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Abstract

With the development of the self-attention mechanism,
the Transformer model has demonstrated its outstanding
performance in the computer vision domain. However, the
massive computation brought from the full attention mecha-
nism became a heavy burden for memory consumption. Se-
quentially, the limitation of memory consumption hinders
the deployment of the Transformer model on the embed-
ded system where the computing resources are limited. To
remedy this problem, we propose a novel memory econonty
attention mechanism named Couplformer, which decouples
the attention map into two sub-matrices and generates the
alignment scores from spatial information. Our method en-
ables the Transformer model to improve time and mem-
ory efficiency while maintaining expressive power. A se-
ries of different scale image classification tasks are applied
to evaluate the effectiveness of our model. The result of
experiments shows that on the ImageNet-1K classification
task, the Couplformer can significantly decrease 42% mem-
ory consumption compared with the regular Transformer.
Meanwhile, it accesses sufficient accuracy requirements,
which outperforms 0.56% on Top-1 accuracy and occu-
pies the same memory footprint. Besides, the Couplformer
achieves state-of-art performance in MS COCO 2017 object
detection and instance segmentation tasks. As a result, the
Couplformer can serve as an efficient backbone in visual
tasks and provide a novel perspective on deploying atten-
tion mechanisms for researchers.
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1. INTRODUCTION

In recent years, the attention mechanism has generated
considerable interest in the domain of deep learning. The
main breakthroughs of attention modules first appeared in
Natural Language Processing (NLP) [38] and then was
transferred to the computer vision domain [10]. Different
from Convolutional Neural Network(CNN), the attention
module tends to exert a learnable weight on features to dis-
tinguish importance from various perspectives. Due to the
outstanding extraction ability of information, the attention
mechanism has immediately been leveraged in several deep
learning applications and has become one of the indispens-
able concepts in the deep learning field [24]. With the devel-
opment of the neural network, the attention mechanism has
been introduced in many specific tasks, such as image cap-
tion generation [45, 23], action recognition [32, 34], image-
based analysis [31], and graph [39].

As a particular form of attention, self-attention is applied
as the core mechanism of the neural network, named Trans-
former. Recent efforts have shown that Transformer and
attention-based models have become ubiquitous in modern
vision tasks [10]. However, there are a few drawbacks of
the Transformer model. Coming with outstanding perfor-
mance, it also exposed the severe demand for computa-
tion of memory. Because the size of full attention matrix
is proportional to the square of the sequence length, the
time and space complexity extend considerably [3]. Some
challenges result from this problem. First of all, compared
with the CNN, the more significant memory consumption
of the Transformer restricts its deployment possibility on
terminal equipment, such as mobile robots and unmanned
aerial vehicles. Secondly, due to the limitation of mem-
ory consumption, the selection of patch size tends to be
larger, which adversely affects the patch representation of
the Visual Transformer [35]. Moreover, with the growth of
the image size, the problem of memory limitation will be

6475



Memory(M)

14000 - Visual Transformer
(2020)
Diameter
12000
2 4 12 22 (M)
10000 -
Reformer
8000 (2021)
6000 Linformer  performer . J
(2020) (2021) o
Couplformer _
4000
2000 - '

o4

Figure 1: The proposed Couplformer achieves memory
economy in the visual task. When the patch size is un-
varied, the memory consumption increases with the growth
of the image size(32%32, 64%64,128%128,256%256). Com-
pared with the original Transformer, efficient Transformer
models present a lower memory consumption to a relative
degree. Our Couplformer keeps the most economy memory
increment with the minimum training parameters. (the scat-
ter area means the number of training parameters).

much more conspicuous. Therefore, memory consumption
inhibits the Transformer model scalability in quite a lot of
settings. Several attempts have been made to improve the
efficiency of the Vision Transformer(see Section 2 for de-
tails). Despite their gratifying result, these methods have
mainly relied on the following approaches. Depending on
the low-rank prior, some works [41, 4, 17] utilize the kernel
method to discover a relatively low-rank structure to reduce
the memory. By limiting the attention map, some methods
[26, 25] predefine the field of view to save the computa-
tion cost. Moreover, other works [8, 28] leverage exten-
sional network architecture to improve the Transformer’s
efficiency.

In this paper, we introduce a novel method named Cou-
plformer, which involves the coupling attention mechanism
to alleviate the memory limitation in Vision Transformers.
Specifically, we decouple the attention map into two sub-
matrices and the alignment scores of each sub-matrix are
generated with the vector along the height and width axis
respectively, which is inspired by the human vision patterns
[30] that human visual perception tend to capture the differ-
ence between lines during reading. From the Fig. 1, Cou-
plformer merely requires 31.6% memory consumption of
original Vision Transformer(ViT) while the image size is
256 * 256. The experiment results show Couplformer could
be applied to different scales of datasets and obtain compet-
itive performance by training from scratch.

The main contributions of this paper include:

1. We introduced coupling attention mechanism which

decouple the self-attention map into two sub-matrices
to reduce the space complexity from O((hw)?) to
O(h?4+w?). And we designed a novel way to construct
the sub-matrix by calculating the alignment score be-
tween the vectors along the height and width axis
rather than the channel axis.

2. We designed an efficiently algorithm for coupling at-
tention by leveraging the vectorization trick. This al-
gorithm can realize the process of self-attention with-
out calculating the full attention matrix explicitly and
provide a substantial speedup for both model training
and inference.

3. Based on the coupling attention mechanism, we elab-
orated a framework named Couplformer and evalu-
ated our model by conducting experiments on differ-
ent scales of CV tasks without bells and whistles. Ac-
cording to the experiments, our model achieves com-
petitive performance with relatively low memory con-
sumption.

2. RELATED WORK

Vision Transformer Before Dosovitskiy et al. [10] pro-
posed the Vision Transformer, CNNs dominated the area
of visual recognition. Depending on the weight sharing,
scale separation, and shift equivariant, CNNs possess the
powerful and efficient ability to extract the feature from
the image [12]. Although the Transformer network did not
present the strong equivariance representation as CNN, its
unique structure endows its permutation equivariance to ob-
tain inductive bias [11]. In detail, the standard Visual Trans-
former’s structure includes the following parts: Token Em-
bedding, Positional Embedding, Transformer Encoder, and
Classification Head [18]. With the exploration of the Trans-
former network, various Transformer-based models were
proposed to solve the vision tasks efficiently. Touvron et
al. [36] proposed the DeiT, which uses distillation learning
to overcome the drawback of ViT that it could only present
the outstanding performance in large-scale datasets. CPVT
[5] model applied the different position embedding methods
to improve the efficiency and flexibility of the ViT model.
According to the CvT [42] and CeiT [46] model, they try to
hybridize the Transformer and CNN network to derive de-
sirable properties from each one. Liu et al. [22] proposed
the Swin Transformer, which adopts a series of approaches
in terms of visual tasks, such as patch partition, linear em-
bedding, pyramid structure, and window-based MSA.

Efficient Transformers Depending on the self-attention
mechanism, the Transformer model has already become
prevalent in many fields. As described above, the stan-
dard self-attention operation relies on dot-production mul-
tiplication. Sequentially, this leads to the problem that
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Figure 2: Coupling attention mechanism, using the prod-
uct of two alignment scores of vectors along the height and
width axis to obtain the attention map(the s denotes the
number of heads, and other notations are introduced in Sec-
tion 3).

self-attention is the quadratic time and memory complex-
ity [33]. The reason is that the dot product between the
feature matrix () and matrix K generates a massive ma-
trix to present the token-token interaction. In such a sit-
uation, it is unavoidable that there is exhaustive and re-
dundant computation in the standard self-attention opera-
tion. In order to address this problem, the researchers pro-
posed several novel Transformer architectures to improve
the original self-attention mechanism, which named “effi-
cient Transformers” [33].

The first solution is to sparsify the self-attention lay-
ers. According to the sparse attention, the attention map
can only be computed by limited pairs in a particular pre-
defined manner. For example, by limiting and fixing the
field of view, Qiu et al. [26] employed the fixed block local
attention patterns to constrain the pair for the score. Simi-
larly, Sparse Transformer [3] and Longformer [1] leverage
fixed strided attention patterns to achieve the cost reduction.
Kitaev et al. [19] proposed a learnable approach by using
hash-based similarity to replace the token-to-token interac-
tion.

Secondly, depending on the low rank prior, employing
the kernel-based method to approximate the attention ma-
trix could also reduce the complexity. In terms of approx-
imation solution, Linformer [41], Performer [4] and Linear
Transformer [17] utilized the kernel method to avoid ex-
plicitly implementing the dot production. They attempted
to find a relatively low-rank structure to reduce the memory
and computational complexity.

Lastly, there are some of the other efficient Transformer
architectures different from the solutions mentioned above.
Depending on the segment-based recurrence, Transformer
XL [8] applies a hidden state to connect adjacent blocks
with a recurrent mechanism [33]. Different from the Trans-
former XL [8], Rae et al. [28] utilizes a dual memory sys-

tem to maintain a fine-grained memory of past segment ac-
tivations. As one kind of efficient Transformer, our model
could be classified into the approximation solution to reduce
the computation complexity and memory consumption.

3. COUPLFORMER

In this section, a brief review of self-attention mecha-
nism is given firstly, then we describe the main idea of cou-
pling attention and its efficient calculation. Finally, we in-
troduce our elaboration of Couplformer model for image
classification.

3.1. Standard Attention Mechanism

According to the standard visual attention mechanism in
ViT[10], the input feature = € R?***? of attention module
is reshaped into the flattened token z;, € RE*4. [ denotes
the length of input tokens sequence which is the product
of height h and width w of the input feature. Then three
linear transformations are applied on the input tokens z,
to generate the Q, K,V € RE*? respectively. The output
of self-attention module O € R4 can be calculated as
below:

QKT
Vd
Here SM(-) denotes the softmax operation along the ma-
trix’s rows. AM € RI*E denotes the attention ma-
trix, which has O(L?) space complexity. Intuitively, the
quadratic dependency of the attention matrix leads to high
memory consumption and limits the application of the large

feature maps in the computer vision scenario.

According to the Eq. (1), that the element am; ; in the
attention matrix AM is the dot product of i — th row vec-
tor q; of query matrix () and j — th row vector k; of key
matrix K, here ¢ and j denote the indexes of flattened token
sequence, and ¢ and j can be calculated by the 2D coordi-
nates (z(),y®), (29, y)) of the specified tokens on the
2D feature map as below:

{i =z® er(i) * W

=2 4y s

AM = L0 = (SM(AM))V (1)

2

3.2. Coupling Attention Mechanism

Inspired by the idea of applying decomposition or di-
mension reduction to attention matrix to reduce the com-
plexity of attention mechanism [44, 41, 19], we assume the
attention map AM € R"*h% can be approximately decou-
pled into two sub-matrix A € R"*" and B € R**™,

Hypothesis 1

AM~AM =A®B
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Figure 3: Illustrating the Couplformer architecture.

Here ® denotes the tensor product operator, which can
be implemented by Kronecker product while A and B are
two matrices, explicitly the Kronecker product of A and B
is defined by:

ap 0B ap,p—1B

A®B= 3)

ap—1,0B ap—1,n—1B

The lowercase a. . denotes the element in the matrix
A, and the indexes of matrix elements are all starting from
zero. Because the sub-matrix B € R¥*™, by the definition
in Eq. (3), the element in the coupling attention matrix AM
can be written as:

“4)

am;; = (A®@B)ij = ai/jwj//w] X bishw,j%u]

Here am; ; denotes the element in the coupling attention
matrix XIVI, which represents the alignment score of any
two tokens from Q and K. The subscript of am,; denotes
the 1D indexes ¢ and j of given tokens. The operator // de-
notes exact division, and % is modulo operation in Eq. (4).
Considering the am; ; in the standard attention mechanism
is the inner product of q; and k;, we substitute the 4, j in
the 2 into Eq. (4), hence the element of coupling attention
matrix can be represented by the spatial coordinates on the
2D feature map as:

®)

W = Ay y()] X b[z(mm(y‘)]
3.3. Spatial Attention and Channel Merge

In the previous section, we decouple the original atten-
tion matrix into two sub-matrix A and B, then establish the
connection between the coupling attention matrix and spa-
tial coordinate of given tokens on 2D feature map. Here
comes the question, how can we construct the sub-matrix
A € R"" and B € R¥*™ while retaining the attention

mechanism to capture query-key correlation? To solve this
problem, we elaborate a novel approach to generate the sub-
matrix by exploiting the spatial information of 2D features.
Specifically, for the sub-matrix A which is given the fixed
shape h x h, and the element a; ; of A is corresponding to
the height position (y(*), (7)), it is natural to consider a; ;
as the inner product of ) — th and y) — th row vec-
tor of 2D feature map, with the same idea, the element b; ;
can be obtained by the inner product of the column vector
of 2D feature map. Therefore, as shown in Fig. 2, given
two points i and j on the 2D feature map with spatial posi-
tion (z(?),y®) and (29, y(7)), the elements in sub-matrix
A and B can be calculated by:

)
e
qch
ch=1

2 (D)
ch

2
ch

n
a/ij

= (6)

By =2 a

ch=1

()
Y
: kch ’

(i) .
Here ¢¥,  denotes the y¥-th row vector 2D feature map

Q, while kf,(l” denotes the (/)-th column in Kj, the sub-
script ch denotes the channel number and the superscript n
denotes the n-th head. To keep the same form with multi-
head attention, we use ¢ as the channel dimension in each
head and s is the number of heads, therefore the total chan-
nel dimension d equals ¢ x s. Comparing with the stan-
dard multi-head attention, the only difference is all the value
matrices V in the same head are multiplied by a shared
attention matrix AM which is obtained by sum up all the
dot-product results among the channel. Coupling attention
mechanism implies a closer form with the human natural
eye movement patterns [30], because humans prefer to com-
pare the difference between row by row and column by col-
umn in the spatial field rather than the channel direction.

3.4. Efficient Calculation

Based on the hypothesis 1 and Eq. (5), we construct the
sub-matrix A and B from a novel perspective of attention
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mechanism. Thus, the original attention matrix can be de-
couple into two sub-matrix A € R"*" and B € R¥Xv,
The main advantage of coupling attention is that it can im-
plement the procedure of attention mechanism without the
explicit calculation of attention matrix AM, which can sig-
nificantly mitigate the burden of memory consumption.

In the standard attention mechanism, the alignment score
is the production in channel dimension from Q,K €
RR>w:e  According the Eq. (5), then we can replace the
original alignment score am;; with the product of Ay )]
and b[x(z»,mu)]- In detail, apy( )] presents the alignment
scores of height dimension with Q,,K, € RMwxe and
b[x(w ,z(5)] presents the alignment scores of width dimension
with Q,, K, € R®"x¢. Therefore, the coupling attention
mechanism can be regarded as capturing the similarity on
the 2D feature map with the spatial information rather than
the channel-wise information. Furthermore, coupling atten-
tion mechanism can be efficiently calculated by the vec op-
erator trick.

The calculating procedure of coupling attention mecha-
nism can be simplified to significantly reduce the time and
space complexity of algorithm, the output O in the Eq. (1)
can be obtained without explicitly calculating the AM by
vectorization trick.

Lemma 1 The Kronecker product can be used to get a con-
venient representation for some matrix equations:

(A®B) - row(X) =row(A-X-B")
Here row(-) denotes the vectorization of the matrix X,

which stack the rows of a matrix X € R"™*"™ one underneath
the other to obtain a single vector row(X) € R™™.

In the equation 1, the output of original attention mecha-
nism O is the dot product between the softmax of attention
matrix and the V. With the lemmal, the equation 1 can be
written as below:

SM(AM)-row(V) = row((SM(A)V(SM(B)T) (7)

In Eq. (7), V is reshaped into R®***% and is applied the
matrix multiplication with A and BT with shape Re*/*h
and Re*"*" in succession. Moreover, we empirically split
out the softmax operation on sub-matrix A and B, respec-
tively. In the implementation, we maintain the concept of
multi-head structure to keep the same form with standard
Transformer. And we find that the performance of model
is sensitive with the number of heads, more detail will be
discussed in the Section 4.

Complexity Analysis To better illustrate the efficiency of
our model, we provide some complexity analysis in this sec-
tion. As described in the Section 3.4, L = h X w. Ac-
cording to the Eq. (7), the computation complexity of the

coupled attention block is O(h? + w?), which is less than
the O((hw)?) in standard self-attention. In the aspect of the
number of training parameters, our model has 4d? training
parameters, which is the same as standard self-attention.

3.5. Model Structure

To adopt the Couplformer for CV problem, we are in-
spired by [13, 14] and elaborate an architecture based on
the ViT [10]. In this section, we would like to introduce the
structures specifically. The total framework of our model is
presented in the Fig. 3. The architecture hyper-parameters
of Couplformer are:

¢ Couplformer-Micro: layer numbers = 6, embedding
dimension=128

¢ Couplformer-Tiny: layer numbers = 8, embedding di-
mension=256

e Couplformer-Small: layer numbers = 14, embedding
dimension=256

e Couplformer-Base: layer numbers = 14, embedding
dimension=384

Position Embedding In a standard Transformer, position
embedding is an essential way regarding encoding spatial
information [10]. Following the mainstream of the Trans-
former researcher, we also apply the learnable and sine po-
sitional embedding to capture the relative distance between
patches. However, due to the spatial information capture
ability of Couplformer, we infer that the position embed-
ding plays a less important role in Couplformer than stan-
dard Transformer, and the experiment results in Section 4
demonstrate this inference.

Encoder with Coupling Attention The block of the en-
coder consists of two parts: the multi-head attention block
and the feed-forward network. In our architecture, we re-
place the original multi-head attention block with coupling
attention which can capture spatial information in visual
tasks and reduce the memory consumption. Moreover, the
other components, such as Layer Normalization(LN) and
Feedforward Network(FFN), are kept the same with the reg-
ular encoder.

Classification Token According to the standard approach
of the Transformer framework, an extra learnable classi-
fication token is added to the sequence. However, in our
model, we want to keep the shape of input feature maps in
the Transformer encoder. Therefore, we apply the sequence
pooling structure [14] to avoid the usage of extra classifica-
tion token by which the tensor decomposition is destroyed.
In this structure, the model could distribute more weight to
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the patch, which contains more information relevant to the
classifier.

4. EXPERIMENTS

In this section, we investigate the model capabili-
ties of couplformer, Convolutional related Neural Net-
works(ConvNets), and other Vision Transformers on differ-
ent scales of image classification tasks. Then, we conduct
several ablation studies to present the unique performance
of our method.

4.1. Training Setup

In order to explore the scalability of Couplformer, we
conduct our experiment on CIFAR-10 [20], CIFAR-100
[20], ImageNet-1K [9]. The benchmark dataset CIFAR-
10 has 10 classes of images, including 50000 images for
training and 10000 images for testing. CIFAR-100 has
100 classes of images, and each class includes 500 im-
ages for training and 100 images for testing. ImageNet-
1K dataset has 1000 classes images, including 1,281,167
images for training and 50,000 images for validation. In
Section 4.4, we conduct object detection and instance seg-
mentation tasks on MS COCO 2017 [21] dataset to evaluate
the generalization of our method. The experiments’ imple-
mentation details are listed in the corresponding section and
the supplemental material.

4.2. Image Classification

Evaluation in Small Datasets As described in Table 1,
we conduct the image classification task in CIFAR-10, and
CIFARI100 datasets. We compare Couplformer with the
standard Visual Transformer [10] and several popular ef-
ficient Transformers [41, 19, 4] on the same backbone [14]
We also list two ConvNets baseline: ResNet [15] and Mo-
bileNet [29] for comparison.

From the results in Table 1, most transformer-based
models present a similar performance to the convolution-
based models. As argued in [14], standard ViT architec-
ture is not adapted to the small-size datasets. However,
efficient transformer models and hybrid transformer-based
models present adaptiveness in small-size datasets. In terms
of calculation volume, convolution-based models have fast
and smaller computation complexity. Nevertheless, with
the growth of the size of the dataset, the convolution-based
models reveal a lower accuracy than efficient transformers.
For example, the most efficient transformer models achieve
above 70% accuracy in the CIFAR-100 dataset. Accord-
ing to the result of Couplformer-T, it achieves the promised
accuracy under the same parameter volume and MACs. Al-
though the Couplformer-S does not obtain the best accuracy
under the evaluation of small-size datasets, it has the most
economical memory usage while maintaining slightly lower

Model CIFAR CIFAR Params MACs
-10 -100
Convolutional Networks
ResNet34 [15] 89.45%  64.67% | 21.80M  0.09G
ResNet50 [15] 89.30% 61.25% | 25.56M  0.09G
MobileNet [29] | 90.55% 67.12% 8.72M  0.03G
Vision Transformer
ViT-Base [10] 76.42%  46.61% | 85.63M  0.43G
ViT-Lite [14] 91.38%  69.74% 3..72M  0.24G
Swin-T [22] 89.67%  65.79% 29.0M 045G
Swin-S [22] 89.74%  62.75% 50.0M  0.87G
CVT-7/4 [14] 92.43%  73.01% 3.72M  0.24G
CCT-4/3 [14] 91.45%  70.46% | 048M  0.05G
Efficient Transformer
Linformer [41] 92.45%  70.87% 3.96M  0.28G
Performer [4] 91.58% 73.11% 3.85M  0.28G
Reformer [19] 90.58%  73.02% 3.39M 0.25G
Couplformer-M | 90.81% 69.19% | 048M  0.10G
Couplformer-T | 93.44% 74.53% | 3.85M  0.28G
Couplformer-S | 92.15% 67.22% | 20.94M 1.38G

Table 1: CIFAR-10 and CIFAR-100 results. MACs de-
notes the Multiply-Accumulate operations. The image res-
olution is 32x32 in the training process of CIFAR-10 and
CIFAR-100 datasets. All models are trained from scratch
using AdamW optimizer for 200 epochs with cosine learn-
ing rate decay, and batch size is 128. We train our models
with a single GeForce RTX 2080Ti (11GB). Data augmen-
tation includes random crop and random horizontal flip.

accuracy than other efficient transformer models. Addition-
ally, Couplformer still outperforms the ConvNets without a
significant increase in MACs. These experiments prove that
our model could keep remarkable outcomes on small-scale
datasets.

Evaluation in ImageNet Dataset Table 2 summarizes
the result of the evaluation on ImageNet-1K dataset. We
compare our approach with several popular methods, in-
cluding convolution-based (ResNet [15], RegNetY [27])
and Transformer-based (Standard ViT [10], DeiT [36],
Swin [22], Mobile-Former [2]) methods. All variants are
trained from scratch. According to the ConvNets, i.e. Reg-
Net [15, 27], our model still achieves better performance
in the Top-1 accuracy. The RegNet inherits the advantage
of the ConvNets, which has the more lightweight parameter
volume. However, as a model based on Neural Architecture
Search, RegNet has an expansive building cost and weak
data generalization ability. The results of Top-1 accuracy
(81.50%/81.75% vs. 82.36%) demonstrate that our special
attention design performs efficient representation capabil-
ity.

In terms of Transformer-based models, DeiT [36] uti-
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Model Image Params MACs | ImageNet-1K
size top-1 acc.

ResNet5S0 [15] 2247 25.6M 8.2G 76.13%
ResNet101 [15] 224% 44.5M 158G 717.37%
RegNetY-3.2G [27] | 224° 2IM  6.4G 78.95%
RegNetY-8G [27] | 224> 39M  16.0G 80.03%
ViT-B/16 [10] 3847 86M 110.8G 77.9%
ViT-L/16 [10] 384% 307M 381.4G 76.5%
DeiT-S [36] 2247 22M  9.2G 79.98%
DeiT-B [36] 224>  86M  35.0G 81.80%
Swin-T [22] 2247 29M  9.0G 81.3%
Swin-S [22] 224>  50M 174G 83.0%
MobileFormer-T [2] | 224° 11.4M 2.35G 77.9%
MobileFormer-S [2] | 2242 14.0M 4.06G 79.3%
Couplformer-T | 2247 28M  6.4G 80.48%
Couplformer-S 2242 49M 204G 82.36%

Table 2: ImageNet-1K results. The image resolution
is 224224 in the ImageNet-1k dataset’s training setup.
All models are trained using AdamW optimizer for 1024
epochs, and the batch size is 1024. We train our models
with 8 GeForce RTX 3090Ti (24GB). We leverage Auto-
Augment [6], Rand-Augment [7], and random erasing [47]
as data augmentation.

lizes the knowledge distillation method to improve the
network’s performance. Due to the teacher-student net-
work for token-based distillation, memory usage would
notably increase when the model has a larger number of
layers. MobileFormer [2] presents the minimum parame-
ter and computation volume. However, it pays the price
of its lightweight by a lower accuracy. SwinTrasnformer
[22], as one of the most powerful transformer-based mod-
els, reaches the 83.0% Top-1 accuracy. Nevertheless, our
method also reaches a similar performance and the differ-
ence between our model and SwinTransformer is less than
0.82%. These results also indicate the effectiveness of the
novel attention mechanism in our model.

4.3. Ablation Study

Number of Heads To reach the best performance, most
transformer-based models have the requirement of heads
number. In most cases, a large number of heads could
achieve better performance [37]. For example, most mod-
els’ head number is large than 32. Our ablation study, which
leverages the concatenate aggregation choice, also supports
the abovementioned statement. As shown in Fig. 4, the ac-
curacy has a sharp decrease once the head number is less
than 32. However, under the pooling choice, our model re-
veals the robustness of the change of head number. From 1
to 256 heads, the fluctuation of the accuracy is under 1%.
Moreover, we found that employing a large head number
could perform better under both aggregation choices. Ac-
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Figure 4: The comparison of Top-1 validation accuracy un-

der different head numbers and aggregation choices. The

ablation study is conducted under the Couplformer-T on
CIFAR-10 dataset.

cording to the influence of the layer number, we also found
that the layer number could also have a slight effect on per-
formance. We list the detail of the layer number’s study in
the supplemental.

Evaluation of Position Embedding We conduct the ab-
lation study about the purpose of position embedding. In
the Visual Transformer structure, adding learned positional
embeddings to inputs has become mainstream. The position
embedding has been proved that it could bring considerable
accuracy improvement [10]. However, in our model, the
utilization of spatial information to generate the alignment
scores in coupling the attention mechanism makes the posi-
tional embedding less important.

Table 3 summarizes of the result from the investigation
on ViT-12/16 [10], CCT [14], and Couplformer. Among the
evaluated three position embedding solutions, sinusoidal
takes the best result in ViT and CCT methods. Then, the
result of the learnable is slightly lower than sinusoidal. The
result without position embedding gets the worst one. As

Model Pos Emb | CIFAR-10 CIFAR-100

ViT-12/16 [10] None 73.31% 44.27%
Sinusoidal 76.42% 46.61%

Learnable 74.35% 45.89%

CCT-4/3 [14] None 90.59% 66.25%
Sinusoidal 91.45% 70.46%

Learnable 91.42% 70.35%

Couplformer-T None 93.36% 73.29%
Sinusoidal 93.44% 74.53%

Learnable 93.42% 73.79%

Table 3: The comparison of Top-1 validation accuracy un-
der different modes of position embedding.
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Object Detection on MS COCO 2017

Backbone AP® AP, AP3;[ AP AP, APY
ResNet-50 423 605 46.0 (237 457 564
ResNet-101 433 613 47.0 244 469 580

HRNetV2p-W18 [40] | 41.9 59.6 45.7|23.8 449 550

HRNetV2p-W32 [40] | 44.5 623 48.6 | 26.1 479 585

X-101-32x4d 447 63.0 489 259 48.7 589

X-101-64x4d 45.7 64.1 50.0 | 262 49.6 60.0

Couplformer-T 457 645 49.0 293 49.0 603
Instance Segmentation on MS COCO 2017

Backbone AP™ AP3y AP7E | APY' AP). AP/"
ResNet-50 36.6 57.6 39.5|19.0 394 50.7
ResNet-101 37.6 585 40.6|19.7 40.8 524

HRNetV2p-W18 [40] | 364 56.8 393 |17.0 38.6 529
HRNetV2p-W32 [40] | 38.5 59.6 419 | 189 41.1 56.1
X-101-32x4d 38.6 602 41.7|209 421 527
X-101-64x4d 394 613 429 |20.8 427 54.1
Couplformer-T 39.8 62.1 429|237 43.0 542

Table 4: Object detection and instance segmentation re-
sult The overall results are obtained via the object detection
frameworks: Cascade Mask R-CNN [16]. X-101 denotes
ResNeXt-101.AP® and AP™ denote box mAP and mask
mARP respectively.

we see, the regular Transformer in ViT-12/16 and CCT are
both benefited from position embedding to obtain a gap of
improvement than the baseline without embedding position.
In contrast, Couplformer appears unaffected with or with-
out position embedding. This result proves that our model
typically does not rely on position embedding. Besides, it
also demonstrates that spatial information is implicitly em-
ployed, as we declare in Section 3.

4.4. Object Detection

Setting We conduct the object detection and instance seg-
mentation experiment on MS COCO 2017 dataset [21],
which contains 118K images for training, 5K for validation,
and 20K testing images without providing annotations. As
shown in the Table 4, we compare our approach with other
backbones: ResNet, ResNeXt [43], and HRNet [40]. For all
trained models, we use standard horizontal flipping as data
augmentation and resize the input image so that the shorter
edge is 800 pixels. The rest of implementation details are
listed in the supplementary material.

Evaluation in MS COCO 2017 dataset In terms of ob-
ject detection, our method and X-101-64-x4d achieve the
best AP result. Besides, our method has +0.4 and +1.0
better in APg0 and APZ;O, respectively. According to the in-
stance segmentation, Couplformer-T outperforms with rest
of the approaches. Moreover, our method has a noticeable
improvement in AP, results, which indicates that the pro-

posed unique attention mechanism enhances the detection
capability of small objects. Whereas, for medium and large
objects, Couplformer-T does not reveals as appreciable im-
provement as the small objects.

5. Limitation and Discussions

Although Couplformer presents lightweight and accu-
racy in several experiments, it can not outperform other
methods in the large dataset, i.e., ImageNet-1k. Our model
could only match but could not surpass other methods be-
cause of the restriction of our hardware. Therefore, in future
research, we will improve our model’s overall architecture
to reach a better result. We believe our coupled attention
mechanism still has the potential to be released.

6. CONCLUSIONS

In this paper, we presented a novel memory economy
attention mechanism, named Couplformer, which employs
spatial information to couple the attention map to replace
the traditional self-attention module. Through this novel
approach, the shortage of dramatic memory consumption
of Visual Transformer is efficiently mitigated. We demon-
strate that our model achieves sufficient accuracy require-
ments with the minimal occupation of GPU. Moreover, we
apply spatial information to generate the alignment scores
rather than channel-wise as the standard Visual Transformer
model, and the experiments confirm the effectiveness of this
coupling attention mechanism. Our model makes the Trans-
former model more flexible for different scales of defined
settings. In the days of data explosion, our model helps
more researchers who are suffering from limited hardware
resources to train on the various sizes of datasets lightheart-
edly. We believe that our model will bring researchers a
fresh perspective of deep learning architectures.
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