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Abstract

Low-light image enhancement has been an actively re-
searched area for decades and has produced excellent
night-time single-image, video, and Light Field restoration
methods. Despite these advances, the problem of extreme
low-light stereo image restoration has been mostly ignored
and addressing it can enable night-time capabilities to
several applications such as smartphones and self-driving
cars. We propose an especially light-weight and fast hy-
brid U-net architecture for extreme low-light stereo image
restoration. In the initial few scale spaces, we process the
left and right features individually, because the two features
do not align well due to large disparity. At coarser scale-
spaces, the disparity between left and right features de-
creases and the network’s receptive field increases. We use
this fact to reduce computations by simultaneously process-
ing the left and right features, which also benefits epipole
preservation. As our architecture does not use any 3D con-
volution for fast inference, we use a Depth-Aware loss mod-
ule to train our network. This module computes quick and
coarse depth estimates to better enforce the stereo epipo-
lar constraints. Extensive benchmarking in terms of visual
enhancement and downstream depth estimation shows that
our architecture not only restores dark stereo images faith-
fully but also offers 4−60× speed-up with 15−100× lower
floating point operations, necessary for real-world applica-
tions.

1. Introduction

The low-light enhancement community has witnessed
the development of state-of-the-art algorithms on restoring
high-quality images captured in extremely dark conditions.
Years of research in this area has exploited several tech-
niques ranging from histogram equalization [29, 50, 58, 8,
22, 35] to retinex theory [34, 33, 61, 13, 14, 37, 17, 26], and
more recently convolutional neural networks [6, 15, 16, 72,
60, 38, 63, 25, 36, 52, 75, 45]. These advances have en-
abled several night-time applications that were previously
limited to only daylight conditions, such as object detec-
tion [54, 10], semantic segmentation [64, 53], saliency de-

tection [68, 69], or even casual photography [6, 15]. See-
ing the overwhelming success of these methods for single
image enhancement, many researchers have extended them
for night-time video [24, 5] and Light Field restoration [32].
Although the area of low-light restoration has been studied
quite extensively, an important gap still exists, which is the
restoration of extremely dark stereo images. Filling in this
gap would benefit several night-time applications that need
to incorporate 3D information from the surrounding world.
For example, today most self-driving cars use LiDAR to
get reliable depth estimates in low-light conditions. At the
same time cameras are inevitable for other ADAS-oriented
tasks such as lane detection and pedestrian identification.
However, if high-quality restoration can be done for low-
light stereo images, the costly and bulky LiDAR may be re-
moved for cost-efficient products. Other applications such
as bokeh effect in smartphones and AR/VR headsets can
similarly benefit from low-light stereo enhancement.

Leveraging existing monocular low-light methods is
likely to bear sub-optimal results because they cannot har-
ness the information present in the corresponding stereo
pair and the epipolar geometry might be destroyed. An-
other option is to use existing stereo models, but they have
been mostly optimised for depth predictions [56, 4, 27, 7,
74, 18, 71, 76] and do not visually enhance the RGB im-
ages. Also, they heavily rely on 3D convolutions which
entail a huge computational burden. Consequently, recent
super-resolution methods for well-lit stereo images have re-
placed expensive 3D convolutions with relatively cheaper
attentions modules [59, 70, 73, 62, 67]. However, when we
tried using them for dark stereo images they struggled to
give any enhancement benefit due to the presence of acute
noise and poor contrast in extreme low-light images.

We propose a hybrid U-net architecture (see Fig. 1) to re-
store dark stereo images in a way that not only benefits the
perceptual quality of individual images but also preserves
the epipolar geometry for downstream applications. Fur-
ther our network is especially fast and light-weight which
is necessary for real-world deployment. To benefit visual
enhancement, our hybrid architecture independently pro-
cesses the left and right views in the initial scale spaces
because in these scale spaces the left/right features do not
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Figure 1. We propose an exceptionally light-weight & fast hybrid U-net architecture to restore dark stereo images in a way that not only
benefits the visual perception of individual images but also respects the epipolar geometry for downstream applications. It is fast because
it does not use any 3D convolutions and it is accurate because of the Depth-Aware Loss Module.

align well due to large disparity. But as the scale-space be-
comes coarser due to repeated downsampling, the view dis-
parity decreases, and the receptive field of the network in-
creases significantly. This allows us to process both views
simultaneously for computational efficiency. We avoid us-
ing 3D convolutions or attention modules to keep the net-
work fast. Though our proposed solution is quite simple,
it is very effective and has been overlooked in the existing
literature perhaps because the focus was on well-lit images.

The proposed hybrid architecture uses only 2D convo-
lutions and so to better enforce the epipolar constraints,
we train it using our Depth-Aware differentiable loss mod-
ule. Our Depth-Aware loss module takes the restored stereo
views and uses classical computer vision to compute the
disparity in a differentiable manner. Likewise, after obtain-
ing GT disparity from GT stereo views, the module com-
putes an L1 loss between the two disparities. A naive ap-
proach would have used state-of-the-art depth from stereo
model instead of our Depth-Aware module to enforce the
geometric constraints. But this approach has two chal-
lenges: (a) back-propagation through the depth estimation
models is computationally very expensive requiring mul-
tiple GPUs, and thus the primary task of training the en-
hancement network will suffer due to memory scarcity. Us-
ing existing depth estimation models will force the main
enhancement network to use small batch/patch size which
negatively affects the restoration quality. (b) almost ev-
ery depth from stereo model available today has been opti-
mized for either KITTI [43] or synthetic SceneFlow dataset
[42]. Thus, they cannot be used out-of-the-box to train net-

works for images captured using any arbitrary stereo setup.
To overcome these limitations, our Depth-Aware differen-
tiable loss module uses classical computer vision for depth
computation and has only one hyperparameter. It can thus
be directly plugged in to train stereo enhancement mod-
els for any general stereo rectified setting. The Depth-
Aware loss module is not designed to replace state-of-the-
art stereo depth models, which if supplied a huge amount
of training data, time and memory can deliver excellent
depth estimates, but to offer quick and light-weight coarse
level depth estimates sufficient for enforcing epipolar con-
straints during training. Our code1 is available at https:
//mohitlamba94.github.io/darkstereo/

In summary, we make the following contributions:

• We aim for computationally light and high-speed
restoration of extremely dark stereo images, which al-
though an important problem, has been largely unex-
plored in the existing low-light enhancement literature.

• We propose a simple yet effective Hybrid U-net archi-
tecture for stereo image enhancement which compared
to existing methods offers a good trade-off for visual
restoration of stereo images, epipole preservation and
real-time inference.

• Inspired by classical computer vision, we use an
Depth-Aware differentiable loss module which can be

1This work was supported in part by IITM Pravartak Technologies
Foundation.
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used out-of-the-box for training stereo enhancement
models for any arbitrary stereo rectified setting.

• Compared to exisitng methods our method offers 4 −
60× speed-up with 15−100× lower floating-point op-
erations with restoration at par with computationally
expensive methods.

2. Related Works
Low-light image enhancement. Early methods on low-

light enhancement used histogram equalization to enhance
the dynamic range [29, 50, 58, 8, 22, 35]. Later, people
found that exploiting Retinex theory [34, 33] to decompose
low-light images into illumination and reflectance compo-
nents aided better enhancement [61, 13, 14, 37, 17, 26].
Now-a-days people use learning based networks for better
low-light enhancement [16, 72, 60, 38, 63, 25, 36, 52, 75].
Chen et al. [6] proposed the famous SID dataset for extreme
low-light image enhancement and the dataset has since then
motivated several works on extreme low-light image en-
hancement [41, 15, 66, 1]. Most of these methods had a con-
siderable computational overhead. Thus, few light-weight
single image enhancement methods [31, 45] have also been
proposed by slightly compromising visual enhancement.

Deep stereo models for different stereo applications.
Stereo models have been used for wide variety of tasks such
as depth estimation [4, 56, 27, 7, 18, 55, 74, 57, 65, 46,
3, 76, 71] and super resolution [59, 70, 73, 62, 67, 23].
Majority of depth models warp stereo features to gener-
ate a 4D cost volumes and then regress using 3D con-
volutions to compute disparity. Although these methods
produce state-of-the-art results, using 3D convolution is
computationally expensive. To alleviate this problem, re-
cent stereo super resolution methods [59, 62] propose rela-
tively cheaper attention modules. While attention modules
have been beneficial for well-lit images, applying them to
extremely noisy low-light images may confer similar im-
provements. Deep stereo models have also been used for
stereo deblurring [70], correcting double refraction [28],
and image compression [11] but the task of light-weight
enhancement of extreme low-light stereo images has been
barely studied. Only very recently DVEnet [21] was pro-
posed that enhanced underexposed low-light stereo images.
DVEnet, however, when used for extremly dark stereo im-
ages exhibits lot of halo artifacts (see Experimental section)
and entails considerable computational overhead.

3. Real-Time Stereo Enhancement Network
A practical low-light stereo restoration method must si-

multaneously address three challenges: (a) noise suppres-
sion and color enhancement, (b) preserving the epipolar ge-
ometry of a wide baseline camera setup, and (c) low com-
putational overhead required for real world applications.

Keeping these constraints in mind, we propose a hybrid U-
net architecture for real-time restoration of extremely dark
stereo images. Most existing stereo methods first compute
disparity between left/right views and then use this informa-
tion for a specific task such as super-resolution and depth
estimation. However, for extreme low-light stereo images,
we first enhance the images using our Hybrid U-net and
then enforce geometric constraints using the Depth-Aware
Loss Module. We do so because very low-light images are
too noisy with poor contrast and thus, directly retrieving the
depth is prone to errors (see supplementary).

3.1. Network Architecture

Our hybrid U-net architecture accepts a pair of stereo
rectified low-light images and outputs the restored stereo
views. It is designed to enable each view harness the in-
formation present in the corresponding stereo view without
using any computationally expensive 3D convolutions or at-
tention mechanisms. Fig. 1 shows our proposed network,
which operates at 6 scale spaces: 1, 1/2, 1/4, 1/8, 1/16 and
1/32th resolution of the input image. In the initial few
scale spaces the stereo features do not align due to large
disparity. We thus process them independently by running
the convolutional kernels twice, once for each stereo fea-
ture. But as the feature dimensions reduces, due to repeated
downsampling operations, the misalignment between the
stereo features also reduces and the network’s receptive
field increases. For example, the maximum pixel dispar-
ity in the KITTI[43] dataset is between 200 − 256 and for
CityScape[9] it is even lower. So at the 1/8th resolution
scale space, the maximum pixel disparity will be 25 − 32.
But our network’s receptive field just after the first convolu-
tional layer in this scale space is 36×36. Thus, at 1/8th res-
olution scale space we channel-wise concatenate the stereo
features and process them jointly for the remaining scale
spaces. This not only facilitates the exchange of informa-
tion between the stereo features but also avoids doing re-
peated convolutions. To save computations, we allot more
convolutional kernels to later scale-spaces and do not use
too many convolutional kernels in the initial scale spaces.
The network mostly depends on pixel-shuffle operation for
down and upsampling features maps and uses LeakyReLU
nonlinearity. More details about our architecture are present
in the supplementary.

3.2. Depth-Aware Loss Module

Our hybrid U-net uses only 2D convolutions to achieve
high-speed inference. We thus train it using the Depth-
Aware Loss Module to better enforce the epipolar con-
straints. This module though required only for training,
is kept light-weight to accommodate a bigger enhancement
network. The module has two components, namely the pho-
tometric loss denoted by Lph and the disparity consistency
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loss denoted by Ldisp. Lph computes the L1+SSIM loss
between enhanced stereo views and the ground-truth (GT)
stereo views. Ldisp on the other hand computes the L1
loss between disparity obtained from the enhanced views
and disparity obtained from the GT stereo views. Note that
unlike many stereo methods our method does not require
GT depth but only the GT stereo rectified RGB enhanced
views for training. This is advantageous because cameras
are cheap compared to LiDARs and aligning LiDAR and
RGB data not straightforward. The overall loss function L
can be thus summarised as:

L = Lph + λ · Ldisp (1)

Photometric loss: Let Len and Ren denote the en-
hanced left and right stereo views, and LGT and RGT de-
note the GT stereo views. Further, let L1(·, ·) compute
the difference between l1 norm of the input tensors and
dssim(·, ·) = 1− SSIM(·, ·). The photometric loss is thus
computed as,

Lph = 0.5 · [L1(LGT ,Len) + L1(RGT ,Ren)]

+ 0.5 · [dssim(LGT ,Len) + dssim(RGT ,Ren)] (2)

Differentiable E - Block: Given a pair of stereo recti-
fied views L ∈ RH×W×3 and R ∈ RH×W×3, the E - Block
computes the disparity between the two views in a way that
allows back-propagation through it.

Given any pixel in the left view L we construct a M×M
(in this work M = 31) patch around it and compute a unit
normalised dot product with every other patch of same di-
mension in the right stereo view along the horizontal epipo-
lar line. In this way we construct C′ ∈ RH×W×W , such that
each entry C′

i,j,k in C′ is computed as:

C′
i,j,k =

LP

||LP||1
• RP

||RP||1
∀ i ∈ [1, H] and ∀ j, k ∈ [1,W ] (3)

where, LP ∈ RM×M×3 is a patch around the pixel (i, j) in
L and RP ∈ RM×M×3 is a patch around the pixel (i, k) in
R. However, computing C′

i,j,k can be computationally ex-
pensive and we prefer a lighter operation to not compromise
the training of our hybrid U-net architecture. For example,
if we ignore the unit normalisation step for simplicity, each
C′
i,j,k requires at least 3M2 multiplications. We however

found that more than the size of the chosen path, it is the
context which matters more. We thus introduce a dilation
term d, wherein every dth rows and columns of the patch
are considered to compute C′

i,j,k. This way only 3
(
M
d

)2
multiplications are required. In this work we set d = 3 and
experiment with this idea during the ablation studies.

C′ now has all the information required for computing a
quick and coarse level disparity. The disparity for any pixel

(i, j) in L is computed as,

j − k′,where k′ = argmax
k

(C′
i,j,k) (4)

Though argmax conventionally does not allow back-
propagation, we make it differentiable by forcing the gra-
dients through (i, j, k′) in C′ as 1 and all other gradient to 0.
This simple workaround is also sometimes used to make the
maxpooling layer differentiable. More sophisticated meth-
ods like SGM [20] additionally enforce smoothness con-
straints which definitely help in obtaining finer disparities.
But for the extreme low-light enhanced views, very fine
textures are hard to recover and so we found coarse level
disparity good enough to train our network. This not only
avoids the challenges involved in making additional con-
straints differentiable but also keeps the operation compu-
tationally light. Once we have computed the disparity, we
also compute a confidence map C ∈ RH×W as follows,

Ci,j =

{
1 if C′

i,j,k′ ≥ Ψ

0 otherwise
(5)

where Ψ is the mean of all the entries in C′ where argmax
in Eq. 4 was obtained.

For most stereo setup we have a fair amount of idea on
the maximum disparity, dispmax, required because infor-
mation such as baseline and camera focal length is gener-
ally known. We incorporate this information to regularise
C′. Specifically, we define a new tensor C ∈ RH×W×W ,

Ci,j,k =

{
C′
i,j,k if 0 ≤ j − k ≤ dispmax

invalid otherwise

∀i ∈ [1, H] and j, k ∈ [1,W ] (6)

and then use only the valid entries in C to compute the dis-
parity and the confidence. For all our experiments we only
vary this single hyperparameter dispmax. Further, in the
ablation studies we show that in rare cases when dispmax is
not known, it can be set to dispmax = ∞ and the predicted
disparity is still quite good.

Disparity Consistency Loss: Let, Den and Cen be the
disparity and confidence map produced by the E - Block for
the enhanced stereo views. Likewise, let DGT and CGT be
the disparity and confidence map for the GT stereo views.
The disparity consistency loss, Ldisp is thus computed as,

Ldisp = L1(DGT ·Cen ·CGT ,Den ·Cen ·CGT ) (7)

4. Experiments
4.1. Experimental settings

Datasets: We assess the performance of our method
on three publicly available datasets, namely KITTI [43],
CityScape [9] and L3F [32].
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(a) RGB (b) Linear RGB (c) Scaling down b)

(d) Add Heteroscedastic noise (e) Low light sRGB (f)10x Amplified e)
Figure 2. Various steps involved in converting well-lit images into
low-light.

There is no publicly available dataset on extreme low-
light stereo enhancement for quantitative benchmarking.
Thus following previous works, which faced a similar
challenge [51, 48, 38, 19, 15, 70, 39], we transformed
KITTI2015 well-lit stereo images into low-light images.
But instead of naively adding Gaussian noise and darkening
the image using gamma functions we follow a more prin-
cipled approach for a realistic modelling [2]. A detailed
description of our low-light modelling method is given in
the supplementary and a brief overview can be found in
Fig. 2. Low-light photon noise is added mainly during the
image acquisition which is a linear space. But the processed
images produced by cameras are sRGB images which is
a non-linear space. We thus first go back to the linear
RGB space, scale down the image, add the heteroscedas-
tic noise and then come back to the sRGB space. The
KITTI dataset contains 400 pairs of 1240 × 376 stereo im-
ages with corresponding ground-truth (GT) LiDAR depth
map. We used 200 pairs for training and reserved 200
for testing. During low-light conversion, for each stereo
pair we chose, erms ∼ N (2, 0.01), gain ∼ N (2, 0.01),
QE ∼ U(0.55, 0.66) and scale = 1/40. Refer the supple-
mentary for details. To compute depth from the enhanced
stereo views we used LEAStereo [7] which at the time of
writing the paper holds the top position in the KITTI2015
stereo leaderboard amongst the published works. To further
assess the performance of our method, we repeated this pro-
cedure for the CityScape dataset. The CityScape dataset has
5000 pairs of 1024×2048 stereo images, of which 500 were
reserved for testing and remaining for training. CityScape
does not have LiDAR depth maps, and uses SGM [20] to
provide GT depth. Thus, we also use SGM for computing
depth from enhanced low-light CityScape images.

We tried using other stereo datasets such as the Ox-
ford Robot Car dataset [40] but it lacks the GT enhanced
stereo images, and so cannot be used for benchmarking. In
Sec. 4.4 we, however, show qualitative results on real ex-
treme low-light stereo images obtained from the L3F Light
Field dataset and real night time stereo images captured by
us.

Comparison with other methods: We compare
our method with SID [6], SGN [15], StereoSR [23],
PASSR[59], DASSR[70], CFnet[56], and DVEnet [21].
SID and SGN were proposed for monocular extreme low-

(a) SID [6] (b) SGN [15] (c) StereoSR* [23]

(d) PASSR* [59] (e) DASSR* [70] (f) CFNet* [56]

(g)DVENet (h) Ours (i) GT

(j) SID [6] (k) SGN [15] (l) StereoSR* [23]

(m) PASSR* [59] (n) DASSR* [70] (o) CFNet* [56]

(p)DVENet (q) Ours (r) GT

Figure 3. The figure shows the left view enhanced by different
methods, and the depth computed by LEAStereo [7] using the low-
light enhanced stereo views. Our method performs significantly
better than most methods. With respect to CFNet*, our visual re-
sults are comparable but with 40× higher inference speed.

light enhancement and noise suppression. We used them to
enhance left/right views individually. As there are no meth-
ods on extreme low-light stereo enhancement, we com-
pare with DASSR, which has shown good performance for
denoising additive white Gaussian noise added to well-lit
stereo images. DASSR in stage-I obtains features inde-
pendently for left/right view, in stage-II computes dispar-
ity to warp the features and in stage-III restores only the
left view. We thus replicated stage-II and stage-III to get
both left and right low-light enhanced views. We also com-
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Method Perceptual Depth Inference Speed

PSNR SSIM RMSE D1% CPU GPU GFLOPs

(dB)↑ ↑ ↓ ↓ (s) ↓ (ms) ↓ ↓

SID [6] 16.32 0.696 7.78 22.2 2.23 30.49 200.50

SGN [15] 16.30 0.692 7.93 22.2 2.10 30.86 203.92

StereoSR* [23] 20.97 0.664 7.91 20.2 12.17 147.50 1101.86

PASSR* [59] 14.86 0.699 6.69 18.9 38.31 473.82 2301.25

DASSR* [70] 20.09 0.673 8.12 23.9 6.40 132.27 407.62

CFNet* [56] 24.56 0.718 7.37 21.9 15.75 312.33 1278.44

DVENet [21] 16.08 0.645 4.81 14.85 5.23 142.14 173.02

Ours 25.16 0.726 5.70 17.7 0.35 7.47 13.12
Table 1. Quantitative comparisons on the KITTI dataset. The
best scores are in bold and second best underlined. Our method
achieves the best performance on all metrics while delivering real-
time inference speed.

pare with StereoSR and PASSR designed for well-lit RGB
stereo super-resolution. As our goal is enhancement and
not super-resolution we reduced the scaling factor of last
layer of these methods from ×2,×4, ... to ×1. These meth-
ods also output only the left view and so we replicate the
warping and final merging stages for enhancing both left
and right views. We also compare with CFNet a light-
weight model for computing depth from stereo. CFNet
has three stages: stage-I individually computes the left/right
features; in stage-II features are warped to obtain a 4D vol-
ume; in stage-III 3D convolutions operates on the 4D vol-
ume to output a single channel tensor denoting the depth
map. We slightly modified the last stage by making 3D con-
volutions output a 3 channel tensor for RGB color images.
We then used L1 and SSIM to train it for RGB image en-
hancement. In our benchmarking we denote these slightly
modified stereo models by adding a ‘*’ in the superscript.
We re-trained all models for fair comparison. Finally, few
works on raw low-light enhancement, have reported better
enhancement using ratio pre-amplification. But as we di-
rectly train on sRGB images and not raw images we did not
find any performance difference and so do not use it.

We used PyTorch [49], running on Intel Xeon E5-
1620V4 CPU with 64GB RAM and RTX 3090 GPU to
design our model. We trained our model using ADAM
optimizer [30] with default parameters. We trained the
model for 100, 000 iterations with learning rate set to 10−4.
The training was carried out on randomly chosen patches
with no data augmentation as sufficient number of random
patches can be obtained from the full images. For KITTI
dataset patch size was set to 352× 704 and for CityScape it
was set to 512 × 512. For KITTI dataset, dispmax = 200.
And since CityScape’s baseline is roughly half of KITTI’s

Method Perceptual Depth Inference Speed

PSNR↑ SSIM↑ RMSE↓ CPU(s)↓ GPU(ms)↓

SID [6] 27.58 0.840 0.224 10.82 248.96

StereoSR* [23] 28.08 0.810 0.221 52.95 635.03

DASSR* [70] 27.28 0.831 0.223 32.84 616.64

CFNet* [56] 29.17 0.852 0.214 72.71 1361.61

DVENet [21] 29.02 0.847 0.189 30.05 685.74

Ours 30.49 0.853 0.177 1.63 23.02
Table 2. Quantitative comparisons on the CityScape dataset. Our
method achieves the best performance on all other metrics while
maintaining a fast inference speed.

baseline, we set dispmax = 100 for CityScape.

4.2. Quantitative and Qualitative comparisons

In Tab. 1 we benchmark our method on 7 metrics: PSNR
and SSIM for comparing visual enhancement; RMSE and
D1 bad pixel percentage [43] for comparing depth com-
puted from enhanced views; and CPU time, GPU time and
Floating-Point Operations (FLOPS) for measuring infer-
ence computational complexity. For measuring computa-
tional overhead we considered the time/operations required
to enhance both left and right views with full spatial resolu-
tion.

We find that our method performs significantly better
than most methods while exhibiting real-time inference
speed, necessary for real-world applications. These quan-
titative results are also supported by the qualitative results
shown in Fig. 3. For computing RMSE and D1 metric we
have used the LiDAR GT available in the KITTI dataset.
But as LiDAR outputs semi-dense depth, for visual compar-
ison in Fig. 3 we have shown the dense depth map obtained
from GT stereo views.

In general, we observe that stereo methods perform bet-
ter than SID and SGN monocular methods. This is ex-
pected as monocular methods do not benefit from the corre-
sponding views. Further, SID uses max-pooling for down-
sampling which suffers from gradient sparsity and trans-
posed convolution for upsampling, which has been re-
ported to lower the performance [47]. Stereo models like
PASSR*, StereoSR* and DVEnet do feature matching for
final restoration. Contrary to their approach CFNet* relies
only on 3D convolutions for enhancement and thus achieves
the best results compared to existing stereo models. This
is because, using attention modules or feature correlation
is beneficial for well-lit images but not for extremely low-
light images having poor contrast and large amount of noise.
This fact is also evident from Fig. 3, where the enhance-
ment done by all previous methods except for CFNet* and
ours, suffers from the ‘Halo Artifacts’ resulting from in-
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Real low-light left Enhanced left GT left Pred disparity GT disparity

Real low-light left Enhanced left GT left Pred segmentation GT segmentation
Figure 4. Qualitative results on real low-light stereo images us-
ing our network. Not only is the enhancement almost identical to
the GT views but results of downstream tasks such as depth esti-
mation and semantic segmentation on enhanced views at par with
estimates obtained from GT views.

correct color restoration in the small vicinity of saturated
pixels [12, 61, 44]. This is the main reason for superior
PSNR of CFNet* and our method. Finally, methods like
CFNet* and DASSR* estimate intermediate disparity to
warp the views. We, however, do not leverage such ideas
in our model because view warping using disparity com-
puted from intermediate low-light features is prone to er-
rors. We rather simply channel-wise concatenate the fea-
tures and let the network implicitly learn using 2D convo-
lutions by enforcing epipolar constraints using the Depth-
Aware loss module over enhanced views. Doing so not only
helps our method achieve better visual enhancement and
depth estimates than all previous methods in both Tab. 1
and Fig. 3 but also keeps the memory footprint low.

In Tab. 2 we also assess the performance of our model on
the CityScape dataset and find that our method does much
better than most methods and continues to maintain signifi-
cantly higher speedup. Overall, KITTI [43] contains images
with rich, vibrant colors, while CityScape’s [9] well-lit im-
ages have relatively lower saturation. Enhancing CityScape
images is, therefore, easier than KITTI images. At the same
time, CityScape has much higher resolution stereo images,
which makes it difficult for models to maintain good infer-
ence speed.

4.3. Time Complexity

Generally, stereo models are computationally heavy but
as reported in Tab. 1 and Tab. 2, our network is extremely
fast. The main reason is that, unlike CFNet*, PASSR* and
DEVnet, we do not use 3D convolutions or attention mod-
ules. Rather we only use 2D convolutions. StereoSR* also
primarily relies on 2D convolution, but it does so mainly at
full resolution. However, in our model, most convolutions
happen at 1/16 and 1/32 resolution. StereoSR* also needs
additional time to convert RGB images into YCrCb color
space.

The inference speed of our network is even faster than
mono methods such as SID. SID needs to do computations
twice to enhance both left and right views. Our model, how-
ever channel-wise, concatenates both views at lower resolu-

Real extreme DVENet Ours GT Left
low-light left view

Figure 5. Restoration of real extreme low-light stereo images cap-
tured in midnight. while DVEnet’s & our method’s restoration are
comparable our method offers atleast 10× speedup.

(a) Left (b) Right (c) No Unit norm (d) No dispmax

(e) 5 × 5 Patch (f) 11 × 11 Patch (g)31 × 31 Patch (h) 31 × 31 Patch
d = 3 d = 3 d = 1, Compute d = 3, Compute

heavy light (Proposed)
Figure 6. Coarse-level disparity (masked by confidence map) com-
puted by the E-Block under different settings. Small patch sizes
produce noisy disparities. We thus use larger patches but increase
dilation d to 3 for saving computations. Even if dispmax is un-
known (easily calculated using baseline and focal length), the dis-
parity map in (d) is quite close to (h), except for tiny white dots,
denoting very large disparity.

tion and so need not do repeated computations. This not
only keeps memory footprint low but also better enforces
epipolar constraints.

4.4. Real low-light stereo images

Here we show qualitative results on real low-light stereo
images obtained from the Low-Light Light Field (L3F)
dataset [32]. The dataset has three subsets, of which we
used the L3F-20 subset. The L3F dataset was captured in
the evening when the light falling on the camera lens was a
maximum of 20 lux. The captured LFs are thus extremely
dark. The dataset also captured the corresponding well-lit
Light Fields (LFs) by having a large exposure time of 5−10
seconds. The LFs are arranged in a 15× 15 grid, with each
SAI having 434 × 625 spatial resolution. To construct the
stereo dataset we ignored the peripheral views as they were
severely affected by the vignetting effect and considered
only the central 9 × 9 SAIs. We then selected the extreme
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Independent Our λ Perceptual Depth
Feature Feature Ldisp (PSNR) (RMSE)

Extraction Extraction weight
Net-I ✓ ✗ 0 25.26 7.82
Net-II ✗ ✓ 0 25.17 6.00
Net-III ✗ ✓ 1 24.90 5.38

Proposed ✗ ✓ 0.1 25.16 5.70
Table 3. Ablation Study on the proposed method using the KITTI
dataset. Our style of feature extraction benefits epipolar con-
straints while only slightly lowering the PSNR for visual enhance-
ment. The table also shows the trade-off between perceptual en-
hancement and depth estimation.

left and right SAIs from the middle row to obtain the stereo
pair. We thus retrained our network on 384 × 384 patches
by setting dispmax = 10 as the SAIs have sub-pixel dis-
parity. Thus, we show that our method can easily switch
between large/small baseline systems even though it is op-
timised for large baseline systems. The qualitative results
are shown in Fig. 4. We see that the input stereo views are
extremely dark, and yet the restored views look almost iden-
tical to GT views. Performance of other tasks such as depth
estimation and semantic segmentation on enhanced views is
also at par with results computed from the GT stereo views.
We couldn’t do quantitative benchmarking since the dataset
lacks GT depth.

We even took two FLIR machine vision cameras, placed
them rigidly at 24cm baseline and captured rectified stereo
pairs at midnight with light lux values < 10 on the camera
lens. Like SID, we also captured high-exposure images for
qualitative benchmarking. Fig. 5 shows the restoration done
by DVEnet and our method. We find that both results are
comparable but as noted in Tab. 1 and Tab. 2 our method is
significantly faster and light-weight.

4.5. Ablation study

Tab. 3 reports the quantitative comparison for stereo en-
hancement by re-training different versions of our method
on the KITTI dataset. Results on Net-I and Net-II demon-
strates the benefit of our hybrid architecture. For Net-I
throughout our U-net the features for left and right views
were processed independently. For Net-II our hybrid style
of feature extraction, as shown in Fig. 1, was used. Com-
pared to Net-1, the depth prediction metric is much better
by 1.82 units while experiencing only a tiny drop of 0.09
dB PSNR. Moreover, Net-II also has computational advan-
tages. For example, for a 2MP image Net-I requires 77.08
GFLOPS while Net-II only requires 57.42 GFLOPS. We
next train Net-II by including our disparity consistency loss,
Ldisp with weightage of λ = 1. This improves the depth
metric RMSE but lowers the PSNR. This perception-depth
trade-off was also noticed in [70]. To favour both restora-
tion and depth we choose λ = 0.1.

In Sec. 4.2 and Sec. 4.4 we showed results by training

our network on KITTI (baseline=54cm), CityScape (base-
line=22cm) and L3F dataset (very small baseline) having
very different types of acquisition sensors and stereo setup.
To train our network on these different datasets, only one
hyperparameter, dispmax, was changed in the Depth-Aware
loss module. To further understand the role of different
components in the Depth-Aware loss module, we show
some coarse-level disparity map computed by the E-Block
in Fig. 6. Here the disparity maps are masked by the con-
fidence map estimated by the E-Block. In Fig. 6 c) we do
not perform patch-wise unit normalisation leading to inco-
herent disparity. Next in Fig. 6 d) we assume that stereo
metadata namely baseline and focal length is not known
and thus dispmax is unknown. Except for very tiny spo-
radic white dots, the estimation is still quite good. Thus,
not knowing dispmax is not a sever drawback. Next, we
reduce the patch size from M = 31 to M = 5, 11 and
find that the estimated disparity are very noisy. Finally, we
bring M back to 31 but reduce the dilation d from 3 to 1.
The estimated disparity in this case is almost identical to
the proposed disparity shown in (h) except for marginal im-
provement at few isolated points. But at the same time the
computational complexity is exceedingly high. For exam-
ple as noted in Sec. 3.2, computing just one entry of C in
this case requires at least 3 · 312 multiplications. But for the
disparity shown in Fig. 6 h) only 3 ·

(
31
3

)2
multiplications

are required.

5. Conclusion & Future Work
Low-light enhancement has been extensively stud-

ied, addressing the nighttime restoration of single-image,
videos, and Light Fields. Yet a very important area of fast
& light-weight restoration of extreme low-light stereo en-
hancement has been almost unexplored, which we address
in this work. We proposed a hybrid U-net architecture
which faithfully restores the stereo images belonging to var-
ious datasets, while preserving the epipolar geometry. The
inference speed of our network is significantly better than
existing stereo methods because we use only 2D convolu-
tions and enforce the epipolar constraints during training by
using the Depth-Aware loss module. We showed that this
module can be used out-of-the-box for training on differ-
ent types of datasets such as KITTI which has a very large
baseline and CityScape which has medium-sized baseline.
Finally, our network is even faster than mono methods such
as SID. This is because our hybrid architecture at lower res-
olutions jointly operates on both stereo features and unlike
mono methods we need not do repeated convolutions. Over-
all, our network offers 4 − 60× speedup with 15 − 100×
lower floating-point operations compared to existing strate-
gies. As a future work, we wish to parameterise the scale at
which feature merging happens in our model as a function
of stereo baseline though it will make training harder.
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