach in achieving state-of-the-art robustness. These de-
fenses, however, come at various costs. Firstly, most of
these methods suffer from increased training times due to
the additional back-propagation overhead caused by gen-
erating perturbed images. Secondly, adversarial defenses
sometimes cause a significant drop in clean-image accuracy
[42], highlighting an accuracy-robustness trade-off that has
been explored both theoretically and experimentally [39],
[42], [37]. Moreover, the defenses rely on several hyperpa-
rameters whose settings force the model to work at a spe-
cific point along this trade-off. This is disadvantageous in
applications in which the desired trade-off depends on con-
text [43].

A naive solution to this problem is to use multiple mod-
els trained with different priorities between clean and ad-
versarial images. This however, comes with the heavy cost
of increased training time and inference memory. Alterna-
tively, recent work has proposed training a once-for-all ad-
versarial network (OAT) that supports conditional learning

2349

[43], enabling the network to adjust to different input distri-
butions. In particular, after each batch-normalization (BN)
layer, they add a feature-wise linear modulation (FiLM)
module [35] whose weights are controlled by a parame-
ter A\. For inference, the user sets A\ to enable an in-situ
trade-off between accuracy and robustness. The disadvan-
tage with this approach is that the added FiLM modules in-
crease the parameter count, training time, and network la-
tency, limiting applicability in resource-constrained, real-
time applications. Moreover, our investigation shows that
the CA-RA performance of OAT is heavily dependent on
the choice of training hyperparameter As (viz, the accuracy
with ResNet34 on CIFAR-10 varies up to 21.97%).

Our contributions. In this paper, our contributions are
two-fold. First, in view of the above concerns, we present a
fast learnable once-for-all adversarial training (FLOAT).
In FLOAT, we train a model using a novel mechanism
wherein each weight tensor of the model is transformed by
conditionally adding a noise tensor based on a binary pa-
rameter J, yielding state-of-the-art (SOTA) test accuracy for
clean and adversarial images by in-situ setting A = 0.0 and
1.0, respectively. For inference, we further show that model
robustness can be correlated to the strength of the noise-
tensor scaling factor. This motivates a simple yet effective
noise re-scaling approach controlled by an user-provided
floating-point parameter that can help the user to have a
practical accuracy-robustness trade-off. Because FLOAT
does not require additional layers to perform conditioning,
it incurs no increase in latency and causes only a negligible
increase in parameter count compared to the baseline mod-
els. Moreover, compared to OAT, FLOAT training is up to
1.43x faster, attributable to the fact that FLOAT does not
require training with intermediate fine-grained values of As.

Secondly, for efficient deployment of the models to
resource-limited edge devices, we present FLOAT sparse
(FLOATS), an extension of FLOAT, that not only provides
adaptive tuning between RA and CA, but also facilitates
high levels of model compression (via pruning) without
incurring any additional training time. In particular, we
propose and empirically evaluate the efficacy of FLOATS
with both irregular and structured channel pruning, namely
FLOATS-: and FLOATS-c, respectively. However, despite
the potential speed-up on underlying hardware [30], chan-
nel pruning often costs classification performance [24, 23]
because of its strictly constrained form of sparsity. We thus
extend FLOATS to propose a globally-structured locally-
irregular hybrid sparsity. In particular, we perform channel
reduction through network slimming [48] reducing latency
and memory usage, and use irregular pruning in conjunction
with this to further reduce memory cost. These new models
not only provide compression, but enable an in-situ infer-
ence trade-off across accuracy, robustness, and complexity.

To evaluate the merits of FLOAT, we conduct extensive

experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet,
ImageNet, SVHN, and STL10 with ResNet (on CIFAR,
Tiny-ImageNet and ImageNet), WRN16-8, WRN40-2, re-
spectively. As shown in Fig. 1, compared to OAT, FLOAT
can provide improved accuracies of up to ~6%, and ~10%,
on clean and perturbed images, respectively, with reduced
parameter budgets of up to 1.47x. FLOATS can yield even
further parameter-efficiency of up to 2.69x with similar
CA-RA benefits.

2. Preliminaries
2.1. Notation

Consider a model ® with L layers parameterized by ©
that learns a function fg(.). For a classification task on
dataset X with distribution D, the model parameters ® are
learned by minimizing the empirical risk (ERM) as follows

L(f2(z, ©:1)), e))

where ¢ is the ground-truth class label, x is the vectorized
input from X, and £ is the cross-entropy loss function.

2.2. Robust Model Training

Several forms of adversarial training (AT) have been pro-
posed to improve robustness [31], [36], [5]. They use clean
as well as adversarially-perturbed images to train a model.
Projected gradient descent (PGD) attack, recognized as one
of the strongest L., adversarial example generation algo-
rithms [31], is typically used to create adversarial images
during training. The perturbed image for a PGD-k attack
with £ as the number of steps is given by

&k = ProjPe(ac)(:ﬁkil +oXx Sign(vz‘c(ﬂb(ikila O; t)))
2)

Here, the scalar € corresponds to the perturbation constraint
that determines the severity of the perturbation. Proj
projects the updated adversarial sample onto the projection
space P.(x), which is the e-L, neighbourhood of the be-
nign sample x!. o is the attack step-size. For PGD-AT, the
model parameters are then learned by the following ERM

(1= NL(fo(x,0;1) + \L(fo(2,0;1))], (3)

,Cc »CA

where Lo and L4 correspond to the clean and adver-
sarial image classification loss components, respectively,
weighted by the scalar A\. Hence, for a fixed A\ and adversar-
ial strength, the model learns a fixed tradeoff between accu-
racy and robustness. For example, an AT with \ value of 1

Note that the generated @ are clipped to a valid range which, for our
experiments, is [0, 1].

2350

(train and
inference
Hyperparam.)

OAT Hyperparam.) FLOAT

(a)

5)=[0,0.2,0.7,1.0] $=(0,0.8,1.0]
$1=[0,0.2,0.3] $=[0,1.0]

ResNet34 on CIFAR-10
e 11.03 =+~

50 ;_Ea éc’i
1.84
’ 1

IFM: Input feature map
FiLM: Feature-wise linear
ReLU: Rectified linear unit

[BN: Batch-normalization layer ’

@ Elementwise addition SRA

<
o 20
10 \\‘ 21.1
1

7 75

[@ Convolution operation

80 85 95
(b) CA (%)

Figure 2. (a) Comparison of a conditional layer between existing FiLM based approach in OAT and proposed approach in FLOAT. (b)
Impact of various training A choices on the conditionally trained OAT. During testing we use Sy = [0,0.2,0.7, 1.0].

will allow the model to completely focus on perturbed im-
ages, resulting in a significant drop in clean-image classifi-
cation accuracy. Another strategy to improve model robust-
ness is through the addition of noise to the model weight
tensors. For example, [15] introduced the idea of noisy
weight tensors with a learnable noise scaling factor and im-
proved robustness against gradient-based attacks. However,
this strategy also incurs a significant drop in clean image
classification accuracy.

2.3. Conditional Learning

Conditional learning involves training a model with mul-
tiple computational paths that can be selectively enabled
during inference [44]. For example, [40], [18], [21] en-
hanced a DNN model with multiple early exit branches at
different architectural depths to allow early predictions of
various inputs. [48] introduced switchable BNs that enable
the network to adjust the channel widths dynamically, pro-
viding an in-situ efficient trade-off between complexity and
accuracy. Recently, [6] used switchable BNs to support run-
time bit-width selection of a mixed-precision network. An-
other conditional learning approach used feature transfor-
mation to modulate intermediate DNN features [19], [47],
[10], [43]. In particular, [43] used FiLM [35] to adaptively
perform a channel-wise affine transformation after each BN
stage that is controlled by the hyperparameter A of Equation
3. Such conditional training that is able to yield models that
can provide SOTA CA-RA trade-off on various A choices
during inference are popularly known as Once-for-all ad-
versarial training (OAT) [43].

Limitations of FiLM-based model conditioning. Each
FiLM module in OAT is composed of two fully-connected
(FC) layers with leaky ReLU activation functions and di-
mensions that are integer multiples of the output feature-
map channel size. Despite requiring a relatively small num-
ber of additional FLOPs, the FiILM module can significantly
increase the number of model parameters and associated
memory access cost [16]. Moreover, the increased num-
ber of layers can significantly increase training time and in-
ference latency [38], thus potentially prohibiting its use in
real-time applications.

Additionally, we investigated OAT’s performance on the
choice of the training A set (S), as shown in Fig. 2(b).

Interestingly, the CA and RA can vary up to 11.03% and
21.97%, respectively. This implies that,OAT’s performance
may vary significantly based on both the size and specific
values in Sy. In particular, the choice of S can signifi-
cantly impact the robustness at A = 0, sometimes leading
to no robustness. This implies that to obtain models that
yield near optimal CA-RA trade-offs, S must be carefully
chosen, implying the need for an additional compute-heavy
hyperparameter search or prior user expertise.

3. Proposed Approach
3.1. FLOAT

This section details our FLOAT training strategy. We
refer to the conditions for a model being trained on either
clean or adversarial images as the two training boundary
conditions. During training, we use a binary conditioning
parameter \ to force the model to focus on either of these
two conditions, removing the need to search a more fine-
grained set of \ choices.

To formalize our approach, consider a L-layer DNN pa-
rameterized by © and let @' € R¥' k' xCixC; represent the
layer [weight tensor, where C! and C! represent the number
of filters and channels per filter, respectively, and k' repre-
sents the kernel height/width. We transform each parameter
of 8, by adding a noise tensor n' € RK' XK' % CixCy gealed
by a parameter o and conditioned by), as follows,

0'=0'+X-al-n's n'~N(0,(0")?). @

Note that the standard deviation o of the noise matches that
of its weight tensor. A = 0 and 1 generate the original
weight tensor and its noisy variant, respectively.

As illustrated in Algorithm 1, we train our models by
partitioning an image batch B into two equal sub-batches
B1 and Bs, one with clean (I F'M) images and the other
with perturbed variants (1 F'M 4) (lines 5 and 7 in Algorithm
1). We use the PGD-7 attack to generate perturbations on
the image batch Bs. As illustrated in Fig. 2(a), the original
and noisy weight tensors are convolved only with clean and
perturbed variants, respectively. Note that the noise scal-
ing factor o! (line 10) is trainable and its magnitude can
be different in each layer to minimize the total training loss.
The post-convolution feature maps for clean and adversarial

2351

increasi® 3 A=10 [3J A, =04
Anct® &> n= L. n = 0.
80 3 2,=0.8 [A,=02
= 2, =06
% ~easing

Test accuracy (%)

=]

%
40
0 FGSM PGD

Clean
Evaluation type

Figure 3. Post-training model performance on both clean and
gradient-based attack-generated adversarial images, with different
noise re-scaling factor A,,.

inputs can differ significantly in their respective mean and
variances [45], [46]. Therefore, the use of a single BN to
learn both distributions may limit the model’s performance
[43]. To solve this problem, we extend the A-conditioning
to choose between two BNs, BN and BN 4, dedicated for
IFMc and I1F M 4, respectively.

Our approach differs from previous efforts in several
ways. Earlier research performed noise-injection via reg-
ularization [3], [28] and perturbed weight tensors [15] to
boost model robustness at the cost of a significant accuracy
drop on clean images. In contrast, we use noise tensors to
transform a shared weight tensor and yield a model that can
be configured in-situ to provide SOTA accuracy on either
clean or perturbed images. Our approach is similar to \-
conditioning used by [43]. However, instead of transform-
ing activations using added FiLM-based layers trained with
multiple values of A [43], we transform weight tensors using
added noise conditioned by binary A\. Compared to [43], we
thus require models with significantly fewer parameters and
training scenarios, yielding faster training (up to 1.43x).

FLOAT generalization with noise re-scaling. One lim-
itation of the FLOAT as proposed above is that it allows
the user to choose between two boundary conditions only.
This limits applicability when the user is not confident about
which condition to use during inference. To motivate more
continuous in-situ conditioning, we analyze a ResNet20
model with noisy weight tensors trained with PGD-AT on
CIFAR-10 [15]. Post-training, we re-scaled o' for each
layer [, using a new floating-point parameter A, to yield
An - ol. Interestingly, as shown in Fig. 3, as the re-scaling
factor decreases, the model robustness decreases and the
clean-image accuracy increases.

Based on this observation, we introduce a practical
means of post-training in-situ calibration by adding a re-
scaling parameter), to the inference model®>. This al-
lows us to enable a practical accuracy-robustness trade-off
in FLOAT during inference. We also define a threshold Ay,
such that for A, > \;;, we select BN 4 to perform inference
and select BN otherwise. [43] selected BN and BN 4

2Note that Ay, is a continuous variable between 0 and 1 where as \ is
binary. A, = 0 and A\, = 1 matches the training boundary conditions.
OAT, on the other hand, uses a single variable A that can be any floating
point value in [0, 1] during both training and inference.

when A = 0 and A\ > 0, respectively. We follow a similar
approach by setting A, = 0.

3.2. FLOAT Extension to Model Compression via
Pruning

Pruning is a particular form of model compression that
has been effective in reducing model size and compute com-
plexity for large DNNs for resource-constrained deploy-
ment [7, 27, 30, 14, 25]. Motivated by these results, we
incorporate a form of pruning called sparse learning® [27]
into FLOAT, which we refer to FLOAT sparse-irregular
(FLOATS-7). The resulting approach not only provides a
CA-RA trade-off, but also meets a target global param-
eter density d. In particular, FLOATS ranks every layer
based on the normalized momentum of its non-zero parame-
ters. Based on this ranking, FLOATS dynamically allocates
more weights to layer that have larger momentum and fewer
weights to other layers, while maintaining the global den-
sity constraint. To be more precise, let the binary pruning
mask be parameterized by the set IT with elements 7! rep-
resenting the mask tensor for layer [. The fraction of 1s in
! is proportional to its relative layer importance evaluated
through momentum. During training, the total cardinality of
the masked params always satisfies the following constraint

L L
Z card(f' o wl) < dz card(6). %)
=1 =1

To further ensure that the pruned models have structure
and enable speed-up on a wide range of existing hardware
[30], we propose FLOATS-c that performs channel prun-
ing. In FLOATS-c, for a layer I, we convert the 4D 6' to
a 2D weight matrix with C’ rows and (k')2C! columns
that is further partitioned in to C! sub-matrices of C! rows
and (k')? columns. To evaluate the channel importance, we
compute the Frobenius norm (F-norm) of each sub-matrix
¢ by computing f! = /6! . .|[3. We then keep or remove
a channel based on the ranking of f!’s, enabling pruning
at the channel level. As depicted in Fig. 4(a), the weight
heatmaps show that for the same layer FLOATS-c can yield
only 20.3% non-zero channels, while FLOATS-; retains all
the channels. In fact for the same target d, the channel den-
sity can be 10x lower for some layers as compared to that
in FLOATS-:. We note that this large scale channel reduc-
tion sometimes comes at a non-negligible accuracy drop as
shown in Table 1.

A globally structured locally irregular pruning. To si-
multaneously benefit from aggressive parameter reduction
via irregular pruning and width reduction via channel prun-
ing, while maintaining high accuracy, we propose a form of
hybrid compression called FLOATS slim. FLOATS slim

3Every update of the model happens sparsely, meaning only a fraction
of the weights are updated, while others remain as zero.

2352

20.3% channel present

Element-wise
lruz © addition

Element-wise
multiplication

® Convolution

1
0”\" |Perturbed IFMs

Con)

Switchable BNs

0.00

mmmmm

mmmmm

Weights (a)

Algorithm 1: FLOATS Algorithm

Data: Training set X ~D, model parameters @, trainable
noise scaling factor c, binary conditioning
parameter A, mini-batch size 53, global parameter
density d, initial mask IT, prune type
(irregular/channel) ¢,,.

1 , Output: trained model parameters with density d.

2 © + applyMask (©,1II)

3 fori < 0totoep do

4 for j <+ 0 to np do

5

6

B/2 (Xo.s/2. Yous 2) ~D
Lo + computeLoss(Xo.5/2,0,\ =
03 (e YE):B/Z)
7 XB/Q:B createAdv(Xg/2.5, Y5/2:8)
8 La+ computeLoss(XB/Q:B, O,)=
1,0;Y5)2.:8)
9 L+—05xLc+05%xLa
10 updateParam(®, a, V., II)
11 end
12 updateLayerMomentum (i)

13 pruneRegrow (O, II, u, d)// Prune fixed % of active and

14 // regrow fraction of inactive weights
15 Il <~ updateMask (I1, t,, 1)
16 end

leverages the idea of slimmable networks [48] to train a
model with channel widths that are scaled by a global chan-
nel slimming-factor (SF). On top of this, we use FLOATS-i
to yield a locally irregular model with even fewer parame-
ters for a specific SF. We perform both of these optimiza-
tions simultaneously, training with multiple SFs, including
SF = 1 (Algorithm detailed in the supplementary material).
Note, unlike FLOATS-c, where different layers might have
different SFs, FLOATS slim yields uniform SFs for all lay-
ers. However, in FLOATS slim, a model with SF< 1.0 is
trained as a shared-weight sub-network of the model with
SF = 1.0, contrasting FLOATS-c, where only one model of
a specific d is trained. Fig. 4(b) depicts the weight condi-
tioned convolution operation in FLOATS slim.

-
£ °
S_a
[
—23 L ! % 0
01
£ P “ 2 4
& 0.0
= S, L 4
S —
Weights —
100% channel present 53
g . ovehameloean /7
s . 0.15
28
& 53 -0.10 /41
A 005 - — L
5 $1>82>S3 Compressed weight conditioning
=

I'I Clean IFMs

Activation Compute

(b)

Figure 4. (a) Comparison of channel density (weights plotted in abs. magnitude) for FLOATS irregular and channel, for the 29'* CONV
layer of WRN40-2 on STL10 while both are trained for d = 0.3. (b) Convolutional layer operation path for FLOATS slim. Note, the
switchable BNs correspond to BNs for each SF.

4. Experimental Results and Analysis
4.1. Experimental Setup

Models and datasets. To evaluate the efficacy of
FLOAT, we performed detailed experiments on six datasets,
CIFAR-10, CIFAR-100 [22], Tiny-ImageNet [12], and Ima-
geNet* with ResNet [13], SVHN [33] with WRN16-8 [49],
and STL10 [8] with WRN40-2 [49].

Hyperparameters and training settings. In order to
facilitate a fair comparison, for CIFAR-10, SVHN, and
STL10 we used similar hyperparameter settings as [43]. For
CIFAR-100, we followed same hyperparameter settings as
that with CIFAR-10. For Tiny-ImageNet we trained the
model for 120 epochs with an initial learning rate of 0.1
an used cosine decay. Training details on ImageNet is pro-
vided in the supplementary. For adversarial image genera-
tion during training, we used the PGD-k attack with ¢ and
k set to 8/255 and 7, respectively. We initialized the noise
scaling-factor o for layer [to 0.25 as described in [15]. We
used the PyTorch API [34] to implement our models and
trained them on a Nvidia GTX Titan XP GPU.

Evaluation metrics. Clean (standard) accuracy (CA):
classification accuracy on the original clean test images.
Robust Accuracy (RA): classification accuracy on adver-
sarially perturbed images generated from the original test
set. We use RA as the measure of robustness of a model.
To directly measure the robustness vs accuracy trade-off,
we evaluated the clean and robust accuracy values of mod-
els generated through FLOAT at various \ values and com-
pared with those yielded through OAT and PGD-AT. We
used the average of the best CA and RA values over three
different runs with varying random seeds, for each A\ value
to report in our results.

4.2. Performance of FLOAT

Sampling A,,. Unless stated otherwise, to evaluate the
performance of FLOAT during validation we chose a set
of A\ps as Sy, = {0.0,0.2,0.7,1.0}. Note that setting \,,
to 0.0 or 1.0 corresponds to the values of A used during
training. Also, we measure the accuracy of FLOAT using

4We used part of ImageNet dataset with 50k samples from 100 classes.

2353

ResNet34 on CIFAR-10 WRN40-2 on STL10 WRN16-8 on SVHN

30 ResNet34 on CIFAR-100 2§e5Net34 on Tiny-ImageNet ResNet1l8 on ImageNet

60 70
401
50 60 251 2 20
50

40 =30 - 20/ - ~15
X X Ra0 B x15 x

30 (@ <20 (b) <30 (© 151 (d) <10 (e) <0
©20 = “ 0 Z19] 4 4

10 BN; for A, >0 107 BN; for A, >0 BN for A, >0 5! BN; for Ay >0 5 BN for A, >0 5 BN, for Ay >0

BN, for A, >0.5 BN, for A, >0.5 10 BN for A, >0.5 BN, for A, >0.5 BN, for A, >0.5 o BN, for Ay >0.5

088 89 90 91 92 93 94 95 Q!Q 80 81 82 83 84 85 86 094 95 96
CA (%) CA (%) CA (%)

062 65 74 [‘52 55 58 61 64 67 40 45 50 55 60 65 70
CA (%) CA (%)

68 71
CA (%)

Figure 5. Performance of FLOAT on (a) CIFAR-10, (b) STL10, (c) SVHN, (d) CIFAR-100, (e) Tiny-ImageNet, and (f) ImageNet with
various A, values sampled from S}, for two different A;, for BN¢ to BN 4 switching. The numbers in the bracket corresponds to (CA,
RA) for the boundary conditions of A = 0 and A = 1. A, varies from largest to smallest value from top-left to bottom-right point.

two different settings of Ay, 0.0 (similar to OAT) and 0.5.
For Ay, = 0.5, we update the noise scaling factor by using
the following simple equation

— 6
new al 2. (N, —0.5); if0.5 <\, <1.0 ©

. {QLQ'MﬁHAn§05
As depicted in Fig. 5 (a)-(e), the FLOAT models gen-
eralize well to yield a semi-continuous accuracy-robustness
trade-off. Also, across all the datasets, Ay, = 0.5 yields a
more gradual transition between the two boundary condi-
tions. Consider the setting where A,, = 0.2. With Ay, =
0.5, we observe a 4.76% improvement in CA and a reduc-
tion in RA of 15.9% on average over all five datasets when
compared with \;;, = 0.0. The improvement in clean ac-
curacy here can be attributed to the use of BN. However,
this configuration shows a drop in CA and an improvement
in RA when compared to the configuration where A,, = 0.0.
This can be attributed to the use of noisy weights (refer to
Eq. 6) during inference. Thus, it can be concluded that a
user who cares more about clean image performance than
adversarial robustness, should set A\;, > 0.0 to see a less
abrupt drop in CA. Note that, because the generation of ad-
versarial images is noisy, it is not always true that increas-
ing A will always significantly improve robustness. Con-
sequently, in some cases, we obtain improved clean image
performance without a significant drop in robustness.

4.3. Comparison with OAT and PGD-AT

We trained the benchmark models following OAT and
PGD-AT with As sampled from a set Sy, = S, on three
datasets, CIFAR-10, SVHN, and STL10.

Discussion on CA-RA trade-off. Fig. 6(a)-(c) show
the comparison of FLOAT with OAT and PGD-AT in terms
of CA-RA trade-offs. The FLOAT models show similar or
superior performance at the boundary conditions as well as
at intermediate sampled values of \. In particular, compared
to OAT and PGD-AT models, FLOAT models can provide
an improved RA of up to 14.5% (STL10, A = 0.2) and
22.52% (CIFAR-10, A = 0.0), respectively. FLOAT also
provides improved CA of up to 6.5% (STL10, A = 1.0)
and 6.96% (STL10, A\ = 1.0), compared to OAT and PGD-
AT generated models, respectively. Interestingly, for both
FLOAT and OAT, in all the plots we generally see a sharp

ResNet34 on CIFAR-10 WRN16-8 on SVHN
60 40

50

o WRN40-2 on STL10

50

9 Fa0
< <%
€20 FLOAT =0 FLOAT
10 OAT
pco-AT (a)

FLOAT
OAT OAT
10 pcp-at (b) pco-ar (€)

Go WUl t R TR T

Figure 6. Performance comparison of FLOAT with OAT and PGD-
AT generated models on (a) CIFAR10, (b) SVHN, and (c) STL10.
A varies from largest to smallest value in S for the points from

top-left to bottom-right.

[
8 88

drop in robustness while moving from top-left to bottom-
right. This can be attributed to to the switch from BN 4 to
BN¢ based on the Ay, in the forward pass of the inference
model.

Discussion on training time and inference latency.
Due to the presence of the additional FiLM modules, OAT
requires more time than standard PGD-AT to train. How-
ever, a single PGD-AT training can only provide a fixed
accuracy-robustness trade-off. For example, to have trade-
off with 4 different As PGD-AT training time increases pro-
portionally by a factor of 4. FLOAT, on the contrary, due to
absence of additional layers, trains faster than OAT. In par-
ticular, Fig. 7(a) shows the normalized per-epoch training
time (averaged over 200 epochs) of OAT and PGD-AT are,
respectively, up to 1.43x and 1.37x slower than FLOAT.

Network latency increases with the increase in the num-
ber of layers for both standard and mobile GPUs [29], [38],
primarily because layers are operated on sequentially [38].
The additional FiLM modules in OAT significantly increase
the layer count. For example, for each bottleneck layer in
ResNet34, OAT requires two FILM modules, yielding a to-
tal of four additional FCs per bottleneck. On the other hand,
FLOAT, similar to a single PGD-AT trained model, requires
no additional layers or associated latency, making it more
attractive for real-time applications.

Discussion on model parameter storage cost. Unlike
OAT, where the FiLM layer FCs significantly increase the
parameter count, the additional BN layers and scaling fac-
tors of FLOAT represent a negligible increase in parameter
count. In particular, assuming parameters are represented
with 8-bits, a FLOAT ResNet34 has only 21.28 MB mem-
ory cost compared to 31.4MB for OAT. Fig. 7(b) shows
that FLOAT models, similar to PGD-AT:1T, can yield up to
1.47x lower memory.

Discussion on FLOPs. Compared to the standard PGD-
AT, FLOAT incurs additional compute cost of addition of

2354

[OAT [N PGD-AT:1T [FLOAT
6

—
s T LEL

15 i
1he
i o W T
510
g
05
2 00 Min Max Avg

ResNet34 WRN16-8 WRN4O-

= =
£08] fos

0.41 0.4

0.0

! ! ! X
ResNet34 WRN16-8 WRN40-2 a
Type of delay (€)

Figure 7. Comparison of FLOAT with(bAT and PGD-AT in terms
of (a) normalized training time per epoch and (b) model parameter
storage (neglecting the storage cost for the BN and o) (c) CONV
layer compute delay on conventional ASIC (using the delay model
of Eq. 7, 8, and 9) architecture [1] evaluated on ResNet34 for
CIFAR-10. Note, PGD-AT:1T yields 1 model for each A choice.

noise with the weight tensor during forward pass. For ex-
ample, for ResNet34 with ~21.28 M parameters, FLOAT
needs similar number of additions for noisy weight trans-
formation. However, compared to the total operations of
~1.165 GFLOPs, the transformation adds on 1.182% addi-
tional computation. Moreover, as a single addition can be
up to 32x cheaper than a single FLOP [16], we can grace-
fully ignore such transformation cost in terms of FLOPs.
OAT, on the other hand, also incurs negligibly less FLOPs
overhead of up to only ~1.7% [43].

Discussion on compute delay in Von-Neumann ASIC
hardware. A neural network deployed on a conventional
Von-Neumann hardware has two dominant operation types:
memory read and Multiply-accumulate (MAC). Based on
the assumption that these operations are sequential, as in
[1, 20], the convolution layer delay to compute C* output-
features can be estimated

h2oto! h2oto!
Teonv &[(K)°CiC, 1 X Tread + [()#1
(Bro/Bw)Noank Niruie
X H W e @)

where Bjo is the memory input-output (IO) bandwidth
and Byy is the bit-width of each weight stored in memory.
Npank and N, corresponds to the number of hardware
memory banks and multiply units. Similar to earlier litera-
ture [1, 20], for a standard hardware we assume the values
of Bro, Bw, Npank, and N, to be 16, 8, 4, and 175,
respectively. A single memory read and multiply operation
time is denoted by T,eqq and Ti,q1¢, respectively. Their val-
ues for a 65nm CMOS process technology are 9ns and 4ns,
respectively [20]. Based on similar assumptions, the delay

model for modified CONV layer [for FLOAT (7%) and
OAT (7%,,,) can be estimated as
khH2ClC! kH2ClC!
ch:mv%(() i -0 —IXTread'f'I—() i o‘l
(Bro/Bw) Nvank Natui
X (1 + HW) T, ®)
kD2CLCL +2CY + 4(CY)? Eh2cict
TCO(W}%[()"Ci (Co)]XTrder(()iz
(Bro/Bw) Nvank Nt
20, 4+ 4(CL)?
) B Wy + [P MG 9

Naruit

D orrsimiram FLOAT im (2128M) @ FLOATS. sim (10,64)
Slimming-factor = 1.0 Slimming-factor = 1.0
60f
[B B

OAT stim (15.7 M) FLOAT i (10,64 M) o FLOATS stim (6.81 M)

100 Slimming-factor = 0.5 Slimming-factor = 0.5
55 Fy) D

by ! Sas =
3 g H
%o

CA (%)
CA (%)

0 E0
e

15
00 02 04 06 08 10

o0 02 0406 08 10 o0 0z 04 06 08 10

Figure 8. Performance comparison of FLOAT slim, FLOATS(-z)
slim with OAT slim. We used ResNet34 on CIFAR-10 to evaluate
the performance.

84
0 02 04,06 08 10

Here, the first term corresponds to the read delay and re-
maining term(s) correspond to the delay associated with the
multiplications. We ignore the energy associated with read-
ing o because it is negligible compared to the read energy
for the other model parameters. Based on these Egs, Fig.
7(c) shows the minimum, maximum, and average normal-
ized delays with respect to the 7.on,. In particular, con-
ditional CONYV layer delay of FLOAT can be up to 1.66x
faster compared to that of OAT, illustrating its efficacy on
conventional architecture.

4.4. Performance of FLOATS

Table 1 shows the performance of FLOATS with irreg-
ular, channel, and slimmable compression. The FLOATS
slim model was trained with two representative SFs of 1.0
and 0.5 with a global target density d = 0.3. We report its
performance with SF= 0.5. Here, compression ratio (CR)
and channel reduction factor (CRF) are computed as 5 and
% oftowl Ciggnels —eni» Tespectively. Compared to FLOATS-
¢, FLOATS slim requires 1.62x less storage, results in up
to 2x speed-up, and yields 2.24% higher classification ac-
curacy. Moreover, FLOATS slim provides us with a unique
three-way trade-off between robustness, accuracy, and com-
plexity, requiring only single training pass.

Fig. 8 illustrates the efficacy of FLOAT slim compared
to OAT slim. FLOAT slim provides significantly improved
performance for all tested values of A for both the SFs. In
particular, FLOAT slim yields up to 3.6% higher accuracy.
Adding sparsity, FLOATS slim yields similar accuracy im-
provement with up to 2.95x less parameters. Moreover,
GPU hardware measurements show that our slimmable net-
works trains up to 1.90x faster compared to OAT slim.

4.5. Generalization and Gradient Obfuscation Tests

PGD-20 FGSM Autoattack

g @ g) H ©

10 FLOAT FLOAT 10 FLOAT

5 OAT oAT 0 PGD-AT

%6 67 88 89 90 91 92 93 94 95 ‘%6 57 g8 89 90 91 92 93 94 9 86 87 88 89 90 91 92 93 94 95
CA (%) CA (%) CA (%)

Figure 9. Performance comparison of FLOAT with OAT on (a)
PGD-20 and (b) FGSM attack generated images. (c) CA-RA plot
of FLOAT vs. PGD-AT on autoattack. All evaluations are done
with ResNet34 on CIFAR-10. A varies from largest to smallest
value in S for the points from top-left to bottom-right.

To demonstrate the generalization of FLOAT models
on different attacks, we show their performance on im-

2355

Algorithm | Acc. % (A = 0.0) Acc. % (A = 1.0) CR 1 CRF 1 | Reduced [Potential
CA RA CA RA storage speed-up
FLOAT 94.83 22.52 89.1 56.71 1x 1x X X
FLOATS-7 94.12 18.7 88.6 55.92 10x 1x v/ X
FLOATS-c 93.84 17.2 86.87 53.2 2.94 % 1.54% v v
FLOATS slim| 94.26 19.1 88.9 55.44 4.76 % 2% v/ v

Table 1. Performance comparison between different compressed FLOAT variants trained on CIFAR-10 with ResNet34. /v, v/, and

X indicate aggressive, non-aggressive, and no reduction, respectively, compared to the baseline of FLOAT.

60 60
_50 FLOAT (A =1.0) ~55 FLOAT (A =1.0)
x40 S
<50
730 S
520 45
<10 <40
0 35
0.0 0.2 0.8 1.0 0 20 100

04 06 40 60 80
£ (withK=7) K (with € = 0.031)
Figure 10. PGD attack performance as a function of (a) bound €
and (b) attack iterations K for A = 1.0. We observe a similar
trend for other inference As.

ages adversarially-perturbed through PGD-20 and FGSM
attacks. We follow [43] to generate the PGD-20 perturba-
tions and set the number of steps to 20, keeping other hy-
perparameters the same as PGD-7. For FGSM, we make
e = 8/255 following [43]. As shown in Fig. 9(a)-(b), un-
der both the attacks, FLOAT can achieve in-situ accuracy-
robustness trade-offs similar to that of OAT. Moreover, we
have analyzed FLOAT’s robustness with an ensemble of
parameter-free attacks, namely the ‘random’ variant of au-
toattack [9]°. Details of the autoattack hyperparameters are
provided in the Supplementary Materials. As depicted in
9(c), compared to the PGD-AT yielded models, FLOAT
consistently yields better RA with similar or improved CA.

We now show results on the checklist to examine
whether the robustness improvement is caused by obfus-
cated and masked gradient (see Table 2) as proposed in
[2]. Fig. 9(a) and (b) show, single-step FGSM attack per-
forms poorly compared to the iterative counter-part PGD.
This certifies the success of Test (i), as listed in Table 2.
To perform Test (ii), we trained two ResNet34 models (A
and B) on CIFAR-10 and used A to generate black-box
(BB) adversarial images for B. The test passes because the
model robustness improves on BB attack generated images
by ~13%(A = 1.0), compared to that on white-box (WB)
adversaries (Fig. 5(a)), indicating weaker BB than WB at-
tacks. To verify Tests (iii) and (iv) we analyzed ResNet34
on CIFAR-10 with increasing attack bound €. As shown in
Fig. 10(a), the classification accuracy decreases as we in-
crease € and finally reaches an accuracy of ~0%. Test (v)
can fail only if gradient based attacks cannot provide adver-
sarial inputs for the model to misclassify. However, despite
adv training, both FGSM and PGD, the gradient attack vari-
ants, can fool the network despite our training.

We further evaluated the model with increasing attack
strength by increasing the PGD iteration count /. As Fig.
10(b) shows, after an initial drop in robustness, the model

SWe have followed the official repo https:/github.com/fra31/auto-
attack to generate the attack.

Checks to identify gradient obfuscation Pass

1) Single-step attack performs better compared to iterative attacks v/
ii) Black-box attacks performs better compared to white-box attacks v’

iii) Increasing perturbation bound can’t increase attack strength v
iv) Unbounded attacks can’t reach ~100% success v
v) Adversarial example can be found through random sampling v

Table 2. Checklist tests for characteristic behaviors caused by ob-
fuscated and masked gradients [2].

robustness nears an asymptote. In contrast, if the success of
FLOAT models arose from the incorrect gradient of a single
sample, increasing the attack iterations would have broken
the defense completely [2]. Thus both BPDA and Autoat-
tack checklist validate the “real” robustness improvement.

5. Conclusions

This paper addresses the largely unexplored problem of
enabling an in-situ inference trade-off between accuracy, ro-
bustness, and complexity. We present FLOAT, a fast learn-
able once-for-all adversarial training that uses model con-
ditioning to capture the different feature-map distributions
corresponding to clean and adversarial images. FLOAT
transforms its weights using conditionally added scaled
noise and dual batch normalization structures to distinguish
between clean and adversarial images. The approach avoids
increasing the layer count, unlike other state of the art alter-
natives, and thus does not suffer from increased network la-
tency. FLOAT models can be configured in-situ to dynami-
cally adjust the model’s accuracy, robustness, and complex-
ity based on the image scenario without requiring any addi-
tional trained weights, making them suitable for portable
Al-enabled devices having stringent storage and energy-
budget limitations. We then extend FLOAT to include spar-
sity to further reduced complexity and latency providing an
in-situ trade-off including model complexity. We consider
auto selection of the As based on prediction confidence as
an interesting future research direction.

Potential negative societal impact. Adversarial train-
ing compute cost and time is ~7x costlier than standard
DNN training. This can be further translated to signif-
icantly higher carbon footprint. As opposed to standard
training, despite FLOAT’s significantly high once-for-all
training cost, we believe its ability to generate in-situ con-
figurable models to adjust accuracy and robustness trade-off
can dramatically reduce the iterative training costs.

2356

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

(12]

[13]

(14]

Mustafa Ali, Akhilesh Jaiswal, Sangamesh Kodge, Amogh
Agrawal, Indranil Chakraborty, and Kaushik Roy. Imac: In-
memory multi-bit multiplication and accumulation in 6t sram
array. IEEE Transactions on Circuits and Systems I: Regular
Papers, 67(8):2521-2531, 2020.

Anish Athalye et al. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples.
In International conference on machine learning, pages 274—
283. PMLR, 2018.

Alberto Bietti, Grégoire Mialon, and Julien Mairal. On reg-
ularization and robustness of deep neural networks. 2018.
Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,
Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D
Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint
arXiv:1604.07316, 2016.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfel-
low. Thermometer encoding: One hot way to resist adver-
sarial examples. In International Conference on Learning
Representations, 2018.

Adrian Bulat and Georgios Tzimiropoulos. Bit-mixer:
Mixed-precision networks with runtime bit-width selection.
arXiv preprint arXiv:2103.17267, 2021.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision transform-
ers: An end-to-end exploration. Advances in Neural Infor-
mation Processing Systems, 34, 2021.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of
single-layer networks in unsupervised feature learning. In
Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 215-223. JMLR
Workshop and Conference Proceedings, 2011.

Francesco Croce and Matthias Hein. Reliable evalua-
tion of adversarial robustness with an ensemble of diverse
parameter-free attacks. In /CML, 2020.

Harm De Vries, Florian Strub, Jérémie Mary, Hugo
Larochelle, Olivier Pietquin, and Aaron Courville. Modu-
lating early visual processing by language. arXiv preprint
arXiv:1707.00683, 2017.

Tianyu Han, Sven Nebelung, Federico Pedersoli, Markus
Zimmermann, Maximilian Schulze-Hagen, Michael Ho,
Christoph Haarburger, Fabian Kiessling, Christiane Kuhl,
Volkmar Schulz, et al. Advancing diagnostic performance
and clinical usability of neural networks via adversarial train-
ing and dual batch normalization. Nature Communications,
12(1):1-11, 2021.

Lucas Hansen. Tiny ImageNet challenge submission. CS
231N, 2015.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amec: Automl for model compression and ac-
celeration on mobile devices. In Proceedings of the Euro-

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

2357

pean conference on computer vision (ECCV), pages 784—
800, 2018.

Zhezhi He, Adnan Siraj Rakin, and Deliang Fan. Paramet-
ric noise injection: Trainable randomness to improve deep
neural network robustness against adversarial attack. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 588-597, 2019.

Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pages 10-14. IEEE, 2014.

Weizhe Hua, Yichi Zhang, Chuan Guo, Zhiru Zhang, and
G Edward Suh. Bullettrain: Accelerating robust neural net-
work training via boundary example mining. Advances in
Neural Information Processing Systems, 34, 2021.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Q Weinberger. Multi-scale dense
networks for resource efficient image classification. arXiv
preprint arXiv:1703.09844, 2017.

Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501-1510, 2017.

Mingu Kang, Sungmin Lim, Sujan Gonugondla, and
Naresh R Shanbhag. An in-memory vlsi architecture for con-
volutional neural networks. IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, 8(3):494-505, 2018.
Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
Shallow-deep networks: Understanding and mitigating net-
work overthinking. In International Conference on Machine
Learning, pages 3301-3310. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Souvik Kundu, Yao Fu, Bill Ye, Peter A Beerel, and Mas-
soud Pedram. Towards adversary aware non-iterative model
pruning through d ynamic n etwork r ewiring of dnns. ACM
Transactions on Embedded Computing Systems (TECS),
2022.

Souvik Kundu, Mahdi Nazemi, Peter A Beerel, and Massoud
Pedram. Dnr: A tunable robust pruning framework through
dynamic network rewiring of dnns. In Proceedings of the
26th Asia and South Pacific Design Automation Conference,
pages 344-350, 2021.

Souvik Kundu, Mahdi Nazemi, Massoud Pedram, Keith M
Chugg, and Peter A Beerel. Pre-defined sparsity for low-
complexity convolutional neural networks. IEEE Transac-
tions on Computers, 69(7):1045-1058, 2020.

Souvik Kundu, Massoud Pedram, and Peter A Beerel. Hire-
snn: Harnessing the inherent robustness of energy-efficient
deep spiking neural networks by training with crafted input
noise. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 5209-5218, 2021.
Souvik Kundu and Sairam Sundaresan. Attentionlite: To-
wards efficient self-attention models for vision. In ICASSP
2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 2225-2229.
IEEE, 2021.

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu,
Daniel Hsu, and Suman Jana. Certified robustness to ad-
versarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 656—672.
IEEE, 2019.

Zhengang Li, Geng Yuan, Wei Niu, Pu Zhao, Yanyu Li, Yux-
uan Cai, Xuan Shen, Zheng Zhan, Zhenglun Kong, Qing Jin,
et al. Npas: A compiler-aware framework of unified network
pruning and architecture search for beyond real-time mobile
acceleration. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14255—
14266, 2021.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Dongyu Meng and Hao Chen. Magnet: a two-pronged de-
fense against adversarial examples. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 135-147, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018.

Pouya Samangouei, Maya Kabkab, and Rama Chel-
lappa. Defense-gan: Protecting classifiers against adver-
sarial attacks using generative models. arXiv preprint
arXiv:1805.06605, 2018.

Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Ku-
nal Talwar, and Aleksander Madry. Adversarially ro-
bust generalization requires more data. arXiv preprint
arXiv:1804.11285, 2018.

Pravendra Singh, Vinay Kumar Verma, Piyush Rai, and
Vinay P Namboodiri. Hetconv: Heterogeneous kernel-based
convolutions for deep cnns. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 4835-4844, 2019.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Towards un-
derstanding adversarial examples systematically: Explor-
ing data size, task and model factors. arXiv preprint
arXiv:1902.11019, 2019.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from
deep neural networks. In 2016 23rd International Con-
ference on Pattern Recognition (ICPR), pages 2464-24609.
IEEE, 2016.

Florian Tramer, Alexey Kurakin, Nicolas Papernot, lan
Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble

(42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

2358

adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom,
Alexander Turner, and Aleksander Madry. Robustness may
be at odds with accuracy. arXiv preprint arXiv:1805.12152,
2018.

Haotao Wang, Tianlong Chen, Shupeng Gui, Ting-Kuei Hu,
Ji Liu, and Zhangyang Wang. Once-for-all adversarial train-
ing: In-situ tradeoff between robustness and accuracy for
free. arXiv preprint arXiv:2010.11828, 2020.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and
Joseph E Gonzalez. Skipnet: Learning dynamic routing in
convolutional networks. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 409-424,
2018.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang,
Alan L Yuille, and Quoc V Le. Adversarial examples im-
prove image recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 819-828, 2020.

Cihang Xie and Alan Yuille. Intriguing properties of ad-
versarial training at scale. arXiv preprint arXiv:1906.03787,
2019.

Shuai Yang, Zhangyang Wang, Zhaowen Wang, Ning Xu,
Jiaying Liu, and Zongming Guo. Controllable artistic text
style transfer via shape-matching gan. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 44424451, 2019.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. arXiv preprint
arXiv:1812.08928, 2018.

Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016.

