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Abstract

We propose a state-of-the-art method for super-

resolution with non-uniform blur. Single-image super-

resolution methods seek to restore a high-resolution image

from blurred, subsampled, and noisy measurements. De-

spite their impressive performance, existing techniques usu-

ally assume a uniform blur kernel. Hence, these techniques

do not generalize well to the more general case of non-

uniform blur. Instead, in this paper, we address the more

realistic and computationally challenging case of spatially-

varying blur. To this end, we first propose a fast deep plug-

and-play algorithm, based on linearized ADMM splitting

techniques, which can solve the super-resolution problem

with spatially-varying blur. Second, we unfold our iterative

algorithm into a single network and train it end-to-end. In

this way, we overcome the intricacy of manually tuning the

parameters involved in the optimization scheme. Our al-

gorithm presents remarkable performance and generalizes

well after a single training to a large family of spatially-

varying blur kernels, noise levels and scale factors.

1. Introduction

Single image super-resolution (SISR) methods aim to

up-sample a blurred, noisy and possibly aliased low-

resolution (LR) image into a high-resolution (HR) one. In

other words, the goal of SISR is to enlarge an image by a

given scale factor s > 1 in a way that makes fine details

more clearly visible. The problem is ill-posed since there

exist many ways to up-sample each low-resolution pixel.

In order to further constrain the solution, a prior is usu-

ally imposed on the reconstructed HR output via a regu-

larizer. Early Bayesian and variational approaches to the

SISR problem used Tikhonov [44, 55], TV [1, 39], wavelet-

ℓ1 [16], non-local [48], or patch-recurrence [42, 43] regu-

larization schemes, or adaptive filtering techniques [49] to

impose a reasonable prior on the HR solution. But classical

regularization schemes have shown their limits. In order to

*Work mostly done while Matias was at GoPro France.
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Figure 1: Super-resolution with scale factor 2 in the pres-

ence of spatially-varying blur. The foreground is not blurred

while the background is blurred using isotropic Gaussian

kernel.

cope with real world SISR problems, which are more ill-

posed (higher noise levels, larger zoom factors, larger and

more complex blur kernels) recent methods have turned to

more powerful deep-learning-based regularizers, regressors

or (conditional) generative models. And they succeeded re-

markably, producing extremely high-quality results for very

large (×16) scale factors, as long as blur is uniform and

small [52].

The focus of this paper is on more realistic cases where

blur kernels are non-uniform and much larger and complex,

due mainly to motion blur and defocus blur [63, 73]. Such

degradations are very common in action cameras where the

camera shake leads to spatially-varying motion blur or in

microscopy where the lens blur cannot be assumed to be

uniform. In such setting, doing super-resolution and de-

blurring in two steps is sub-optimal since it suffers from

error accumulation. Also, the two steps approach does not

exploit the correlation between the two tasks. Those ob-

servations raise the need for a super-resolution model ro-

bust to spatially-varying blur. This particular case received

much less attention in the recent deep-learning-based SISR

literature. Among recent works, BlindSR [8] can handle

non-uniform blur, but it does so only for relatively small

and isotropic blur kernels which are quite far from real-

world examples. Other models such as USRNet [69], can

handle larger, anisotropic motion blur kernels, but they

fail to generalize to spatially-varying blur. This paper

brings together these two characteristics to propose the first

deep-learning based SISR method that can deal with both

spatially-varying and highly anisotropic, complex blur ker-
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nels.

Like in [69], our architecture is an unfolded version of an

iterative optimization algorithm that solves the underlying

posterior maximization problem. As demonstrated in [69],

this kind of model-based architecture provides a remarkable

ability to generalize to a large family of blur kernels. In or-

der to allow our architecture to deal with spatially-varying

blur, while keeping computational complexity low, we de-

rive the unfolding from a linearized version of the ADMM

algorithm.

The rest of the paper is organized as follows: In Sec-

tion 2 we review the recent SISR literature with an emphasis

in their support for spatially-varying and highly-anisotropic

blur kernels. Figure 2b summarizes our review which is

later refined in Section 4.2. Section 3 introduces our ar-

chitecture, its relationship to deep Plug & Play, and lin-

earized ADMM algorithms and provides details on how

our end-to-end architecture has been trained. The exten-

sive experimental evaluation in Section 4 shows that our

model significantly improves state-of-the-art performance

on super-resolution with non-stationary blur, and that it can

easily generalize to various non-uniform blur kernels, up-

scaling factors, and noise levels which is interesting for real-

world applications. Training code and pre-trained model are

available at: https://github.com/claroche-r/

DMBSR

2. Related Work

2.1. Learning Based Super­Resolution

Several deep learning-based methods have been pro-

posed to approach the SISR problem. SRCNN [11] is

among the first models of this type. They employed a

CNN to learn the mapping between an LR image and its

HR version. Other methods used a similar approach but

modified the architectures or losses [26, 27, 34, 56, 64]. ES-

RGAN [62] introduced a GAN based loss to reconstruct

high-frequency details along with an architecture based on

the Residual in Residual Dense Block (RRDB). ESRGAN

generates sharp and highly realistic super-resolution on syn-

thetic data. However, it struggles to generalize on real im-

ages, as their training dataset is built using bicubic down-

sampling. To overcome this limitation, BSRGAN [68]

proposes to retrain ESRGAN on a more realistic degrada-

tion pipeline. Unlike previous SISR methods which dis-

regard the blur kernel, SRMD [70] proposes to give the

blur kernel information as an additional input to the net-

work. This method then belongs to the family of so-called

non-blind SISR methods. Blind methods such as [2, 8, 23]

tackle the issue of kernel estimation for super-resolution us-

ing an internal-GAN, iterative kernel refinement or a dedi-

cated discriminator. In [14, 54], the authors address the is-

sue of generalization using an image-specific super-resolver

(a) Example of spatially-varying blur.

Article SR UB SVB MB Blind

Bicubic ✓ ✗ ✗ ✗ ✓

ESRGAN [62] ✓ ✗ ✗ ✗ ✓

BSRGAN [68] ✓ ✓ ✗ ✗ ✓

SwinIR [32] ✓ ✓ ✗ ✗ ✓

IKC [23] ✓ ✓ ✗ ✗ ✓

BlindSR [8] ✓ ✓ ✓ ✗ ✓

ZSSR [54] ✓ ✓ ✗ ✗ ✗

DualSR [14] ✓ ✓ ✗ ✗ ✓

USRNet [69] ✓ ✓ ✗ ✓ ✗

Architecture SR UB SVB MB Blind

RRDB [62] ✓ ✓ (✓) (✓) ✓

SwinIR [32] ✓ ✓ (✓) (✓) ✓

SFTMD + PCA [23] ✓ ✓ ✓ (✗) ✗

BlindSR [8] ✓ ✓ ✓ (✗) ✗

Ours ✓ ✓ ✓ ✓ ✗

(b) Method comparison table.

Figure 2: (a) Background objects are moving with re-

spect to the camera, so they appear blurry, whereas fore-

ground objects are sharp. (b) Restoration problems that

are addressed by previous articles or that can be potentially

solved by available architectures: SR=single image Super-

Resolution; UB = Uniform Blur; SVB = Spatially Varying

Blur; MB = Motion Blur. Brackets stand for potential use

case of the architecture that have not been tested in the lit-

erature to our knowledge.

trained using cyclic loss on intrinsic patches of the low-

resolution image. Recently, SwinIR [32] proposes a swin

transformer [38] based architecture that achieves state-of-

the-art results while heavily reducing the number of param-

eters of the network.

2.2. Deep Plug­and­Play

Deep plug-and-play methods can be traced back to [59]

where the image restoration problem is solved using

ADMM optimization by decoupling the data and regular-

ization terms. Then, they use a denoiser to solve the regular-

ization sub-problem. This idea has been extended to other

optimization schemes such as primal-dual methods [24, 40]

or fast iterative shrinkage algorithm [25]. A large diversity

of denoisers have been used for the regularization. Among
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them, BM3D has been used the most [9, 24, 25], but more

recently deep CNN based denoisers have become very pop-

ular [40, 58]. [67] provides an analysis of the efficiency of

the different deep denoisers for different image restoration

tasks. Deep plug-and-play methods can be used to solve a

large variety of image resoration tasks such as Gaussian de-

noising [5], image deblurring [60] or super-resolution [4].

Theoretical aspects of deep plug-and-play algorithms have

also been studied using bounded denoisers assumptions [7]

or more recently using denoisers whose residual opera-

tors are Lipschitz-continuous [30, 51]. More recently, [69]

built a deep unfolding network called USRNet for super-

resolution using deep plug-and-play optimization.

2.3. Spatially­Varying Blur

Removing uniform blur is a well-studied problem. Clas-

sical methods design natural image priors such as ℓ1 [31],

ℓ2 [50] or hyper-Laplacian [28]. CNN learning-based ap-

proaches usually build coarse-to-fine deep learning archi-

tectures such as [53], where CNN blocks simulate iterative

optimization, or [57] which deblurs the image using a scale-

recurrent network. The task becomes much more complex

when the blur varies spatially. Early approaches decompose

the spatially-varying blur into a finite basis of spatially-

uniform blur kernels and their respective spatially-varying

weights [45]. This approach drastically reduces the dimen-

sion of the blur operator and makes it computable in a rea-

sonable amount of time using Fourier transform. [41] build

an alternative model designed for faster computation and

apply it to deconvolution of spatially-varying blur. More

recently, [15–17] approximate the spatially-varying blur op-

erator in the wavelet basis by a diagonal or sparse opera-

tor. Their decomposition allows very efficient computation

of the blur operator and its transpose since the structure of

the operator allows GPU parallelization. Other approaches

such as [13] use HQS splitting to decouple the prior and data

term. The data step is computed using an approximation of

the inverse blur and the prior step is solved using CNN pri-

ors. Jointly solving the non-uniform deblurring and upsam-

pling (super-resolution) problem is a much more challeng-

ing task that has been much less studied [8]. Most spatially-

variant deblurring methods require the blur operator to be

known. Estimating the non-uniform blur kernel has been

tackled for several applications such as defocus [20], lens

abberation [19] super-resolution [33] and motion blur [6].

3. Model

3.1. Problem Formulation

The standard model for single-image super-resolution

with multiple degradations usually assumes that the low-

resolution image is a blurry, noisy and subsampled version

of a given high-resolution image,

y = (x⊛ k) ↓s +ϵ with ϵ ∼ N (0, σ2), (1)

with x the high-resolution image, y its low-resolution ver-

sion, k the blur kernel, ↓s the subsampling operator with

scale factor s, and ϵ the noise. This formulation assumes

that the blur kernel is uniform all over the image which

makes the computation of the low-resolution image fast us-

ing convolution or fast Fourier transform. This assumption

is not always realistic since camera or object motion will

often result in non-uniform blur as illustrated in Figure 2a.

In this example, background objects are moving with re-

spect to the camera, so they appear blurry, whereas fore-

ground objects are sharp. Spatially-varying blur can also

appear when the objects are out-of-focus. In this case, the

blur is closely related to the depth of field. Taking into

account spatially-varying blur, the degradation model in

Equation (1) replaces the convolution operator with a more

general blur operator that varies across the pixels

y = (Hx) ↓s +ϵ with ϵ ∼ N (0, σ2), (2)

where Hx corresponds to the non-uniform blur operator ap-

plied to image x (flattened as a column vector). Working

with unconstrained H leads to computationally expensive

operations. In our work, the only restriction we make on

H is that Hx and HTx must be computed in a reasonable

amount of time. A basic example for such a use case is

the O’Leary model [45] where H is decomposed as a linear

combination

H =
P
∑

i=1

UiKi (3)

of uniform blur (convolution) operators Ki with spatially

varying mixing coefficients, i.e. diagonal matrices Ui such

that
P
∑

i=1

Ui = Id, Ui ≥ 0. This model provides a convenient

approximation of a spatially-varying blur operator, by re-

ducing both the memory and computing resources required

to store and compute this operator. In practice, Ki may rep-

resent a basis of different kinds of (defocus or motion) blur,

and the Ui can represent object segmentation masks or sets

of pixels with similar blur kernels.

3.2. Deep Plug­and­Play

Model-based variational or Bayesian methods usually

solve the SISR problem in Equation (2) by imposing a prior

with density p(x) ∝ e−λφ(x) to the HR image x (common

choices for Φ are Total Variation or ℓ1 norm of wavelet co-

efficients). Then the maximization of the posterior density

p(x|y) ∝ p(y|x)p(x) leads to the following optimization
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problem to compute the MAP estimator:

x∗ = argmin
x

1

2σ2
∥(Hx) ↓s −y∥22 + λΦ(x) (4)

= argmin
x

g(Hx) + λΦ(x). (5)

This family of optimization problems is often solved us-

ing iterative alternate minimization schemes, like ADMM

[3], which leads to iterating the following steps for k =
0, . . . , N :

xk+1 = prox(λ/µ)Φ(.)(vk − uk) = P√λ/µ
(vk − uk) (6)

vk+1 = prox(1/µ)g(H.)(xk+1 + uk) (7)

uk+1 = uk + (xk+1 − vk+1). (8)

where proxλf is the proximal operator of λf defined by

proxλf (v) = argminx f(x) + (1/2λ)∥x− v∥22 and g is

defined in 5. For convex Φ, this is known to converge to

the solution of Equation (4) as k → ∞. Deep plug-and-

play methods use more sophisticated (possibly non-convex)

learned regularizers by simply replacing the regularization

step in Equation (6), by a CNN denoiser Pβ which was

pretrained to remove zero-mean Gaussian noise with vari-

ance β2. The convergence of the iterative plug-and-play

ADMM scheme still holds in this non-convex case for care-

ful choices of the denoiser and the hyperparameters (λ, µ)
[51].

In the case of a uniform blur, the v-update can be effi-

ciently computed using the fast Fourier transform [69, 72]

since the operator H is diagonal in the Fourier basis. How-

ever, this is no longer the case for spatially-varying blur.

Even for simpler use cases such as the O’Leary model from

Equation (3) solving the subproblem (7) can be very compu-

tationally expensive. To avoid this, linearized ADMM [47,

sec 4.4.2] (see also [18, 36, 46, 71]) substitutes the splitting

variable v = x by z = Hx, and introduces the linear ap-

proximation ∥Hx − zk∥2 ≈ µ(HTHxk − HT zk)
Tx +

ρ
2∥x−xk∥2 in the augmented Lagrangian, in order to avoid

the need to invert H . This approximation corresponds to a

linearization of the regularization ∥Hx− z∥22 with an extra

regularization ∥x − xk∥22 that enforces xk to be close the

the linearization point of application. As a consequence,

Equations (6) to (8) are rewritten as follows:

xk+1 = prox(λ/ρ)Φ(xk − (µ/ρ)HT (Hxk − zk + uk))

= P√
λ/ρ

(xk − (µ/ρ)HT (Hxk − zk + uk)) (9)

zk+1 = prox(1/µ)g(.)(Hxk+1 + uk) (10)

uk+1 = uk +Hxk+1 − zk+1, (11)

with µ, ρ hyper-parameters of the optimization scheme.

Now Equation (10) can be easily computed in closed

Algorithm 1 Deep Plug-and-Play Linearized ADMM algo-

rithm

Solves x = argminx
1

σ2 ∥(Hx) ↓s −y∥2 + λΦ(x)

using denoiser Pβ = proxβ2Φ as an implicit regularizer.

Input: Measurements y, spatially varying kernel H , scale

factor s, noise level σ, number of iterations N , hyper-

parameters λ, µ, ρ
Output: super-resolved, deconvolved and denoised image

xN

x0 ← y ↑s
z0 ← Hx0

u0 ← 0
for k ∈ [0, N − 1] do

xk+1 = P√
λ/ρ

(xk − (µ/ρ)HT (Hxk − zk + uk))

zk+1(i, j) =
((y↑s)+σ2µ(Hxk+1+uk))(i,j)
σ2µ+δi≡0 (mod s)δj≡0 (mod s)

uk+1 = uk +Hxk+1 − zk+1

form since it does not require to invert a matrix involving

H anymore (see Section 2 of the Supplementary Material

for more information). We have:

zk+1(i, j) =

(

(y ↑s) + σ2µ(Hxk+1 + uk)
)

(i, j)

σ2µ+ δi≡0 (mod s)δj≡0 (mod s)
, (12)

where (.) ↑s corresponds to the zero-padding up-sampling

with scale factor s and δi≡0 (mod s)δj≡0 (mod s) is the indi-

cator function that is equal to 1 on the pixels divided by

the scale factor and 0 otherwise. The whole deep plug-and-

play iterative program is summarized in Algorithm 1. The

linearized ADMM algorithm in Equations (9) to (11) was

not yet studied in the Plug & Play context, but recent results

in [37] and [22] suggest that it actually converges for care-

ful choices of the parameters λ, µ, ρ (see Section 1 of the

Supplementary Material for details). These theoretical re-

sults motivated the Unfolded version of the linearized PnP-

ADMM algorithm that we present in the next section, and

is the basis of the experimental results in Section 4.

3.3. Deep Unfolding Networks

Deep plug-and-play methods achieve impressive perfor-

mance on image restoration tasks. However, their efficiency

strongly relies on the choice of their hyper-parameters.

Finding correct values for the latter can be challenging.

These methods also require a sufficient number of steps

to properly converge, which is time-consuming. We

improve the runtime and simplify the hyper-parameter

tuning process by unfolding our algorithm into a deep

learning architecture. This architecture is composed of

a fixed and small number of iterations of the linearized

ADMM algorithm and a MLP that automatically selects

the hyper-parameters. The whole network is optimized
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Figure 3: Model architecture, the low-resolution image is upsampled and alternately fed to the prior module P , the data

module D and the update module U during N iterations

using end-to-end training. Following the linearized

ADMM formulation, the architecture alternates between

a prior-enforcing step P corresponding to Equation (9),

a data-fitting step D (see Equation (10)) and finally

an update block U (see Equation (11)). These blocks

are respectively stacked N times corresponding to the

number of iterations. The optimization process requires

the hyper-parameter triplets (λ, µ, ρ) that are predicted

by the hyper-parameters block H at each step. The

resulting architecture of our deep-unfolding network is

presented in Figure 3. Next, we present each block in detail.

The first block of our network is the prior module P .

As explained in Section 3.2, Equation (9) corresponds to

a denoising problem, which is approximated by a CNN

denoiser. Based on the work in [69], we use a ResUNet [10]

architecture with the denoising level as an extra input for

P . All the parameters of the ResUNet are learned during

the end-to-end training process. Retraining the parameters

of the network helps to obtain the best quality results for

the given number of iterations. The x-update is finally

expressed as:

xk+1 = Pβk

(

xk − γkH
T (Hxk − zk + uk)

)

, (13)

with βk =
√

λk/ρk and γk = µk/ρk. The splitting algo-

rithm introduces the quantity xk−γkHT (Hxk+1−zk+uk).
This quantity can be interpreted as a deblurring gradient

descent step on the current clean estimate xk. The x-update

combines the deblurring and denoising operations.

The data-term module D computes the proximal op-

erator of z 7→ 1
2σ2 ∥z ↓s −y∥22 at z = Hxk+1 + uk.

Following Equation (12), we re-write our data-term as:

zk+1 = D(xk+1, H, uk, y, s, αk), (14)

with αk = σ2µk. The data term will ensure that our

current estimate of the sharp image is consistent with the

degraded input. It also acts as a mechanism of injection of

the degraded image y through the iterations.

The update module U updates the dual variable (or

Lagrange multiplier) u of the ADMM algorithm. This

block does not have trainable parameters. We decided to

integrate this step into the architecture to be consistent with

the ADMM formulation.

Finally, the (γk, βk, αk) hyper-parameters of the plug-and-

play model are predicted as a function of noise level σ and

scale factor s by a neural network H. Indeed αk = σ2µk

directly depends on σ and βk =
√

λk/ρk depends on the

regularization parameter λ whose optimal value is usually

affected by both σ and s. For the architecture of H, we

use 3 fully connected layers with ReLU activations. The

dimension of the hidden layers is 64.

3.4. Training

The architecture is trained end-to-end using the L1 loss

for 200 epochs. We start with a learning rate of 1e-4

and decrease it every 50 epochs by a factor 0.1. The Re-

sUNet parameters were initialized by a pre-trained model

that solves a Gaussian denoising problem. We found that

doing so improves the stability of the model during train-

ing. We use N=8 iterations in our unfolded architecture for

the experiments. The network is trained using scale factors

s ∈ {1, 2, 3, 4}, noise levels σ ∈ [0, 25] and spatially vary-

ing blur kernels composed various motion blurs and Gaus-

sian blurs.
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(a) Object masks Ui and kernels Ki

(b) Generated pairs

Figure 4: Example of data generated by our pipeline

4. Experiments

4.1. Data Generation

Gathering real-world data with spatially-varying blur

and their respective kernels is very complicated. Instead,

we train our model using synthetic data. For this exper-

iment, we adopted the O’Leary blur model from Equa-

tion (3). This blur decomposition covers a large variety of

spatially-varying blurs ranging from motion blur to defocus

blur. Figure 4 represents an example of synthetic blur ob-

tained using this formulation. For the training and testing,

we used COCO dataset [35]. COCO dataset is a well-known

large-scale dataset for object detection, segmentation,and

image captioning. It is composed of more than 200K im-

ages segmented for 80 object categories and 91 stuff cate-

gories representing 1.5 million object instances. We use the

segmentation masks to blur the objects and the background.

We use both Gaussian kernels and motion blur kernels. We

build a database of motion blur kernels using [21]. To en-

sure a smooth and realistic transition between the blurred

areas, we blur the borders of the masks so that a mix be-

tween blurs occurs at the edges of the objects. We finally

normalize the masks so that their sum is equal to 1 for each

pixel. After blurring the image, we apply nearest neighbor

downsampling with scale factor varying in {1, 2, 3, 4} and

Gaussian blur with σ ∈ [0, 25].
Finally, our data generation pipeline implements the fol-

lowing degradation model:

y = (
P
∑

i=1

UiKix) ↓s +ϵ, (15)

with x the clean image, y its low-resolution version, s the

scale factor, and ϵ the noise.

4.2. Compared Methods

We compare the proposed model to Bicubic upsam-

pling (widely used baseline), RRDB [62], SwinIR [32],

SFTMD [23], BlindSR [8] and USRNet [69].

Few super-resolution models can generalize to non-

uniform blur (see Table 2b). We believe that the models

listed above represent the current most pertinent solutions

for such a setting. However, using the pre-trained weights

from the source code of each model leads to poor perfor-

mance on our testing dataset since they are trained using

uniform blur kernels. In order to ensure a fair compari-

son with our model, we retrain all those architectures on

our database. We use the MSE loss for the retraining of all

models so that the PSNR is maximized. Next, we present in

details how we use those architectures.

RRDB and SwinIR described in section 2.1 are blind

methods so we just retrain them on our dataset using the

configuration given by the authors.

SFTMD is the non-blind architecture introduced in [23]

that combines kernel encoding using Principal Components

Analysis (PCA) and spatial features transforms (SFT) [61]

layers. The PCA-encoded blur kernel is fed to the SFT-

based network along with the low-resolution image. In the

case of spatially-varying blur, they encode the kernels at

each pixel’s location and give the resulting spatially-varying

map of encoded kernels to the network.

BlindSR proposes an alternative to the PCA for the en-

coding of the kernel. They use an MLP that is trained along

with the super-resolution network. This allows the network

to encode more complex kernels. We use the non-blind part

of BlindSR that is composed of a backbone with convolu-

tions, dense layers and residual connections with MLP en-

coding for the kernel.

We finally compare our architecture to USRNet, which

is similar to our model but works only with uniform blur.

Since we work with the O’Leary model (3), we can apply

USRNet on each blurred mask Ui with their corresponding

uniform blur kernel Ki and then reconstruct the results by

summing the output of the model on each mask. Since we

work with the classical USRNet, we do not retrain it and

use the weights from the source code of the method. i.e.

USRNet(y,H) ≈∑P
i=1 Ui USRNet(y,Ki)

4.3. Quantitative Results

Table 1 summarizes the PSNR, SSIM (structural simi-

larity index) and LPIPS (learned perceptual image patch

similarity) on the different testsets. The testsets are con-

structed from the COCO validation set and the degradation

model of Equation 15. Performance on Gaussian and mo-

tion blur are evaluated separately. We test the models on

x2 and x4 super-resolution without additive noise. Firstly,

non-blind models outperform blind ones by a large margin.

The extra information about the degradation is well used
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Table 1: Quantitative comparison on synthetic data.

The displayed metrics correspond respectively to PSNR↑,
SSIM↑ and LPIPS↓. Best scores are displayed in red, sec-

ond bests in blue.

Scale Type Model Gaussian blur Motion blur

x2

Blind

Bicubic (22.52, 0.60, 0.57) (21.74, 0.62, 0.39)

RRDB [62] (23.38, 0.67, 0.41) (23.11, 0.65, 0.36)

SwinIR [32] (23.47, 0.67, 0.38) (23.40, 0.67, 0.34)

Non-blind

SFTMD [23] (23.76, 0.69, 0.33) (25.15, 0.74, 0.25)

BlindSR [8] (26.55, 0.79, 0.24) (26.40, 0.79, 0.20)

USRNet [69] (22.64, 0.74, 0.28) (24.37, 0.75, 0.17)

Ours (26.59, 0.78, 0.26) (28.20, 0.85, 0.11)

x4

Blind

Bicubic (21.61, 0.55, 0.60) (20.48, 0.56, 0.57)

RRDB [62] (21.82, 0.57, 0.58) (22.34, 0.60, 0.56)

SwinIR [32] (23.01, 0.63, 0.44) (22.70, 0.64, 0.44)

Non-blind

SFTMD [23] (23.12, 0.64, 0.41) (23.97, 0.67, 0.38)

BlindSR [8] (25.11, 0.72, 0.34) (24.54, 0.69, 0.35)

USRNet [69] (24.08, 0.72, 0.32) (24.67, 0.72, 0.29)

Ours (25.37, 0.73, 0.31) (25.36, 0.73, 0.28)

LR SwinIR

SwinIR
BlindSR

BlindSR
Ours

Ours

Figure 5: Super-resolution with scale factor s=2 on real-

world defocused images

by the networks. The blind transformers-based architecture

of SwinIR is more efficient than the classical RRDB. For

the non-blind architectures, we can see the importance of

how the blur operator information is given to the network.

Specifically, the neural network encoding of the blur opera-

tor from BlindSR outmatches by far the PCA encoder from

the IKC version of SFTMD. It highlights the fact that the

PCA model is not complex enough to capture interesting

features of the blur kernels. The BlindSR model performs

well on the Gaussian testset but fails to generalize on motion

blur. One reason for this is the fact that motion blurs are too

complex to be encoded by PCA or a small MLP. The USR-

Net model reaches good SSIM and LPIPS whilst having low

PSNR. This is mostly due to the fact that this model intro-

duces artefacts which are not captured by SSIM or LPIPS.

The poor performances of USRNet underline the fact that

networks trained on uniform blur cannot naively generalize

well to spatially-varying blur even on simple use cases. Fi-

nally, our model outperforms all the other methods by an

average of 0.15dB for the Gaussian blur testsets and 1.2dB

on the motion blur testset. Additionally, our algorithm out-

perform all other methods on SSIM and LPIPS, except for

the x2 Gaussian blur case. The success of our method first

relies on the fact that the kernel information does not need

to be encoded to be fed to the model which allows good de-

blurring quality of very complex kernels. Also, the deblur-

LR DMPHN [66] MPRNet [65]

[6] [6] + Ours

Figure 6: Deblurring results on Lai [29] dataset

ring and super-resolution modules are fixed in our archi-

tecture which accounts for increased robustness to different

blur types. It is worth pointing out that only a single version

of our model was used for all the scale factors without the

need to retraining.

4.4. Visual Results

Figure 7 shows a visual comparisons of the different

models on x2 super-resolution. We excluded RRDB and

SFTMD since their performance are outmatched by SwinIR

and BlindSR, respectively. We observe that SwinIR pro-

duces results that are still blurry. USRNet yields sharp

results on the areas where the blur kernels are not mixed

(i.e. when the area of a single degradation map is equal to

one and all the other are equal to zeros), but introduces arte-

facts on the edges of the objects since the deblurring task is

not linear. BlindSR super-resolves well the images. How-

ever, some areas remain blurry especially when there is mo-

tion blur. Finally, our model successfully produces a sharp

super-resolved image without artefacts. We observe more

texture details and sharper edges.

4.5. Real­world images

Testing our method on real-world images requires that

we can access to the blur operator associated to the image.

The performance of the super-resolution model strongly re-

lies on the accuracy of the blur kernel. Figure 5 shows SR

results of the models on real-world defocus blur where the

blur operator was estimated using camera properties [12]

while Figure 6 displays deblurring results (scale factor s =
1, no SR) where the blur operator was estimated using [6].

In the first example, it can be observed that BlindSR tends to

add over-sharpening artefacts in the image while perform-

ing super-resolution. SwinIR returns a cleaner image but

that is still blurry. On the other hand, our model returns the

sharpest result. These results also highlight the good gener-

alization properties of our algorithm as the model was not

trained on defocus blur kernels or smooth variations from

a kernel to another at the image scale (the borders of the

masks used in training are hard). In deblurring, we com-

pared our model to DMPHN [66], MPRNet [65] and the de-
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LR SwinIR BlindSR USRNet Ours GT

Figure 7: Visual comparison of the super-resolution performance of the models with a scale factor of 2. The different blur

kernels are displayed in the LR images.

blurring scheme employed in [6]. We found that our model

outperformed these methods both in terms of sharpness and

deblurring artifacts. More visual results can be found in the

supplementary material and the webpage of the project.

5. Conclusion & Future Research

In this paper, we approach the problem of single-image

super-resolution with spatially-varying blur. We propose a

deep unfolding architecture that handles various blur ker-

nels, scale factors, and noise levels. Our unfolding archi-

tecture derives from a deep plug-and-play algorithm based

on the linearized ADMM splitting technique. Our architec-

ture inherits both from the flexibility of plug-and-play algo-

rithms and from the speed and efficiency of learning-based

methods through end-to-end training. Experimental results

using the O’Leary blur model highlight the superiority of

the proposed method in terms of performance and general-

ization. We also show that the model generalizes well to

real-world data using existing kernel estimation methods.
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