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Abstract

In Vision-and-Language Navigation (VLN), researchers

typically take an image encoder pre-trained on ImageNet

without fine-tuning on the environments that the agent will

be trained or tested on. However, the distribution shift be-

tween the training images from ImageNet and the views in

the navigation environments may render the ImageNet pre-

trained image encoder suboptimal. Therefore, in this paper,

we design a set of structure-encoding auxiliary tasks (SEA)

that leverage the data in the navigation environments to pre-

train and improve the image encoder. Specifically, we de-

sign and customize (1) 3D jigsaw, (2) traversability predic-

tion, and (3) instance classification to pre-train the image

encoder. Through rigorous ablations, our SEA pre-trained

features are shown to better encode structural information

of the scenes, which ImageNet pre-trained features fail to

properly encode but is crucial for the target navigation task.

The SEA pre-trained features can be easily plugged into ex-

isting VLN agents without any tuning. For example, on Test-

Unseen environments, the VLN agents combined with our

SEA pre-trained features achieve absolute success rate im-

provement of 12% for Speaker-Follower [14], 5% for Env-

Dropout [37], and 4% for AuxRN [50].

1. Introduction

In Vision-and-Language Navigation (VLN) [5], an agent
navigates in a complicated environment to a target loca-
tion by following human instructions. In this task, the
agent needs to interpret human instructions, encode visual
input, and then infer appropriate actions according to the
joint textual and visual information. Remarkable progress
has been made since the proposition of the Room-to-Room
(R2R) dataset by Anderson et al. [5], including generat-
ing more training data [14, 22, 37], learning a better joint
visual and textual representation [43, 21, 17, 29], improv-
ing the agent’s internal state representation for the pol-

icy network (as opposed to visual encoder) by auxiliary

tasks [27, 50, 44], and so on.
However, most of the existing works ignore the impor-

tance of the underlying visual representation by simply tak-
ing an image encoder (CNN model that encodes an image
x into a feature fx 2 Rd) pre-trained on ImageNet to en-
code the views in the navigation environments (e.g., Matter-
port3D [7]). Because of the data distribution shift between
ImageNet and the navigation environments, as well as the
difference between the pre-training task (image classifica-
tion) and the target task (VLN), the ImageNet pre-trained
image encoder may not be able to encode information cru-
cial for the VLN task. One naı̈ve way to mitigate this neg-
ative effect is to fine-tune the image encoder on the target
environments and task. However, in the navigation environ-
ments, image labels such as semantic segmentation masks,
object bounding boxes, or object and scene classes may not
be available for fine-tuning the image encoder. Further-
more, it is computationally prohibitive1 to fine-tune the im-
age encoder jointly with the agent on the target VLN task.

To improve the image encoder without the need for man-
ually annotated labels in the target environments and with-
out fine-tuning with the VLN agent jointly, we pre-train
the image encoder on proposed structure-encoding auxil-

iary tasks (SEA) with data available in the navigation envi-
ronments shown in Figure 1. Specifically, we collect RGB
images from different views of the environments, a view’s
neighboring views, and traversable directions within a view.
After that, we pre-train the image encoder via the proposed
auxiliary tasks on the gathered data. We then pre-compute
the features for each view of the training environments us-
ing the frozen, pre-trained image encoder, and train the nav-
igation agent following the classical VLN methods with our
pre-computed features.

Combined with our SEA pre-trained features, VLN
methods achieve absolute success rate improvement of 12%

1To train an agent with panoramic action space, in each iteration, we
take 64 trajectories, each trajectory contains 5 steps on average, each step
contains 36 views, and each view is a 640 ⇥ 480 high-resolution image.
These sum up to 10k+ forward passes of high-resolution images through
the image encoder in just one training iteration.
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Figure 1: We propose three auxiliary tasks: (1) 3D Jigsaw, (2) Traversability Prediction, and (3) Instance Classification, to
improve the visual representation for the downstream VLN task. These auxiliary tasks train only on data available in the
navigation environments such as RGB image views, a view’s neighboring views, and traversable directions within a view.

for Speaker-Follower [14], 5% for Env-Dropout [37], and
4% for AuxRN [50] on Test-Unseen under the single-run
setting (i.e., without pre-exploration or beam search). To
understand how the agents benefit from our SEA pre-trained
features, we conduct thorough ablation studies on what in-
formation is encoded by and how the agent’s navigation per-
formance is affected by each auxiliary task. Compared with
ImageNet pre-trained features, our SEA pre-trained features
better encode structural information of the scenes, which
are crucial for the target navigation tasks. The source code
and collected data for pre-training the image encoder as well
as the pre-trained SEA features will be released to facilitate
future research in VLN. Our key contributions are that we:
• Design and customize a set of auxiliary tasks to improve

the visual representation by training on images and meta-
data easily attainable in the navigation environments.

• Achieve significant performance improvement on the
unseen environments when combining our SEA pre-
trained features with VLN methods including Speaker-
Follower [14], Env-Dropout [37], and AuxRN [50].

• Conduct thorough ablation studies to understand how an
agent benefits the proposed auxiliary tasks and SEA pre-
trained features.

2. Related Works

2.1. Auxiliary Tasks for Training an Agent

In vision and language navigation, due to the limited
amount of training data, researchers have proposed auxil-
iary tasks to regularize the agent model and to provide ad-
ditional training signals. Despite their success in the VLN
task, this line of works focuses on refining the agent’s in-
ternal state representation for the policy network rather than
the visual representation, and simply encode each view with

a frozen, ImageNet [35] pre-trained image encoder. Ma
et al. [27] proposed a progress monitoring module to im-
prove the grounding between visual and textual informa-
tion. Huang et al. [21] also aimed at improving the ground-
ing between visual and textual information by a cross-
modal alignment loss to classify aligned instruction-path
pairs. To further improve the agent’s state representation,
they propose a coherence loss to predict future k steps. An-
other way of improving the cross-modal grounding is to pre-
train the model on paired data of image and text [17, 29].
To improve the model’s generalizability, Wang et al. [44]
proposed an adversarial training strategy to remove scene-
specific information from the agent’s state representation.
Zhu et al. [50] achieved significant improvement over the
previous state of the art with four auxiliary tasks includ-
ing speaker model, progress monitor, orientation prediction,
and trajectory-instruction matching.

In reinforcement learning (RL), it has been shown that
jointly training the agent with auxiliary tasks improves
state representations and greatly expedites training. Some
common auxiliary tasks in RL include: (1) future predic-
tion [26, 15, 46, 13, 32], which predicts an agent’s future
state conditioned on its current state and the actions taken,
(2) inverse dynamic [15, 46, 32], which predicts the ac-
tions taken between two states, and (3) contrastive learn-
ing [3, 36], which applies contrastive learning to refine the
state representation. Despite differences between RL works
and VLN, AuxRN [50] (which we further improve upon)
incorporate an auxiliary task of agent’s orientation predic-
tion in VLN, which is similar to the inverse dynamic aux-
iliary task in RL. We also draw inspiration from the RL
line of works to propose our auxiliary tasks. For example,
the concept of traversability prediction is similar to Chap-
lot et al. [8], which target building a topological map of
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the environment for image-goal navigation. Different from
these lines of work, our proposed auxiliary tasks focuses
on the improvement of visual representation, which is later
used by a VLN agent for navigation and state representa-
tion. Our proposed auxiliary tasks are effective and improve
upon AuxRN, which introduces several auxiliary tasks for
training the VLN policy, by large margins.

2.2. Self-Supervised Learning in Computer Vision

Self-supervised learning has achieved great success in
learning good visual representations without labels for data.
The learned representations generalize well to a wide vari-
ety of downstream tasks such as image classification, ob-
ject detection, scene classification, and so on. To train the
model without labels, self-supervised learning methods de-
fine auxiliary tasks by visual clues that are inherent to the
data. Such visual clues include: spatial information from
images [12, 30], spatial-temporal information from video
or motion [42, 1, 33], image colors [34, 48, 24, 25], etc.
Recently, contrastive learning [31, 39, 10, 18, 16, 6] has
achieved comparable performance with its supervised coun-
terpart. The goal of contrastive learning is to learn a visual
representation that is invariant to a set of image augmen-
tations [40, 10, 49, 51, 45] by identifying an image’s aug-
mented copy from a pool of other images.

Inspired by the success of self-supervised learning in
computer vision, in this work we design three auxiliary
tasks to improve the image encoder without the need for
data labels such as trajectory-instruction pairs, object labels,
etc. Furthermore, since the agent can move in the interac-
tive environments, we take advantage of this when design-
ing the auxiliary tasks. For example, different from other
jigsaw-like self-supervised tasks that generate jigsaw puz-
zles by cropping images [12, 30] or by consecutive frames
in video clips [2], our proposed 3D jigsaw actively sam-
ples neighboring views, introducing more natural variations
from the change of viewpoints.

3. Method

In existing VLN methods, the ImageNet pre-trained fea-
tures may be suboptimal due to the data distribution shift
between ImageNet and the navigation environments, and
the difference between the pre-training classification task
and the target VLN task. As explained in Section 1, the
naı̈ve solution of fine-tuning the image encoder in the tar-
get environments is inapplicable due to the lack of labeled
images. Furthermore, it is also computationally prohibitive
to jointly train the image encoder with the agent on the tar-
get VLN task. Therefore, we seek to design auxiliary tasks
that can improve the image encoder but rely only on data
available in the navigation environments.

3.1. Problem Setting

In VLN, a navigation agent is given training data in the
form of trajectory-instruction pairs in different indoor en-
vironments. In the training environments, the agent is also
allowed to access data such as RGB image views, a view’s
neighboring views, and traversable directions contained in
a view. In this paper, for fair comparison with other works,
the proposed auxiliary tasks are trained with only these in-
formation to make sure that the performance gain is not

coming from additional training signals (e.g., semantic seg-
mentation map, room type).

3.2. Auxiliary Tasks

With the data collected from the environments, we aim
to design auxiliary tasks that help the image encoder encode
visual information that is crucial for the target VLN task.
To find out what are important features, we start by observ-
ing the following instruction example: “Exit the screen-
ing room, make a right, go straight into the room with the

globe and stop.” As highlighted above, to correctly follow
the instruction, the agent needs to encode the following in-
formation from its image encoder: (1) structural informa-
tion of the scene (exit, right, straight into), and (2) discrim-
inative information for scenes and objects (screening room,
room, globe) in the visual representation. Therefore, we de-
sign three auxiliary tasks shown in Figure 2: (1) 3D jigsaw,
(2) traversability prediction, and (3) instance classification

to encode these crucial information for VLN.

3.2.1 3D Jigsaw

In order to follow the instructions correctly to reach the
target location, the agent has to interpret instructions such
as ”turn left”, ”turn right when you see the sofa on your
left”, ”stop in front of the TV” from the visual representa-
tion. Therefore, we propose the auxiliary task of 3D jigsaw
to encode structural information of the scene by predicting
the relative poses (position, heading, and elevation) of two
views. As shown in Figure 2a, given an anchor view xa in
the red box, a query view xq in the yellow box is sampled
from the neighboring views around the anchor view. Neigh-
boring views are views within the [�1, 0,+1] range of dis-
cretized headings, elevations, and positions, forming a 3D
jigsaw with 27 views (3 ⇥ 3 ⇥ 3). The label of the neigh-
boring views (jigsaw labels) can be uniquely determined by
their relative poses to the anchor view (the “numbers” over-
laid on the neighboring views in Figure 2a). If the sampled
anchor view is looking up, neighboring views of {7-9, 16-
18, 25-27} in Figure 2a would be unavailable due to the
way views are discretized (similarly for the case of looking
down.) On the other hand, if the sampled anchor view does
not contain any traversable directions, neighboring views of
{19-27} would be unavailable because the agent cannot go
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Figure 2: (Best viewed on the computer, in color and zoomed in.) We design three auxiliary tasks to encode structural
information of the scenes, as well as the discriminative feature for object and scene classification crucial for the VLN task.
(a) The auxiliary task of 3D jigsaw is to predict the relative pose between an anchor view (red box) and a query view (yellow).
The query view is sampled from the anchor view’s neighboring views along the elevation, heading, and position dimensions.
(b) The auxiliary task of traversability prediction is to predict whether a view contains any traversable direction. The images
in the blue box are labeled as True (contain traversable directions), and the images in the red box are labeled as False (do not
contain traversable directions.) (c) The auxiliary task of instance classification is to identify a view’s augmented copy from
a pool of other image views. In this example, the view in the blue box is the corresponding augmented copy (positive pair),
while the views in the red box are other image views (negative pairs).

one step forward. Nevertheless, the auxiliary task and jig-
saw labels can still be constructed in a similar way. Those
unavailable neighboring views are simply removed.

Conditioned on the anchor view, the 3D jigsaw task is
formulated as a 27-class classification problem. The pre-
diction pjig is computed by:

pjig = softmax(�jig([fenc(xa), fenc(xq)])), (1)

where fenc is the image encoder shared with other auxiliary
tasks, �jig is a multi-layer perceptron specific for 3D jig-
saw, and [·, ·] is a concatenation operation along the feature
dimension. The loss is simply a cross-entropy loss:

Ljig = � 1

N

NX

i

yi,jig log pi,jig, (2)

where yi,jig and pi,jig are the jigsaw label and prediction
for the i-th training example, respectively, and the loss is
averaged over a mini-batch of N examples.

3.2.2 Traversability Prediction

In order to encode the layout (structure) and navigation in-
formation of the scene and environments, we propose an

auxiliary task of traversability prediction shown in Fig-
ure 2b. The image encoder classifies a given image view as
true when the view contains traversable directions, other-
wise classifies it as false. Following the practice in Matter-
port3D (MP3D) simulator [5, 7], a traversable direction is
contained within the current view if a discretized traversable
location is within the horizontal field of the current view
and within 5 meters Euclidean distance of the current loca-
tion. This information is acquired by building and parsing
the navigation graph of the environments and is provided in
the MP3D simulator as well as many other VLN simulators
and datasets [19, 38, 41, 9].

The traversability prediction task is formulated as a bi-
nary classification problem. The prediction pnav is com-
puted as:

ptrav = �(�trav(fenc(x))), (3)
where fenc is the image encoder shared with other aux-
iliary tasks, �trav is a multi-layer perceptron specific for
traversability prediction, and � is the sigmoid activation
function. The loss is simply a binary cross-entropy loss:

Ltrav = � 1

N

NX

i

yi,trav log pi,trav+

(1� yi,trav) log(1� pi,trav),

(4)
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where yi,trav and pi,trav are the traversability label and pre-
diction for the i-th training example, respectively, and the
loss is averaged over a mini-batch of N examples.

3.2.3 Instance Classification

To follow instructions correctly, the agent has to encode
scene information such as kitchen, bedroom, bathroom, and
so on, as well as object information such as chair, sofa,
TV, etc. In computer vision, instance classification [18, 10]
has achieved remarkable progress in representation learn-
ing. It has been shown that the representation learned by
instance classification transfers well to many downstream
tasks, such as object classification, object detection, scene
classification. Therefore, we apply instance classification as
an auxiliary task in the navigation environments to encode
discriminative information for objects and scenes.

As shown in Figure 2c, given an image view x, we gen-
erate a query image xq and a key image xk by applying
image augmentations, such as color jittering, lighting ad-
justment, affine transform, etc, on the image view x. Given
the query image xq , instance classification task is to iden-
tify the corresponding key image xk (positive sample) from
a pool of other image views (negative samples). Similar to
MoCo [18], we use a memory bank to increase the num-
ber of negative samples by storing the encoded features of
training samples from previous mini-batches. We also use
the current image encoder to encode xq and the moving-
averaged image encoder to encode xk. The instance predic-
tion pins can be computed as:

pins =
exp(�ins(fenc(xq)) · �̂ins(f̂enc(xk)/⌧))P

i exp(�ins(fenc(xq)) ·mi/⌧)
, (5)

where fenc is the current image encoder shared with other
auxiliary tasks, �ins is a multi-layer perceptron specific
for instance classification, f̂enc and �̂ins are their moving-
averaged version, mi is the i-th entry (negative samples) in
the memory bank, and ⌧ is a scaling factor (temperature).
The loss is simply a cross-entropy loss:

Lins = � 1

N

NX

i

yi,ins log pi,ins, (6)

where yi,ins and pi,ins are the label for positive samples
and instance prediction for the i-th training example, re-
spectively, and the loss is averaged over a mini-batch of N
examples.

To learn a good visual representation by instance classi-
fication, image augmentations play a crucial role [10, 11].
Good image augmentations depend on the downstream task,
as well as the form of data on which instance classification
is applied [40]. It has been shown that color jittering, Gaus-
sian blur, horizontal flip, and resize crop are particularly

SimCLR augmentation

Figure 3: Applying aggressive resize crop augmentation
that is effective on object-centric images may remove im-
portant visual clues in scene images with multiple objects.
In this example, it is ambiguous to classify the image in blue
with the image in yellow as a positive pair.

useful for learning on datasets with object-centric images
such as ImageNet [10]. In navigation environments, how-
ever, image views contain multiple objects in a scene. Ag-
gressive resize crop (scale ranged between [0.2, 1.0]) may
remove important information and lead to ambiguous sit-
uations as illustrated in Figure 3. Hence, we use a weak
resize crop (scale ranged between [0.8, 1.0]) with an affine
transform in place of the aggressive resize crop.

3.3. Training Procedure

In this section, we explain how to train the image encoder
efficiently and how to train the VLN agent with our SEA
pre-trained features.

3.3.1 Image Encoder

We propose a training procedure to reuse the data in a
mini-batch across three auxiliary tasks. Without data reuse,
we need two training samples for 3D jigsaw, one for
traversability, and one for instance classification, which sum
up to four training samples. This will be expensive in terms
of computation and memory usage especially for loading
and training on the high-resolution images in VLN.

Given the i-th image xi in a mini-batch, in 3D jigsaw we
use xi as the anchor view and sample a query view xi,q from
xi’s neighboring views. xi is reused for traversability pre-
diction. In instance classification, we again reuse xi as the
query image view, and its augmented copy as the key im-
age view xi,k. Two images are sampled in total. To further
reduce computation, only xi is fed into the current model
for backpropagation. All the other image views including
xi,q from 3D jigsaw and xi,k from instance classification
are fed into the moving-averaged image encoder inspired
by MoCo [18]. In this way, we can drastically save com-
putation since images used for different auxiliary tasks are
shared. Furthermore, the features computed by the moving-
averaged image encoder reduce memory usage by not con-
structing the computation graph and reduce computation by
not performing backpropagation.
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Finally, the image encoder is optimized by the sum of
losses from the three auxiliary tasks:

L = �jigLjig + �travLtrav + �insLins (7)

We empirically set �jig = �trav = �ins = 1 without fur-
ther hyper-parameter tuning.

3.3.2 Agent

After pre-training the image encoder with the proposed
auxiliary tasks, we pre-compute the features for each dis-
cretized view in the training environments following the
convention in [5] and all other VLN works. The VLN agent
then uses our pre-computed features of each view in place
of the ImageNet pre-trained features for training. By de-
coupling the training of the image encoder from the VLN
agent, other VLN methods can benefit from our improved
visual representation with minimal modification.

4. Experiments

4.1. Dataset

In this paper, we propose and validate our method on the
Matterport3D (MP3D) simulator [5, 7] and Room-to-Room
(R2R) dataset [5] , but the method is applicable in general
navigation settings [19, 38, 41, 9] where neighboring image
views and traversability information are available.

Dataset for pre-training the image encoder. To pre-
train the image encoder, we collect data available in the
environments of the MP3D simulator such as RGB image
views, a view’s neighboring views, traversable directions
within a view, etc. Following Anderson et al. [5], at each
location, the views are discretized at 30� interval in the
range of [0�, 330�] for heading, and [�30�, 30�] for eleva-
tion, resulting in 36 views at each location. Following the
environment splits in [5], the pre-training dataset is com-
posed of around 275k discretized image views in the Train
environments, 34k in the Val-Unseen, and 71k in the Test-
Unseen. The image encoder is only pre-trained on data from
the Train environments.

Dataset for training the VLN agent. We use the Room-
to-Room (R2R) dataset [5] which contains 7,189 training
data in the form of human instruction and trajectory pairs.
Each trajectory is paired with three instructions. The whole
dataset is divided into four sets: Train, Val-Seen, Val-
Unseen, and Test-Unseen. The Val-Seen environments are
the same as the Train environments but with different navi-
gation instructions. On the other hand, the Val-Unseen and
Test-Unseen environments are different with the Train envi-
ronments and also with different navigation instructions.

4.2. Evaluation

The effectiveness of the pre-trained features is evaluated
by the performance of the agent on the target VLN task.

Since the training of the image encoder and the agent are de-
coupled, the performance improvement of the agent can be
solely attributed to the improvement of the image represen-
tation. The agent is evaluated on both seen (Val-Seen), and
unseen (Val-Unseen and Test-Unseen) environments. Even
though benchmarking on seen environments (Val-Seen) has
been conducted, the primary goal of the VLN agents is
to learn to generalize well on unseen environments (Val-
Unseen and Test-Unseen). Following [5, 4] and other VLN
methods, the agent is evaluated with the following metrics:
(1) TL: average trajectory length, (2) NE: navigation error
defined as the average shortest path distance between the
agent’s final location and the target location, (3) SR: suc-
cess rate defined as the percentage of agent’s final location
within three meters from the target location, and (4) SPL:
SR weighted by path length that penalize SR by TL.

4.3. Main Results

We first show that our pre-trained features are superior to
the ImageNet pre-trained features, and can boost navigation
agents’ performance by simply training with our SEA pre-
trained features in place of the ImageNet pre-trained fea-
tures. The agent is evaluated under the single-run setting,
where only data from the training environments are avail-
able for training both the agent and the image encoder. No
extra information is included in comparison with other VLN
methods since the image encoder is also pre-trained only on
data from the training environments. The single-run set-
ting tests the generalization performance of both the agent
and the visual representation to new held-out environments.
For the VLN agents, we select Speaker-Follower [14], Env-
Dropout [37], and AuxRN [50], and replace the ImageNet
pre-trained features with our SEA pre-trained features. We
use the released code from these VLN methods and train the
agent with our SEA pre-trained features without any hyper-
parameter tuning for the agent.

In Table 1, with our SEA pre-trained features, all three
agents achieve consistent improvement in Val-Unseen and
Test-Unseen. Notably, in Test-Unseen, the most important
part of the evaluation since it tests generalization perfor-
mance to new held-out environments, our SEA pre-trained
features achieve 12% absolute improvement in both SR and
SPL for Speaker-Follower, and 4% for the already strong
AuxRN agent. The improvement we obtain can be solely
attributed to our pre-trained features, not to the improve-
ment of the agents as we didn’t tune the agent at all. We an-
ticipate higher performance is possible with tuning. These
results also highlight the importance of visual representa-
tion that has long been ignored in the VLN task. Further-
more, since the improvement of the visual representation
is orthogonal to the improvement of the agent, other VLN
agents and follow-on works can also benefit from and build
on our SEA pre-trained features. We will release the pre-
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Val-Seen Val-Unseen Test-Unseen

Method TL NE# SR" SPL" TL NE# SR" SPL" TL NE# SR" SPL"

RCM [43] 10.65 3.53 0.67 - 11.46 6.09 0.43 - 11.97 6.12 0.43 0.38
Self-Monitoring [27] - 3.22 0.67 0.58 - 5.52 0.45 0.32 18.04 5.67 0.48 0.35
Regretful Agent [28] - 3.23 0.69 0.63 - 5.32 0.50 0.41 13.69 5.69 0.48 0.40
PREVALENT [17] 10.32 3.67 0.69 0.65 10.19 4.71 0.58 0.53 10.51 5.30 0.54 0.51
Relationship Graph [20] 10.13 3.47 0.67 0.65 9.99 4.73 0.57 0.53 10.29 4.75 0.55 0.52
Speaker-Follower [14] - 3.36 0.66 - - 6.62 0.35 - 14.82 6.62 0.35 0.28
Env-Dropout [37] 11.00 3.99 0.62 0.59 10.70 5.22 0.52 0.48 11.66 5.23 0.51 0.47
AuxRN [50] - 3.33 0.70 0.67 - 5.28 0.55 0.50 - 5.15 0.55 0.51
Speaker-Follower + SEA (ours) 12.80 3.68 0.64 0.56 13.61 5.16 0.51 (+16%) 0.42 14.07 5.42 0.47 (+12%) 0.40 (+12%)
Env-Dropout + SEA (ours) 10.31 3.44 0.69 0.66 9.88 4.76 0.56 (+4%) 0.52 (+4%) 10.18 4.89 0.56 (+5%) 0.53 (+6%)
AuxRN + SEA (ours) 10.28 3.43 0.68 0.65 9.80 4.55 0.57 (+2%) 0.53 (+3%) 10.31 4.71 0.59 (+4%) 0.55 (+4%)

Table 1: Comparison to other classical VLN methods under the single-run setting, where the image encoder and the agent
have no access to unseen environments (Val-Unseen and Test-Unseen) during training. The Speaker-Follower [14], Env-
Dropout [37], and AuxRN [50] methods combined with our SEA features achieve significant performance improvement on
both Val-Unseen and Test-Unseen sets.

3D Jigsaw Traversability Instance Classif.

Initial accuracy 5.19 64.12 0.62
Final accuracy 50.83 89.85 99.86

Table 2: The classification accuracy (in percentage) of each
auxiliary task at the beginning and the end of training.

training dataset, source code, and SEA pre-trained features
to facilitate future research in VLN.

4.4. Analysis

Does the image encoder indeed learn to perform well

on the auxiliary tasks? Since the agent’s improvement is
coming from the improved visual representation, which is
coming from the training on the three proposed auxiliary
tasks, we first verify that the proposed auxiliary tasks are
learnable and the image encoder indeed learns to perform
well on the tasks. We report the performance (accuracy in
percentage) on a held-out validation set at the beginning of
training and at the end of training for each auxiliary task.
Note that the image views in the held-out validation set are
collected from Val-Unseen environments different from the
training environments.

The results are shown in Table 2. The image encoder in-
deed learns to do well on all the auxiliary tasks. The accu-
racy numbers should not be compared across different aux-
iliary tasks as they vary in difficulty both because of the
number of “categories” but also due to intrinsic difficulty
(e.g., jigsaw is known to be harder [12].)

What information is encoded by training on the aux-

iliary tasks? Now that we know the learned image en-
coder does well on the auxiliary tasks, we further analyze
what information is encoded in the features. Therefore, we

conduct ablation studies on the pre-trained image encoder.
Specifically, we first train the image encoder with different
combinations of auxiliary tasks. We then append a light-
weight head to the image encoder and fine-tune only the
head (with the image encoder frozen) to downstream tasks:
(1) semantic segmentation, (2) normal estimation, (3) multi-
label object classification, and (4) scene classification. The
training data are taken from a subset of the Taskonomy [47]
dataset. Semantic segmentation and normal estimation re-
quire structural information of the scene, while multi-label
object classification and scene classification require dis-
criminative information of objects and classes.

The results are shown in Table 3. We first compare the
full model (#2) and the ImageNet features. The full model
performs significantly better in semantic segmentation and
normal estimation while maintaining slightly better or com-
parable performance in multi-label object classification and
scene classification. This explains why the agent trained
with our SEA pre-trained features performs much better
in the target VLN task: our SEA pre-trained features suc-

cessfully encode more structural information of the scenes,
which are crucial for performing a navigation task in addi-
tion to the discriminative information of objects and scenes.
For example, agents frequently make decisions based on in-
structions like: ”turn right when you see the sofa on your
left,” which requires the understanding of the structure of
the scene to successfully follow.

Next, we observe that instance classification (#5,7,8)
is the most effective auxiliary task across all downstream
tasks. Even though 3D jigsaw and traversability do not per-
form well by themselves (#3,4), when combined with in-
stance classification (#7,8 compared with #5), they are ben-
eficial for encoding structural information of the scenes as
they provide substantial gains in semantic segmentation and
normal estimation. Furthermore, 3D jigsaw also provides
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Conditions Downstream Tasks

Semantic Segmentation Normal Estimation Object Classif. Scene Classif.
3D Jigsaw Traversability Pred. Instance Classif. (mAP) " (RMSE) # (mAP) " (accuracy) "

ImageNet - - - 29.40 0.585 36.63 71.48

#2 (all) X X X 40.27 0.523 36.86 69.88
#3 X 30.32 (-25%) 0.557 (+7%) 27.07 (-27%) 61.42 (-12%)
#4 X 23.69 (-41%) 0.568 (+8%) 27.32 (-26%) 58.17 (-17%)
#5 X 35.76 (-11%) 0.545 (+4%) 33.72 (-9%) 69.64 (-0%)
#6 X X 34.12 (-15%) 0.546 (+4%) 29.2 (-21%) 63.67 (-9%)
#7 X X 37.46 (-7%) 0.533 (+2%) 34.21 (-7%) 70.12 (0%)
#8 X X 37.69 (-6%) 0.540 (-3%) 32.56 (-12%) 68.99 (-1%)

Table 3: The analysis of what information is encoded by which auxiliary task. The number in the parenthesis at row #3 - #8
represents the relative difference with respect to the full model with all auxiliary tasks combined (row #2).

Conditions Val-Seen Val-Unseen

3D Jigsaw Traversability Pred. Instance Classif. TL NE# SR" SPL" TL NE# SR" SPL"

#1 (all) X X X 10.31 3.44 0.69 0.66 9.88 4.76 0.56 0.52

#2 X 10.04 4.67 0.57 (-12%) 0.55 (-11%) 9.58 5.22 0.52 (-4%) 0.49 (-3%)
#3 X 10.15 5.89 0.47 (-22%) 0.44 (-21%) 9.52 5.93 0.47 (-9%) 0.43 (-8%)
#4 X 10.46 3.74 0.64 (-5%) 0.62 (-4%) 9.93 5.37 0.53 (-3%) 0.49 (-3%)
#5 X X 10.21 4.33 0.62 (-7%) 0.58 (-7%) 9.87 5.08 0.53 (-3%) 0.49 (-3%)
#6 X X 10.41 3.93 0.65 (-4%) 0.62 (-4%) 9.65 4.83 0.55 (-1%) 0.51 (-1%)
#7 X X 10.36 3.82 0.66 (-3%) 0.63 (-3%) 10.21 5.33 0.53 (-3%) 0.49 (-3%)

Table 4: The correlation between agent’s navigation performance and the features pre-trained with different sets of auxiliary
tasks. The number in the parenthesis at row #2 - #7 represents the absolute difference with respect to the full model (row #1.)

marginal gains in multi-label object classification and scene
classification (#7 compared with #5).

How does agent’s performance correlate with each

auxiliary task? Now that we know which auxiliary task
helps encode what kind of information, we would like to
assess whether this encoded information is truly beneficial
to the agent’s final navigation performance. Therefore, we
conduct ablation studies under the single run setting with
the Env-Drop agent [37]. Specifically, we first train the im-
age encoder with different combinations of auxiliary tasks,
use the pre-trained image encoder to generate pre-computed
features, and train the agent with the pre-computed features.

The results on Val-Seen and Val-Unseen are shown in Ta-
ble 4. The agent’s performance drops when any of the aux-
iliary tasks are removed while training the image encoder.
Similar to what we’ve found previously, instance classifica-
tion (#4,6,7) is the most effective auxiliary task among the
three, while 3D jigsaw and traversability are also beneficial
as they further improve the performance when combined
with instance classification. For example, on top of instance
classification, 3D jigsaw helps the agent perform even bet-
ter on Val-Unseen (#6 compared with #4). Traversability
prediction does not help much on Val-Unseen but is bene-
ficial on Val-Seen (#7 compared with #4.) This could be
explained by navigation graphs (traversability) of the en-

vironments providing a strong prior of the environment lay-
out [23]. Thus, the auxiliary task of traversability prediction
learns to encode the prior, adapting to the environments.

5. Conclusion

We propose structure-encoding auxiliary tasks (SEA) to
improve the visual representation, long ignored in VLN.
Three auxiliary tasks, 3D jigsaw, traversability prediction,
and instance classification, are proposed and customized to
pre-train the image encoder on data gathered in the nav-
igation environments. 3D jigsaw and instance classifica-
tion help better encode both structural information of scenes
and discriminative information of objects and scenes, while
traversability prediction helps better encode structural infor-
mation and adapt the visual representation to the target nav-
igation environments. The VLN agents combined with our
SEA pre-trained features (without tuning) achieve 12% SR
improvement for Speaker-Follower, 5% for Env-Dropout,
and 4% for AuxRN in test-unseen under the single-run set-
ting. The contributions of proposed auxiliary tasks and SEA
pre-trained features are orthogonal to other VLN works, and
we will release the collected dataset, source code, and pre-
trained features to facilitate further research in visual repre-
sentations for VLN.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in Neural Information

Processing Systems, 33, 2020.
[17] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and

Jianfeng Gao. Towards learning a generic agent for vision-
and-language navigation via pre-training. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13137–13146, 2020.
[18] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020.

[19] Karl Moritz Hermann, Mateusz Malinowski, Piotr Mirowski,
Andras Banki-Horvath, Keith Anderson, and Raia Hadsell.
Learning to follow directions in street view. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 34,
pages 11773–11781, 2020.

[20] Yicong Hong, Cristian Rodriguez-Opazo, Yuankai Qi, Qi
Wu, and Stephen Gould. Language and visual entity rela-
tionship graph for agent navigation. Advances in Neural In-

formation Processing Systems, 33, 2020.
[21] Haoshuo Huang, Vihan Jain, Harsh Mehta, Alexander Ku,

Gabriel Magalhaes, Jason Baldridge, and Eugene Ie. Trans-
ferable representation learning in vision-and-language navi-
gation. In Proceedings of the IEEE International Conference

on Computer Vision, pages 7404–7413, 2019.
[22] Vihan Jain, Gabriel Magalhaes, Alexander Ku, Ashish

Vaswani, Eugene Ie, and Jason Baldridge. Stay on the Path:
Instruction Fidelity in Vision-and-Language Navigation. In
Proc. of ACL, 2019.

[23] Jacob Krantz, Erik Wijmans, Arjun Majumdar, Dhruv Batra,
and Stefan Lee. Beyond the nav-graph: Vision-and-language
navigation in continuous environments. In European Confer-

ence on Computer Vision, pages 104–120. Springer, 2020.
[24] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Learning representations for automatic
colorization. In European conference on computer vision,
pages 577–593. Springer, 2016.

[25] Gustav Larsson, Michael Maire, and Gregory
Shakhnarovich. Colorization as a proxy task for visual

1112



understanding. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages
6874–6883, 2017.

[26] Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo,
Honglak Lee, John Canny, and Sergio Guadarrama. Pre-
dictive information accelerates learning in rl. Advances in

Neural Information Processing Systems, 33, 2020.
[27] Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,

Zsolt Kira, Richard Socher, and Caiming Xiong. Self-
monitoring navigation agent via auxiliary progress estima-
tion. In Proceedings of the International Conference on

Learning Representations (ICLR), 2019.
[28] Chih-Yao Ma, Zuxuan Wu, Ghassan AlRegib, Caiming

Xiong, and Zsolt Kira. The regretful agent: Heuristic-
aided navigation through progress estimation. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6732–6740, 2019.
[29] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-

derson, Devi Parikh, and Dhruv Batra. Improving vision-
and-language navigation with image-text pairs from the web.
In European Conference on Computer Vision, pages 259–
274. Springer, 2020.

[30] Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In
European Conference on Computer Vision, pages 69–84.
Springer, 2016.

[31] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018.
[32] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor

Darrell. Curiosity-driven exploration by self-supervised pre-
diction. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops, pages 16–
17, 2017.

[33] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Dar-
rell, and Bharath Hariharan. Learning features by watch-
ing objects move. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2701–
2710, 2017.

[34] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages
2536–2544, 2016.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[36] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl:
Contrastive unsupervised representations for reinforcement
learning. arXiv preprint arXiv:2004.04136, 2020.

[37] Hao Tan, Licheng Yu, and Mohit Bansal. Learning to nav-
igate unseen environments: Back translation with environ-
mental dropout. In NAACL-HLT 2019: Annual Conference

of the North American Chapter of the Association for Com-

putational Linguistics, pages 2610–2621, 2019.

[38] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke
Zettlemoyer. Vision-and-dialog navigation. In Conference

on Robot Learning, pages 394–406. PMLR, 2020.
[39] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. In European Conference on Com-

puter Vision, pages 776–794. Springer, 2020.
[40] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,

Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning? arXiv preprint

arXiv:2005.10243, 2020.
[41] Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool.

Talk2nav: Long-range vision-and-language navigation with
dual attention and spatial memory. International Journal of

Computer Vision, 129(1):246–266, 2021.
[42] Xiaolong Wang and Abhinav Gupta. Unsupervised learn-

ing of visual representations using videos. In Proceedings of

the IEEE international conference on computer vision, pages
2794–2802, 2015.

[43] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,
Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and
Lei Zhang. Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6629–6638, 2019.
[44] Xin Wang, Vihan Jain, Eugene Ie, William Yang Wang, Zor-

nitsa Kozareva, and Sujith Ravi. Environment-agnostic mul-
titask learning for natural language grounded navigation. In
European Conference on Computer Vision. Springer, 2020.

[45] Tete Xiao, Xiaolong Wang, Alexei A Efros, and Trevor Dar-
rell. What should not be contrastive in contrastive learning.
arXiv preprint arXiv:2008.05659, 2020.

[46] Joel Ye, Dhruv Batra, Erik Wijmans, and Abhishek Das.
Auxiliary tasks speed up learning pointgoal navigation.
arXiv preprint arXiv:2007.04561, 2020.

[47] Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J.
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). IEEE,
2018.

[48] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In European conference on computer

vision, pages 649–666. Springer, 2016.
[49] Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen

Lin. What makes instance discrimination good for transfer
learning? arXiv preprint arXiv:2006.06606, 2020.

[50] Fengda Zhu, Yi Zhu, Xiaojun Chang, and Xiaodan Liang.
Vision-language navigation with self-supervised auxiliary
reasoning tasks. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pages
10012–10022, 2020.

[51] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanx-
iao Liu, Ekin Dogus Cubuk, and Quoc Le. Rethinking pre-
training and self-training. Advances in Neural Information

Processing Systems, 33, 2020.

1113


