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Figure 1. Compared to conventional polarization sensors, combining a sparse polarization sensor with a compensation method can
enable more accurate RGB images and polarization information to be obtained. The outputs of the conventional polarization sensor
(top) and our proposed sensor (bottom). The RGB and degree of linear polarization (DoLP) values indicate the peak signal-to-noise ratio
(PSNR) (the larger the better) and the angle of linear polarization (AoLP) values indicate angular error (the smaller the better).

Abstract
This paper proposes a novel polarization sensor struc-

ture and network architecture to obtain a high-quality RGB
image and polarization information. Conventional polar-
ization sensors can simultaneously acquire RGB images
and polarization information, but the polarizers on the sen-
sor degrade the quality of the RGB images. There is a
trade-off between the quality of the RGB image and polar-
ization information as fewer polarization pixels reduce the
degradation of the RGB image but decrease the resolution
of polarization information. Therefore, we propose an ap-
proach that resolves the trade-off by sparsely arranging po-
larization pixels on the sensor and compensating for low-
resolution polarization information with higher resolution
using the RGB image as a guide. Our proposed network ar-
chitecture consists of an RGB image refinement network and
a polarization information compensation network. We con-
firmed the superiority of our proposed network in compen-
sating the differential component of polarization intensity

by comparing its performance with state-of-the-art meth-
ods for similar tasks: depth completion. Furthermore, we
confirmed that our approach could simultaneously acquire
higher quality RGB images and polarization information
than conventional polarization sensors, resolving the trade-
off between the quality of RGB images and polarization in-
formation. The baseline code and newly generated real and
synthetic large-scale polarization image datasets are avail-
able for further research and development.

1. Introduction
The polarization of light represents the orientation of

the oscillations of light waves. It can be used to reveal
light transport effects [6, 49] such as shape [3, 4], trans-
parency [23, 38, 40], and scattering [54, 60]. In recent
years, polarization sensors [56, 16], which can simultane-
ously acquire the RGB image and polarization information
in a single shot by placing the polarizer above the photodi-
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Figure 2. Proposed stokes network architecture (SNA). The architecture consists of a refinement network for RGB images and compen-
sation network for polarization information.
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Figure 3. Plot of PSNR for RGB and DoLP for each method.
Our approach, SNA, resolves the trade-off between RGB image
quality and polarization information quality.

ode of the image sensor, as shown at the top in Fig. 1 (a),
have become widely used. This widespread implementa-
tion has enabled many applications such as shape estima-
tion [15, 41, 22, 44, 7, 63, 61, 14, 20, 64], reflection re-
moval [37, 28, 31, 12], and so on [55, 53, 30, 11, 57, 48].
The acquisition of polarization information is achieved by
polarizers placed on the sensor. However, the sensor sen-
sitivity is reduced due to the reduction in light intensity
caused by the polarizers. In addition, an unpolarized com-
ponent is necessary to generate an RGB image, requiring
pixel binning (averaging) of polarization components in
multiple directions. This reduces the spatial resolution as
shown at the top in Fig. 1 (b) (on the other hand, sensitivity
is improved by binning). Reducing the degradation of the
RGB image by reducing the number of polarization pixels
on the sensor, as shown at the bottom in Fig. 1 (a), is feasi-
ble in during design and manufacturing, but the resolution
of the polarization information is reduced as a side effect.

In this study, we propose an approach to resolve this
trade-off between the quality of RGB images and polariza-
tion information by sparsely arranging polarization pixels

on the sensor and compensating for low-resolution polar-
ization information with higher resolution using the RGB
image as a guide. Our proposed stokes network architec-
ture (SNA) consists of a refining network for RGB images
and a compensation network for polarization information
using the RGB images of the output of the refining net-
work as a guide, as shown in Fig. 2. The RGB image re-
finement network helps compensate for polarization infor-
mation more effectively by correcting demosaicing artifacts
and sparse pixels and cleaning up the RGB image used as
a guide. The compensation network for polarization infor-
mation performs compensation only for polarization stokes
components S1 and S2, which are differential components
of polarization intensity. In contrast, the unpolarized com-
ponent S0 is generated from the RGB image. As only the
difference component is learned, the polarization informa-
tion can be compensated more stably than the method that
compensates for polarization intensity in four directions.

In addition, large amounts of RGB and polarization data
are not available to train networks. Although the advent of
polarization sensors has reduced the difficulty of acquiring
polarization information, significant time and manpower are
required to acquire large amounts of data. We used polar-
ization sensors to acquire real-world data and a polariza-
tion renderer [26] to generate a large synthetic dataset for
training. Our large synthetic dataset is generated using Hou-
dini [1], a 3D software program capable of procedural mod-
eling for the automatic generation of objects. Hence the cost
of acquiring a large amount of data is negligible.

We confirmed the superiority of the proposed network
architecture by comparing its performance with state-of-
the-art (SOTA) methods for similar tasks like depth comple-
tion and upsampling. Furthermore, we confirmed that our
approach could simultaneously acquire higher quality RGB
images and polarization information than conventional po-
larization sensors, as shown at the bottom in Fig. 1. Specifi-
cally, we demonstrated a performance improvement of more
than 10 dB and 1 dB in the PSNR for RGB and DoLP im-
ages, respectively. Finally, we showed that resolving the
trade-off between the quality of RGB images and polariza-
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tion information is possible, as shown in Fig. 3. Due to
the versatility of our compensation architecture, achieving
higher quality output from conventional polarization sen-
sors is also possible. In summary, our contributions are as
follows:

• An approach to resolve the trade-off between RGB
image quality and polarization information quality by
using a sparse polarization sensor and compensation
method.

• An effective network architecture for compensating
captured polarization information with degradation.

• Providing large-scale polarization datasets that are
high-quality real and diverse synthetic.

2. Related work
Several previous studies have proposed denoising [52,

51, 33] or demosaicing [39, 46, 36] to obtain high-quality
polarization information. Few research focus on the trade-
off between the quality of RGB images and polarization
information from polarization sensors. Our strategy of
sparsely arranging polarization pixels to avoid the degra-
dation of RGB image quality is derived from image sensors
with sparsely arranged phase detection pixels [25]. In these
sensors, a portion of the pixels is intentionally light-shielded
for image phase detection auto-focus [9]. However, because
the RGB image quality is comparable to that of ordinary
sensors, these sensors have become popular in recent years
in cameras for cell phones and other applications. There-
fore, we hypothesized that even if polarization pixels are
arranged sparsely, sufficient RGB image quality can be ob-
tained as long as appropriate compensation is provided. We
have accordingly conducted research on this hypothesis.

Sparse polarization information has low resolution and
needs to be adequately compensated using the RGB im-
age as a guide. Similar problems are encountered dur-
ing the super-resolution of hyperspectral images, and depth
completion and upsampling. Because hyperspectral im-
ages often have low spatial resolution due to the adverse
effects of dense spectral sampling, a lot of research on
fusing hyperspectral images with high-resolution RGB im-
ages to produce high-resolution hyperspectral images has
been conducted. However, many methods [27, 13] use
constraints related to the unique physical properties of hy-
perspectral images and are not versatile enough to be ap-
plied directly to other problems. In addition, depth com-
pletion [19, 10, 58, 62, 35, 17, 45] or upsampling [24, 34]
is the task of taking a sparse depth map or low-resolution
depth image and transforming it into high-resolution by ref-
erencing to an RGB image. This method has been the sub-
ject of much research, particularly using neural networks.
As the demand for autonomous driving, augmented reality,
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Figure 4. Pixel binning and sensitivity. (a) Pixel binning (averag-
ing) in conventional polarization sensors. Four pixels of the same
color in a neighborhood are averaged to generate the unpolarized
component, reducing resolution but increases sensitivity. (b,c) Po-
larization pixel is less sensitive because the polarizer reduces the
amount of light.

gesture recognition, etc., has increased, these fields have be-
come more competitive, and SOTA networks [18, 43, 50]
have become more sophisticated. However, because these
methods are specialized for depth estimation, they produce
many artifacts when applied directly for polarization infor-
mation compensation. Hence, in this study, we propose a
new network architecture suitable for compensating polar-
ization information.

3. Method
This section details the structure of the proposed sen-

sor, problem formulation, network architecture for obtain-
ing high-quality RGB images and polarization information,
and newly acquired and generated real-world and synthetic
datasets.

3.1. Sparse polarization sensor

An example of a sparse polarization sensor is shown at
the bottom in Fig. 1 (a). This is a structure where four po-
larization pixels of different angles are arranged in an 8× 8
area in a Quad Bayer array RGB sensor. The proportion of
polarized pixels is r, where r = 1/16. A white color filter
is placed in the polarization pixel area to increase the sensi-
tivity of the sensor to the visible light wavelength band.

Spatial resolution: To produce an RGB image using a
conventional polarization sensor, pixel binning (averaging)
of the four polarization angles must be done to create an
unpolarized component, as shown in Fig. 4 (a). Hence, if
the total number of pixels is N , the number of RGB image
pixels in a conventional polarization sensor would be N/4.
In contrast, the sparse polarization sensor can output regular
pixels without binning, and the number of pixels would be
(1− r)N . Thus, the sparse polarization sensor has 4(1− r)
times more pixels in the RGB image than the conventional
polarization sensor, translating to 3.75 times more pixels
when r = 1/16. As the sparse polarization sensor has fewer
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Figure 5. Resolution of sparse polarization sensors relative to
conventional polarization sensors. There is a trade-off between
the resolution of the RGB image and the resolution of polarization
information.

polarization pixels, the number of pixels for polarization in-
formation is r times that of a conventional polarization sen-
sor. Hence, as shown in Fig. 5, the relationship between the
resolution of the RGB image and the resolution of polariza-
tion information for the percentage of polarized pixels r is
a trade-off.

Sensitivity (signal-to-noise ratio (SNR)): Conventional
polarization sensors generate RGB images from polarized
pixels, whereas sparse polarization sensors generate RGB
images from regular pixels. As shown in Fig. 4 (b,c), when
unpolarized light enters a polarized pixel, the light intensity
becomes t/2 times that of a regular pixel, where t is the
transmittance of the polarizer (0 ≤ t ≤ 1). For simplicity,
assume that the noise factor, read noise and transmittance
of the color filter are negligible, and the number of pho-
tons and quantum efficiency are S and Qe, respectively. Ac-
cordingly, the SNR of a regular pixel and polarized pixel is√
QeS and

√
tQeS/2, respectively. When generating RGB

images, the average SNR for the conventional polarization
sensor is

√
2tQeS because it averages four polarization pix-

els, while the average SNR for the sparse polarization sen-
sor is

√
QeS. Therefore, the sparse polarization sensor has√

1/2t times higher SNR for the RGB image than the con-
ventional polarization sensor. When the transmittance is set
to t = 0.7, the standard value for polarization sensors, the
SNR is slightly lower at approximately 0.85 times. Con-
versely, the sparse polarization sensors is slightly more sen-
sitive to polarization information due to the white color fil-
ter.

Table 1 summarizes the characteristics of sparse polar-
ization sensors compared to conventional polarization sen-
sors. The more sparse the polarization information, the bet-
ter the resolution of the RGB image, whereas the resolution
of the polarization information deteriorates. Conversely, the
sensitivity of the RGB image is slightly reduced and the sen-
sitivity of the polarization information is slightly increased.

Table 1. Characteristics of sparse polarization sensors com-
pared to conventional polarization sensors. r is the ratio of
the number of polarization pixels to the total number of pix-
els (0 ≤ r ≤ 1) and t is the transmittance of the polarizer
(0 ≤ t ≤ 1).

RGB Polarization

Resolution ×4(1− r) ×r

Sensitivity (SNR) ×
√
1/2t Slightly better

Regardless, these changes are trivial compared to the spatial
resolution, on which the quality of the final RGB image and
polarization information highly depend.

3.2. Problem formulation

The aim of this research is to generate a compensated
stokes component Ŝ = [Ŝ0, Ŝ1, Ŝ2] ∈ RM×N×3 for a high-
resolution RGB image G ∈ RM×N×3 and sparse four-
polarization image L = [L0,L45,L90,L135] ∈ RM×N×4

filled with zeros except for the polarization pixels. M and
N are the height and width of the image, respectively. As
the polarization sensor cannot acquire the circular polariza-
tion component, S3 is omitted. The transformation matrix
A transforms each component of the four polarization an-
gles into its corresponding stokes vector as follows:

S =

S0

S1

S2

 = A·L =

(L0 + L45 + L90 + L135)/4
(L0 − L90)/2
(L45 − L135)/2

 (1)

A naive solution is to learn a mapping FL : L → L̂ such
that G is used as a guide to produce a high-quality four-
polarization angle image L̂, and then convert L̂ to a stokes
vector Ŝ. This conversion is carried out as follows:

Ŝ = A · FL(L,G; θFL
), (2)

where θFL
is the set of learned weights. However, this

method does not preserve the minute relationship between
the four polarization angles well and produces significant
artifacts.

Another basic approach is to learn the mapping FS :
S → Ŝ such that instead of compensating for the four polar-
ization angles directly, L is transformed into a sparse stokes
vector S to produce a high-quality stokes vector Ŝ, as fol-
lows:

Ŝ = FS(A · L,G; θFS
). (3)

In this approach, components such as S1 and S2, primarily
low-frequency and minor values, are recovered with rela-
tively good quality. Regardless, the S0 component, with
many high-frequency textures, is significantly degraded.
Another problem is that the artifacts primarily caused by
sparse polarization pixels in the RGB image G degrades
compensation performance, particularly near the edges.
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Therefore, we propose the generation of the S0 compo-
nent from the RGB image and the mapping FS to be per-
formed using only the difference (polarization) components
of the stokes vector, S1 and S2. The S0 component of the
stokes vector represents the unpolarized component. There-
fore, as long as the sensitivity difference between pixels is
absorbed, a higher quality image can be generated from the
higher resolution unpolarized RGB image without generat-
ing from polarized pixels. We also correct the demosaicing
artifacts in the RGB image to produce a higher quality RGB
image Ĝ to be used as a guide for polarization information
compensation. Such a process is formulated as follows:

S = A · L, Ĝ = R(G,S,M; θR),

Ŝ0 = g ·B · Ĝ,

Ŝ1,2 = FS(S1,S2, Ĝ,M; θFS
),

(4)

where the mapping R : G → Ĝ compensates for RGB, g
is a gain to absorb the sensitivity difference between the un-
polarized and polarized pixels, B is a transformation matrix
that converts the pixels from RGB to grayscale, and M is a
mask for polarized pixels (a binary image with 1 for pixels
with and 0 for pixels without polarization).

3.3. Network architecture

This study proposes an end-to-end network architecture,
SNA, that compensates for the low-resolution polarization
pixels using RGB images, as shown in Fig. 2. First, tak-
ing the RAW data from the sparse polarization sensor as
input, a demosaicing process is performed to separate data
into a three-channel RGB image and a four-channel im-
age with four sparse polarization angles. The sparse four-
polarization angle image is converted to a stokes vector by
the transformation matrix A. Next, the RGB image refine-
ment network corrects the demosaicing artifacts in the RGB
image. Then, using the refined RGB image and polariza-
tion components of the sparse stokes components S1,2 as
inputs, the polarization components of the high-resolution
stokes components are estimated by a compensation net-
work of polarization information. After the refined RGB
image is grayscaled and gain applied to absorb sensitivity
differences, high-resolution S0 component is calculated to
obtain the final stokes vector and RGB image. The proposed
SNA provides a compensation of S1,2, which is one of the
main contributions of this study. Compared to the basic
compensation architecture that uses four polarization inten-
sity images that are not separated into S1,2, SNA can com-
pensate efficiently under polarization constraints (Tab. 4).
RGB refinement network (RGBRN): Sparse polariza-
tion sensors have polarization pixels interspersed with reg-
ular RGB sensors. Therefore, demosaicing may cause arti-
facts in that polarized pixel region. Such demosaicing arti-
facts in RGB images can interfere with the compensation of
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Figure 6. Polarization compensation network (PCN). The net-
work consists of one branch that complements sparse polarization
information using the RGB image as a guide and a second branch
that refines the obtained dense polarization information.

polarization information. Hence, we use a refinement net-
work to clean up the RGB image. The network architecture
is based on [21], with a modification in residual learning
to stabilize learning. In addition to the RGB image, sparse
polarization components S0,1,2 and a mask M are used as
input to complement the information in the missing polar-
ization pixels, thereby improving refinement.

Polarization compensation network (PCN): As previ-
ously mentioned, we compensate only for polarization in-
formation S1,2. S1,2, the refined RGB image Ĝ, and mask
M are taken as input, and compensation is performed by
a two-branch network shown in Fig. 6, based on the ENet,
the backbone in [19]. The network first generates dense po-
larization information Ŝ1st

1,2, and confidence levels C1st as
the first output, using the RGB image as a guide in the first
branch. The branch is intended to complement the polariza-
tion information. Next, the second blanch is used to refine
the polarization information. The dense polarization infor-
mation Ŝ2nd

1,2 and confidence level C2nd are generated as the
second output using the first output Ŝ1st

1,2 and sparse S1,2 as
inputs. Finally, the first and second outputs are blended at
their respective confidence levels Ĉ to obtain polarization
information Ŝ1,2 as the final output.

Because ENet is intended to complement depth, it can-
not be applied to complement polarization information. We
expand the number of input and output channels to two and
extract the ReLU just before the output to allow negative
results. The ENet has a direct skip connection of features
from the first branch decoder to the same resolution layer of
the second branch encoder. However, features suitable for
second branch refinement are not always generated by the
first branch for completion purposes. This gap causes per-
formance degradation. Therefore, we use a feature transfer
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Table 2. Comparison among different polarization datasets

Dataset Collection Size Resolution

Ba [5] Polarization camera 263 1.3M
Lei [29] Polarization camera 522 1.3M

Ono [42] Polarization camera 69 5.0M
Polarizer rotation 13 4.3M

Ours
Synthetic 11000 1.3M & 0.4M

Polarization camera 811 5.0M
Polarizer rotation 238 20.0M

block (FTB) [59, 32] to transfer the features generated by
the first branch into a form suitable for the second branch. In
addition, the first branch of the ENet extracts RGB features
through an encoder. It compensates S1,2 with the decoder,
so different types of features are directly added with skip
connections, causing a limitation in the expressive power of
the network. We apply an attention-based feature aggrega-
tion block (AFA) [59, 32] that takes into account the global
and visual features of the scene, assigns higher weights to
important channels on the encoder side, and adds them to
the decoder side features. This enables learning of more
flexible representations in the first branch.

Loss function: We use L1 loss for S1,2 and L2 loss for
RGB G to train our network. In the early stages of learning,
the intermediate outputs, S1st

1,2 and S2nd
1,2 , are also supervised,

defined by

LS(Ŝ) = ||Ŝ1,2 − Sgt
1,2||1, LG(Ĝ) = ||Ĝ−Ggt||2

L = LS(Ŝ) + λ{LS(Ŝ
1st) + LS(Ŝ

2nd)}+ LG(Ĝ)
(5)

where Sgt
1,2,G

gt are the ground truth, and λ is the hyperpa-
rameter, a weight that decreases with the number of epochs.

3.4. Dataset

We obtained real-world RGB and polarization informa-
tion datasets using two methods. One method uses a po-
larization sensor, which is less challenging to acquire data,
but the data quality is inferior. The other method is to ro-
tate the polarizer in front of a regular RGB camera to ac-
quire the data, which has higher quality but costs much
more. Hence, we generated a large synthetic dataset with
our polarization renderer to compensate for these shortcom-
ings. Our approach uses Houdini to procedurally generate
3D objects and indoor scenes, as shown in Fig. 7. Accord-
ingly large amounts of data can be obtained at no cost. We
used rule-based floorplan generation [8], with object cam-
eras randomly placed within the rules, and object textures
and bump maps obtained from the Unreal Engine market-
place [2]. Table 2 shows a comparison of our real-world and
synthetic datasets with existing datasets. Our datasets out-
performed both real-world and synthetic in their data size,
and we acquired many high-resolution datasets.

(a) Auto-generated floor and objects (b) Example of data
Figure 7. Automatically generated synthetic dataset. (a) Floors
and objects are generated procedurally. (b) Cameras are positioned
randomly to acquire a wide variety of data at no cost.

4. Experiments
4.1. Dataset and implementation details

To evaluate our method, we performed numerous exper-
iments on our dataset. We used 10729 images (10000 syn-
thetic and 729 real-world images acquired with an FLIR
BFS-U3-51S5P-C color polarization sensor) for training
and 1082 images (1000 synthetic and 82 real-world images)
for validation. For evaluation, we used 238 real-world im-
ages acquired by rotating the polarizer in front of the RGB
camera FLIR BFS-U3-200S6C-C. Raw data from a sparse
polarization sensor with a resolution of 768× 576 was gen-
erated by performing simulations on the dataset. The trans-
mittance of the polarizer was set to t = 0.7. We added shot
noise with a standard deviation of Fn

√
S to the real-world

evaluation data based on a noise model taken from a real
sensor, where S is the pixel value and Fn is the noise factor.
We used Fn = 0.72 in our experiments unless otherwise
stated, as it is the value for 0 dB analog gain on the real
sensor.

Our network architecture was implemented in PyTorch
on a PC equipped with an NVIDIA A100 GPU. We per-
formed 30 epochs of network training with a batch size
of 5, an initial learning rate of 0.001 (gradual decay), and
adopted the model of the epoch with the best validation re-
sults. Using the loss defined in Eqn. 5, λ = 0.2 was set for
the initial epoch and gradually reduced to 0.

4.2. Assessment

We use the PSNR and structural similarity index (SSIM)
for the RGB images, root-mean-square error (RMSE) for
the entire stokes vector S0,1,2 and polarization compo-
nent, only S1,2 for polarization information, PSNR of the
DoLP

√
s21 + s22/s0, and angular difference of the AoLP

1
2 tan

−1(s2/s1), s represents the pixel value of S. We
trained the model five times with different random seeds and
used the average of the evaluation results. The processing
speed of our method was 0.05 seconds per 768×576 image.
Due to space limitations in the paper, a detailed evaluation
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(a) Ground truth (b) Conventional (c) Sparse + bilinear (d) Sparse + SNA
with GuideNet [50]

(e) Sparse + SNA
with PCN (Ours)

Figure 8. Comparison with other methods. Evaluation at r = 1/16. The top is DoLP and the bottom is AoLP. (d) shows the results
obtained after replacing our PCN with GuideNet in the proposed stokes network architecture (SNA) described in Sec. 3.3.

Table 3. Comparison with the basic methods (Sec. 3.2). r is the
percentage of polarized pixels.

r Method
S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

1
4

Eqn. 2 11.016 10.632 16.73 31.21
Eqn. 3 20.622 4.059 26.69 12.54
Ours 4.881 3.824 27.41 12.36

1
16

Eqn. 2 9.103 8.955 19.00 27.49
Eqn. 3 27.562 4.353 25.40 13.57
Ours 4.707 4.151 26.48 13.95

1
64

Eqn. 2 8.743 8.759 17.56 32.88
Eqn. 3 26.833 4.996 23.88 15.74
Ours 5.032 4.801 25.19 15.56

Table 4. Ablation study (Sec. 3.3). Evaluation at r = 1/4.

Operation
S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

Baseline 10.948 10.574 16.57 31.70
+ SNA 10.328 4.046 26.94 12.31
+ RGBRN 4.974 3.979 26.75 13.43
+ FTB 4.952 3.952 26.81 13.14
+ AFA (Ours) 4.881 3.824 27.41 12.36

has been provided in the supplementary material.

Comparison with the basic methods (Sec. 3.2): We first
confirmed the effectiveness of our method (Eqn. 4) by com-
paring it with Eqn. 2 and Eqn. 3. Table 3 shows that for three
different r (1/4, 1/16, and 1/64), our method provides the
most accurate results for polarization information. Eqn. 3
has some good results, but the RMSE of S0,1,2 is extremely
poor, indicating that S0 is not well estimated.

Ablation study: Table 4 shows the ablation study con-
firming the validity of our network architecture described in

Table 5. Comparison of the results obtained after replacing
PCN with depth completion and upsampling networks in our
network architecture (Sec. 3.3). Evaluation at r = 1/16.

Method
S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

UNet [47] 4.974 4.568 25.00 16.31
U2Net [44] 5.537 5.224 23.90 19.11
FDSR [18] 5.128 4.837 25.12 15.48
NLSPN [43] 4.905 4.470 23.97 20.20
GuideNet [50] 4.859 4.390 25.59 15.62
PCN (Ours) 4.707 4.151 26.48 13.95

Table 6. Comparison of real-world (R) and synthetic (S)
datasets (Sec. 3.4). Evaluation at r = 1/4.

Data
Train
size

S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

R 729 11.162 5.240 25.40 14.79
S 729 6.346 5.342 24.05 15.55
S 10000 5.137 4.093 26.58 13.11
R+S 10729 4.881 3.824 27.41 12.36

Sec. 3.3. Baseline is a method that compensates for four po-
larization intensity images. The effectiveness of each mea-
sure—particularly, the polarization-constrained S1,2 com-
pensation (SNA) and RGBRN—is verified.

Comparison with depth completion networks: We also
applied a general-purpose network (UNet [47], U2Net [44])
and SOTA networks for depth completion and upsampling,
GuideNet [50], NLSPN [43], and FDSR [18], and com-
pared their performance with our PCN in Sec. 3.3. Each
network was modified for polarization, and all conditions
were identical except for PCN. In other words, among the
architectures proposed in Sec. 3.3, S1,2 compensation and
RGBRN were adopted and the difference between our PCN
and other networks was evaluated. Table 5 shows the quan-
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Table 7. Comprehensive evaluation of conventional and sparse polarization sensors, taking noise into account. Fn is the noise factor
(higher is noisier).

Fn
Polarization

sensor r Method
S0,1,2

RMSE ↓
[×10−3]

S1,2

RMSE ↓
[×10−3]

DoLP
PSNR ↑
[dB]

AoLP
Error ↓
[◦]

RGB
PSNR ↑
[dB]

RGB
SSIM ↑

0.72

Conventional 0 - 15.124 6.629 25.43 17.05 33.92 0.9251
Ours 6.915 3.854 27.22 12.35 40.56 0.9749

Sparse

1
4

Bilinear 14.643 13.438 17.68 23.34 35.74 0.9579
Ours 4.881 3.825 27.41 12.36 43.76 0.9878

1
16

Bilinear 13.518 13.579 16.69 24.06 36.98 0.9690
Ours 4.707 4.151 26.48 13.95 44.49 0.9897

1
64

Bilinear 13.369 13.973 15.98 25.10 37.79 0.9732
Ours 5.032 4.802 25.19 15.56 44.74 0.9902

3.6

Conventional 0 - 15.216 6.876 23.77 23.99 33.85 0.9233
Ours 7.238 3.972 26.06 14.93 39.79 0.9685

Sparse

1
4

Bilinear 15.131 13.977 15.90 30.90 35.38 0.9493
Ours 5.617 4.067 25.38 17.05 41.83 0.9759

1
16

Bilinear 14.064 14.100 15.18 31.37 36.47 0.9592
Ours 5.380 4.356 25.22 18.23 42.49 0.9789

1
64

Bilinear 13.954 14.522 14.57 32.05 37.18 0.9630
Ours 5.690 5.040 23.86 22.51 42.73 0.9798

titative comparison results and Fig. 8 shows the qualitative
comparison of GuideNet. Each result shows that our PCN
can compensate for polarization information better than the
other networks.
Dataset (Sec. 3.4): We also evaluated the training perfor-
mance of each of our datasets (real-world and synthetic),
confirming the effectiveness of the large synthetic dataset,
as shown in Tab. 6. The model can learn just as well from
the synthetic dataset as the real-world dataset (with signifi-
cant improvement in accuracy for S0,1,2) for the same num-
ber of training images. A higher number of training im-
ages can produce even higher quality results. In addition, a
mixture of real-world and synthetic datasets performs best
because the domain gap is eliminated.
Comprehensive noise-aware evaluation: To further in-
vestigate noise immunity, we reproduced situations of high
noise factor Fn (high analog gain) from the noise model
of the actual sensor and performed comprehensive evalu-
ation of the performances of the conventional and sparse
polarization sensors at various r, as shown in Tab. 7. Ob-
serving the results of the evaluation, we see that our com-
pensation method remains effective even in noisy situations
(Fn = 3.6). A visual representation of the evaluation re-
sults at Fn = 0.72 in Tab. 7 is shown in Fig. 3. Compared to
the conventional polarization sensor, our sparse polarization
sensor obtains high-quality RGB images and polarization
information, particularly for r = 1/4 and 1/16, with excel-
lent balance between the quality of each output. Further-

more, our compensation is effective in improving the qual-
ity of RGB images and polarization information for conven-
tional polarization sensors.

5. Discussions and conclusion

We proposed a new sparse polarization sensor struc-
ture and network architecture that compensates for low-
resolution polarization information to acquire high-quality
RGB images and polarization information simultaneously.
The results of this study are based on simulations. In the
future, we intend to consider prototyping our spare polar-
ization sensor to validate its practical application. Based on
this research, we believe that polarization pixels could be
incorporated into many cameras in the future.

Limitations: First, this study used a white color filter
in the polarization pixel. Hence, we could not acquire
wavelength-side polarization information. Developing a
sparse polarization sensor structure and compensation net-
work architecture to acquire wavelength information is a
topic for future research. Second, cases where there is not
a perfect correlation between the RGB image and polariza-
tion information, such as compensation in photoelastic mea-
surements of transparent objects, are challenging to address
with the current approach. Finally, our network is not suit-
able for hardware implementation owing to the large num-
ber of parameters (184.8M). We will work on making the
network more compact in the future.
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