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Abstract

The current success of modern visual reasoning systems is
arguably attributed to cross-modality attention mechanisms.
However, in deliberative reasoning such as in VQA, attention
is unconstrained at each step, and thus may serve as a statis-
tical pooling mechanism rather than a semantic operation
intended to select information relevant to inference. This
is because at training time, attention is only guided by a
very sparse signal (i.e. the answer label) at the end of the
inference chain. This causes the cross-modality attention
weights to deviate from the desired visual-language bindings.
To rectify this deviation, we propose to guide the attention
mechanism using explicit linguistic-visual grounding. This
grounding is derived by connecting structured linguistic con-
cepts in the query to their referents among the visual objects.
Here we learn the grounding from the pairing of questions
and images alone, without the need for answer annotation or
external grounding supervision. This grounding guides the
attention mechanism inside VQA models through a duality
of mechanisms: pre-training attention weight calculation
and directly guiding the weights at inference time on a case-
by-case basis. The resultant algorithm is capable of probing
attention-based reasoning models, injecting relevant associa-
tive knowledge, and regulating the core reasoning process.
This scalable enhancement improves the performance of
VQA models, fortifies their robustness to limited access to
supervised data, and increases interpretability.

1. Introduction
Visual reasoning is the new frontier of AI wherein facts

extracted from visual data are gathered and distilled into
higher-level knowledge in response to a query. Successful
visual reasoning methodology estimates the cross-domain
association between the symbolic concepts and visual en-
tities in the form of attention weights. Such associations
shape the knowledge distillation process, resulting in a uni-
fied representation that can be decoded into an answer. In
the exemplar reasoning setting known as Visual Question
Answering (VQA), attention plays a pivotal role in modern
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Figure 1. We introduce Grounding-based Attention Prior mecha-
nism (blue box) which considers the linguistic-visual associations
between a query-image pair and refines the attentions inside VQA
models (gray box). This boosts the models’ performance, reduces
their reliance on supervised data and increases their interpretability.

systems [3, 15, 20, 23, 31]. Ideal attention scores must be
both relevant and effective: Relevance implies that attention
is high when the visual entity and linguistic entity refer to
the same concept; Effectiveness implies that the attention
derived leads to good VQA performance.

However, in typical systems, the attention scores are com-
puted on-the-fly: unregulated at inference time and guided at
training time by the gradient from the groundtruth answers.
Analysis of several VQA attention models shows that these
attention scores are usually neither relevant nor guaranteed
to be effective [6]. The problem is even more severe when
we cannot afford to have enough labeled answers due to the
cost of the human annotation process. A promising solution
is providing pre-computed guidance to direct and hint the
attention mechanisms inside the VQA models towards more
appropriate scores. Early works use human attention as the
label for supervising machine attention [36, 40]. This simple
and direct attention perceived by humans is not guaranteed
to be optimal for machine reasoning [7, 8]. Furthermore,
because annotating attention is a complex labeling task, this
process is inherently costly, inconsistent and unreliable [40].
Finally, these methods only regulate the attention scores in
training stage without directly adjust them in inference. Dif-
ferent from these approaches, we leverage the fact that such
external guidance is pre-existing in the query-image pairs
and can be extracted without any additional labels. Using
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pre-computed language-visual associations as an inductive
bias for attention-based reasoning without further extra la-
beling remains a desired but missing capability.

Exploring this underlying linguistic-visual association for
VQA, we aim to distill the compatibility between entities
across input modalities in an unsupervised manner from the
query-image pairs without explicit alignment grouthtruths,
and use this knowledge as an inductive bias for the attention
mechanism thus boosting reasoning capability. To this end,
we design a framework called Grounding-based Attention
Prior (GAP) to (1) extract the alignments between linguistic-
visual region pairs and (2) use these pair-wise associations
as an inductive bias to guide VQA’s attention mechanisms.

For the first task, we exploit the pairing between the ques-
tions and the images as a weakly supervised signal to learn
the mapping between words and image regions. By exploit-
ing the implicit supervising signals from the pairing, this
requires no further annotation. To overcome the challenge of
disparity in the co-inferred semantics between query words
and image regions, we construct a parse tree of the query,
extract the nested phrasal expressions and ground them to
image regions. These expressions semantically match image
regions better than single words and thus create a set of more
reliable linguistic-visual alignments.

The second task aims at using these newly discovered
alignments to guide reasoning attention. This guidance pro-
cess is provided through two complementary pathways. First,
we pre-train attention weights to align with the pre-computed
grounding. This step is done in an unsupervised manner with-
out access to the answer groundtruths. Second, we use the
attention prior to directly regulate and refine the attention
weights guided by the groundtruth answer through back-
propagation to not deviate too far away from it. This is mod-
ulated by a learnable gate. These dual guidance pathways
are a major advancement from previous attention regulariza-
tion methods [40, 49] as the linguistic-visual compatibility is
leveraged directly and flexibly in both training and inference
rather than simply as just regularization.

Through extensive experiments, we prove that this
methodology is effective in both discovering the grounding
and using them to boost the performance of attention-based
VQA models across representative methods and datasets.
These improvements surpass other methods’ performance
and furthermore require no extra annotation. The proposed
method also significantly improves the sample efficiency of
VQA models, hence less annotated answers are required.
Fig. 1 illustrates the intuition and design of the method with
an example of the improved attention and answer.

Our key contributions are:
1. A novel framework to calculate linguistic-visual align-

ments, providing pre-computed attention priors to guide
attention-based VQA models;

2. A generic technique to incorporate attention priors into

most common visual reasoning methods, fortifying them
in performance and significantly reducing their reliance on
human supervision; and,

3. Rigorous experiments and analysis on the relevance of
linguistic-visual alignments to reasoning attention.

2. Related Work
Attention-based models are the most prominent ap-

proaches in VQA. Simple methods [3] only used single-hop
attention mechanism to help machine select relevant image
features. More advanced methods [52, 15, 23] and those re-
lying on memory networks [50, 51] used multi-hop attention
mechanisms to repeatedly revise the selection of relevant
visual information. BAN [20] learned a co-attention map us-
ing expensive bilinear networks to represent the interactions
between pairs of word-region. One drawback of these atten-
tion models is that they are only supervised by the answer
groundtruth without explicit attention supervision.

Attention supervision is recently studied for several
problems such as machine translation [27] and image cap-
tioning [26, 32, 54]. In VQA, attentions can be self-regulated
through internal constraints [37, 28]. More successful regu-
larization methods use external knowledge such as human
annotations on textual explanations [49] or visual attention
[36, 40]. Unlike these, we propose to supervise VQA atten-
tions using pre-computed language-visual grounding from
image-query pairs without using external annotation.

Linguistic-visual alignment includes the tasks of text-
image matching [24], grounding referring expressions [53]
and cross-domain joint representation [30, 42]. These
groundings can support tasks such as captioning [54, 18].
Although most tasks are supervised by human annotations,
contrastive learning [11, 47] allows machines to learn the
associations between words and image regions from weak
supervision of phrase-image pairs. In this work, we propose
to explore such associations between query and image in
VQA. This is a new challenge because the query is com-
plex and harder to be grounded, therefore new method using
grammatical structure will be devised.

Our work also share the Knowledge distillation
paradigm [13] with cross-task [2] and cross modality
[10, 29, 48] adaptations. Particularly, we distill visual-
linguistic grounding and use it as an input for VQA model’s
attention. This also distinguishes our work from the recent
self-supervised pretraining methods [43, 25] where they
focus on a unified representation for a wide variety of tasks
thanks to the access to enormous amount of data. Our work
is theoritically applicable to complement the multimodal
matching inside these models.

3. Preliminaries
A VQA system aims to deduce an answer y about an

image I in response to a linguistic question q, e.g., via
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Figure 2. Overall architecture of a generic joint attention VQA model using Grounding-based Attention Prior (GAP) to guide the computation
of attention weights. Vision-language compatibility pre-computed by an unsupervised framework (green boxes) serves as an extra source of
information, providing inductive biases to guide attention weights inside attention-based VQA models towards more meaningful alignment.

P (y | q, I). The query q is typically decomposed into a
set of T linguistic entities L = {li}Ti=1. These entities and
the query q are then embedded into a feature vector space:
q ∈ Rd, li ∈ Rd. In the case of sequential embedding
popularly used for VQA, entities are query words; they are
encoded with GloVe for word-level embedding [35] followed
by RNNs such as BiLSTM for sentence-level embedding.
Likewise the image I is often segmented into a set of N
visual regions with features V =

{
vj | vj ∈ Rd

}N
j=1

by an
object detector, i.e., Faster R-CNN [39]. For ease of reading,
we use the dimension d for both linguistic embedding vectors
and visual representation vectors.

A large family of VQA systems [31, 3, 15, 23, 20, 21]
rely on attention mechanisms to distribute conditional com-
putations on linguistic entities L and visual counterparts
V . These models can be broadly classified into two groups:
joint- and marginalized- attention models. [31, 3, 15] are
among those who fall into the former, while [20, 21] and
transformer-based models [43] are typical representative of
the works in the latter category.

Joint attention models The most complete attention
model includes a detailed pair-wise attention map indicating
the contextualized correlation between word-region pairs
used to estimate the interaction between visual and linguis-
tic entities for the combined information. These attention
weights are in the form of a 2D matrix A ∈ RT×N . They
often contain fine-grained relationships between each lin-
guistic word to each visual region. The attention matrix A
is derived by a sub-network Bθ(.) as Aij = Bθ(eij | V,L),
where each eij denotes the correlation between the linguistic
entities li and the visual region vj , and θ is network pa-
rameters of VQA models. Joint attention models contain
the rich pairwise relation and often perform well. However,

calculating and using this full matrix has a large overhead
computation cost. A good approximation of this matrix is
the marginalized vectors over rows and columns which is
described next.

Marginalized attention models Conceptually, the matrix
A is marginalized along columns into the linguistic atten-
tion vector α = {αi}Ti=1 ∈ RT and along rows into visual
attention vector β = {βj}Nj=1 , β ∈ RN . In practice, α and
β are calculated directly from each pair of input image and
query through dedicated attention modules. They can be
implemented in different ways such as direct single-shot
attention [3], co-attention [31] or multi-step attention [15].
In our experiment, we concentrate on two popular mech-
anisms: single-shot attention where the visual attention β
is calculated directly from the inputs (V, q) and alternating
attention mechanism where the visual attention β follows the
linguistic attention α [31]. Concretely, α is estimated first,
followed by the attended linguistic feature of the entire query
c =

∑T
i=1 αi ∗ li; then this attended linguistic feature is used

to calculate the visual attention β. The alternating mecha-
nism can be extended with multi-step reasoning [15, 23, 14].
In such case, a pair of attentions αi,k and βj,k are estimated
at each reasoning step k forming a series of them.

Answer decoder Attention scores drive the reasoning pro-
cess producing a joint linguistic-visual representation on
which the answer is decoded: P (a | f(L, V, att scores))
(“att scores” refers to either visual attention vector β or atten-
tion matrix A). For marginalized attention models, the func-
tion f(.) is a neural network taking as input the query repre-
sentation q and the attended visual feature v̂ =

∑
j βj ∗vj to

return a joint representation. Joint attention models instead
use the bilinear combination to calculate each component of
the output vector of f [20]:
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ft ≡ (L⊤WL)
⊤
t A(V ⊤WV )t, (1)

where t is the index of output components and WL ∈ Rd×d

and WV ∈ Rd×d are learnable weights.

4. Methods
We now present Grounding-based Attention Priors (GAP),

an approach to extract the concept-level association between
query and image and use this knowledge as attention priors
to guide and refine the cross-modality attentions inside VQA
systems. The approach consists of two main stages. First,
we learn to estimate the linguistic-visual alignments directly
from question-image pairs (Sec. 4.1, green boxes in Fig. 2).
Second, we use such knowledge as inductive priors to assist
the computation of attention in VQA (Sec. 4.2, Sec. 4.3, and
lower parts in Fig. 2).

4.1. Structures for Linguistic-Visual Alignment
Grammatical structures for grounding. The task of

Linguistic-visual Alignment aims to find the groundings be-
tween the linguistic entities (e.g., query words L = {li}Ti=1

in VQA) and vision entities (e.g., visual regions V =
{vj}Nj=1 in VQA) in a shared context. This requires the
interpretation of individual words in the complex context of
the query so that they can co-refer to the same concepts as im-
age regions. However, compositional queries have complex
structures that prevent state-of-the-art language representa-
tion methods from fully understanding the relations between
semantic concepts in the queries [38]. We propose to bet-
ter contextualize query words by breaking a full query into
phrases that refer to simpler structures, making the computa-
tion of word-region grounding more effective. These phrases
are called referring expressions (RE) [33] and were shown to
co-refer well to image regions [19]. The VQA image-query
pairing labels are passed to the REs of such query. We then
ground words with contextualized embeddings within each
RE to their corresponding visual regions. As the REs are
nested phrases from the query, a word can appear in multiple
REs. Thus, we obtain the query-wide word-region grounding
by aggregating the grounding of REs containing the word.
See Fig. 3 for an example on this process.

We extract query REs using a constituency parse tree
T [5].1 In this structure, the query is represented as a set of
nested phrases corresponding to subtrees of T . The parser
also provides the grammatical roles of the phrases. For
example, the phrase “the white car” will be tagged as a
noun-phrase while “standing next to the white car” is a
verb-phrase. As visual objects and regions are naturally
associated with noun-phrases, we select a set E = {Er} of
all the noun phrases and wh-noun phrases2 as the REs.

1Berkeley Neural Parser [22] in our implementation.
2noun phrases prefixed by a pronoun, e.g., “which side”, “whose bag”.
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Figure 3. The query is parsed into a constituency parse tree to iden-
tify REs. Each RE serves as a local context for words. Words within
each RE context are grounded to corresponding image regions. A
word can appear in multiple REs, and thus its final grounding is
averaged over containing REs, serving as inductive prior for VQA.

We denote the rth RE as Er ={wi |wi ∈ Rd}sr≤i≤er

where sr and er are the start and end word index of the RE
within the query L = {li}Ti=1. It has length mr = er−sr+1.
We now estimate the correlation between words in these REs
and the visual regions V =

{
vj | vj ∈ Rd

}N
j=1

by learning
the neural association function gδ(V,Er) of parameter δ that
generates a mapping A∗

r ∈ Rmr×N between words in the
RE and the corresponding visual regions.

We implement gδ (.) as the dot products of a contextual-
ized embedding of word wi in Er with image regions in V ,
following the scaled dot-product attention [46].

Unsupervised training. To train the function gδ (.), we
adapt the recent contrastive learning framework [11] for
phrase grounding to learn these word-region alignments from
the RE-image pairs in an unsupervised manner, i.e. without
explicit word-region annotations. In a mini batch B of size b,
we calculate the positive mapping A∗

r =
(
a∗r,i,j

)
∈ Rmr×N

on one positive sample (the RE Er and the image regions
V in the image that is paired with it) and (b − 1) negative
mappings A∗

r,s =
(
a∗r,s,i,j

)
∈ Rmr×N where 1 ≤ s ≤

(b−1) from negative samples (the RE Er and negative image
regions V ′

s = {v′s,j} from images that are not paired with it).
We then compute linguistic-induced visual representations
v∗i ∈ Rd and v∗s,i ∈ Rd over regions for each word wi:

v∗i =
∑

vj∈V normj

(
a∗r,i,j

)
W⊤

v vj , (2)

v∗s,i =
∑

v′
s,j∈V ′

s
normj

(
a∗r,s,i,j

)
W⊤

v′ v′s,j , (3)

where “normj” is a column normalization operator; Wv ∈
Rd×d and Wv′ ∈ Rd×d are learnable parameters. We
then push them away from each other by maximizing the
linguistic-vision InfoNCE [34]:
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Lr(δ)=EB

[ ∑
wi∈Er

log

(
e⟨W

⊤
w wi,v

∗
i ⟩

e⟨W⊤
w wi,v∗

i ⟩+
∑b−1

s=1 e
⟨W⊤

w wi,v∗
s,i⟩

)]
.

(4)
This loss maximizes the lower bound of mutual informa-

tion MI(V,wi) between visual regions V and contextualized
word embedding wi [11].

Finally, we compute the word-region alignment A∗ ∈
RT×N by aggregating the RE-image groundings:

A∗ =
1

|E|
∑|E|

r=1Ã
∗
r , (5)

where Ã∗
r ∈ RT×N is the zero-padded matrix of A∗

r .
Besides making grounding more expressive, this divide-

and-conquer strategy has extra benefits of augmenting the
weak supervising labels from query-image to RE-image
pairs, which provide more supervising signals (positive pairs)
hence, better training of the contrastive learning framework.

The discovered grounding provides a valuable source of
priors for VQA attention. Existing works [36, 40] use atten-
tion priors to regulate the gradient flow of VQA models dur-
ing training, hence only constraining the attention weights
indirectly. Unlike these methods, we directly guide the com-
putation of attention weights via two pathways: through
pre-training them without answers, and by refining in VQA
inference on a case-by-case basis.

4.2. Pre-training VQA Attention
A typical VQA system seeks to ground linguistic con-

cepts parsed from the question to the associated visual parts
through cross-modal attention. However, this attention mech-
anism is guided only indirectly and distantly through sparse
training signal of the answers. This training signal is too
weak to assure that relevant associations can be discovered.
To directly train the attention weights to reflect these nat-
ural associations, we pre-train VQA models by enforcing
the attention weights to be close to the alignment maps A∗

discovered through unsupervised grounding in Sec. 4.1.
For joint attention VQA models, this is achieved through

minimizing the Kullback-Leibler divergence between vector-
ized forms of the VQA visual attention weights A and the
prior grounding scores A∗:

Lpre-train = KL(norm ◦ vec(A∗) ∥ norm ◦ vec(A)), (6)

where norm◦vec flattens a matrix into a vector followed by
a normalization operator ensuring such vector sums to one.

For marginalized attention models, we first marginalize
A∗ =

(
a∗i,j
)

into a vector of visual attention prior:

β∗ =
1

T

∑T
i=1normj(a

∗
i,j). (7)

The pre-training loss is the KL divergence between the atten-
tion weights and their priors:

Lpre-train = KL(β∗ ∥ β). (8)

4.3. Attention Refinement with Attention Priors
4.3.1 Marginalized attention refinement

Recall from Sec. 3 that a marginalized attention VQA model
computes linguistic attention over T query words α ∈ RT

and visual attention over N visual regions β ∈ RN . In this
section, we propose to directly refine these attentions using
attention priors A∗ =

(
a∗i,j
)
∈ RT×N learned in Sec. 4.1.

First, A∗ is marginalized over rows and columns to obtain a
pair of attention priors vectors α∗ ∈ RT and β∗ ∈ RN :

α∗ =
1

N

N∑
j=1

normi(a
∗
i,j); β

∗ =
1

T

T∑
i=1

normj(a
∗
i,j). (9)

We then refine α and β inside the reasoning process
through a gating mechanism to return refined attention
weights α′ and β′ in two forms:
Additive form:

α′ = λα+ (1− λ)α∗, β′ = γβ + (1− γ)β∗, (10)

Multiplicative form:

α′ = norm
(
(α)λ(α∗)

(1−λ)
)
, β′ = norm

(
(β)γ(β∗)

(1−γ)
)
, (11)

where “norm” is a normalization operator; λ ∈ (0, 1) and
γ ∈ (0, 1) are outputs of learnable gating functions that de-
cide how much attention priors contribute per words and re-
gions. Intuitively, these gating mechanisms are a solution to
maximizing the agreement between two sources of informa-
tion: α′ = argmin (λ ∗D(α′, α) + (1− λ) ∗D(α′, α∗)) ,
where D(P1, P2) measures the distance between two prob-
ability distributions P1 and P2. When D ≡ Euclidean dis-
tance, it gives Eq. (10) and when D ≡ KL divergence be-
tween the two distributions, it is Eq. (11) [12] (See Supp. for
proofs). The same intuition applies for the calculation of β′.

The learnable gates for λ and γ are implemented as a
neural function hθ (.) of visual regions v̄ and the question q:

λ = hθ (v, q) . (12)

For simplicity, v is the arithmetic mean of regions in V .
For multi-step reasoning, we apply Eqs. (10, 11) step-by-

step. As each reasoning step k is driven by an intermediate
control ck (Sec. 3), it affects the learning of the gate by:

λk = pθ (ck, hθ (v̄, q)) . (13)

4.3.2 Joint attention refinement

In joint attention VQA models, we can directly use matrix
A∗ =

(
a∗ij
)
∈ RT×N without marginalization. With slight

abuse of notation, we denote the output the modulating gate
for attention refinement as λ ∈ (0, 1) sharing similar role
with the gating mechanism in Eq. (12):

A′ =

{
λA+ (1− λ)B∗ (add.)

norm
(
(A)

λ
(B∗)

(1−λ)
)

(multi.)
(14)

where B∗ = normij

(
a∗ij
)
.
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Method
VQA v2 standard val↑

All Yes/No Num Other

UpDn+Attn. Align [40] 63.2 81.0 42.6 55.2
UpDn+AdvReg [37] 62.7 79.8 42.3 55.2
UpDn+SCR (w. ext.) [49] 62.2 78.8 41.6 54.5
UpDn+SCR (w/o ext.) [49] 62.3 77.4 40.9 56.5
UpDn+DLR [17] 58.0 76.8 39.3 48.5
UpDn+RUBi† [4] 62.7 79.2 42.8 55.5
UpDn+HINT [40] 63.4 81.2 43.0 55.5

UpDn+GAP 64.3 81.2 44.1 56.9

Table 1. Comparison between GAP and other attention regulariza-
tion methods using UpDn on VQA v2. Results of other methods
are taken from their respective papers. †Our reproduced results.

4.4. Two-stage Model Training
We perform a two-step pre-training/fine-tuning procedure

to train models using the attention priors: (1) unsupervised
pre-training VQA without answer decoder with attention
priors (Sec. 4.2), and (2) fine-tune full VQA models with
attention refinement using answers, i.e. by minimizing the
VQA loss − logP (y | q, I).

5. Experiments
We evaluate our approach GAP on two representative

marginalized VQA models: Bottom-Up Top-Down Atten-
tion (UpDn) [3] for single-shot, MACNet [15] for multi-step
compositional attention models; and a joint attention model
of BAN [20]. Experiments are on two datasets: VQA v2 [9]
and GQA [16]. Unless stated otherwise, we we additive gat-
ing (Eq. (10)) for experiments with UpDn and MACNet, and
multiplicative forms (Eq. (11)) for BAN. Implementation
details and extra results are available in the Supplement.

5.1. Experimental Results
Enhancing VQA performance We compare GAP against
the VQA models based on the UpDn baseline that utilize
external priors and human annotation on VQA v2. Some
of these methods use internal regularization: adversarial
regularization (AdvReg) [37], attention alignment (Attn.
Align) [40]; and some use human attention as external su-
pervision: self-critical reasoning (SCR) [49] and HINT [40].
While these methods mainly aim at designing regularization
schemes to exploit the underlying data generation process of
VQA-CP datasets [1] where it deliberately builds the train
and test splits with different answer distributions. This po-
tentially leads to overfitting to the particular test splits and
accuracy gains do not correlate to the improvements of ac-
tual grounding [41]. On the contrary, GAP does not rely on
those regularization schemes but aims at directly improving
the learning of attention inside VQA models to facilitate
reasoning. In other words, GAP complements the effects of
the aforementioned methods on VQA-CP (See Supplement).
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Figure 4. GAP’s universality across different baselines and datasets.

Table 1 shows that our approach (UpDn+GAP) clearly
has advantages over others in improving the UpDn baseline.
The favorable performance is consistent across all question
types, especially on “Other” question type, which is the most
important and challenging for open-ended answers [44, 45].

Compared to methods using external attention annota-
tions (UpDn+SCR, UpDn+HINT), the results suggest that
GAP is effective in using attention priors (both learning and
inference), especially when our priors are extracted in an
unsupervised manner without the need for human annotation.

Universality across VQA models GAP is theoretically
applicable to any attention-based VQA models. We evaluate
the universality of GAP by trialing it on a wider range of
baseline models and datasets. Figure 4 summarizes the ef-
fects of GAP on UpDn, MACNet and BAN on the large-scale
datasets VQA v2 and GQA.

It is clear that GAP consistently improves upon all base-
lines over all datasets. GAP is beneficial not only for the
simple model UpDn, but also for the multi-step model (MAC-
Net). We observe the best effects when applied at early
reasoning steps where attention weights are yet to converge.

Between datasets, the improvement is stronger on GQA
than on VQA v2, which is explained by the fact that GQA
has a large portion of compositional questions which our
unsupervised grounding learning can benefit from.

The improvements are less significant with BAN which al-
ready has large capacity model at the cost of data hunger and
computational expensiveness. In the next section, we show
that GAP significantly reduces the amount of supervision
needed for these models compared to the baseline.

Sample efficient generalization We examine the gener-
alization of the baselines and our proposed methods when
analyzing sample efficiency with respect to the number of
annotated answers required. Fig. 5 shows the performance
of the chosen baselines on the validation sets of VQA v2
(left column) and GQA dataset (right column) when given
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Figure 5. GAP improves generalization capability with limited
access to grouthtruth answers.

different fractions of the training data. In particular, when
reducing the number of training instances with groundtruth
answers to under 50% of the training set, GAP consider-
ably outperforms all the baseline models in accuracy across
all datasets by large margins. For example, when given
only 10% of the training data, GAP performs better than the
strongest baseline BAN among the chosen ones by over 4.1
points on VQA v2 (54.2% vs. 50.1%) and nearly 4.0 points
on GQA (51.7% vs. 47.9%). The benefits of GAP are even
more significant for MACNet baseline which easily got off
the track in the early steps without large data. The results
strongly demonstrate the benefits of GAP in reducing the
reliance on supervised data of VQA models.

5.2. Model Analysis
Performance of unsupervised phrase-image grounding
To analyze the unsupervised grounding aspect of our model,
(Sec. 4.1), we test the grounding model trained with VQA
v2 on a mock test set from caption-image pairs on Flickr30K
Entities. This out-of-distribution evaluation setting will show
whether our unsupervised grounding framework can learn
meaningful linguistic-visual alignments.

The performance of our new unsupervised linguistic-
visual alignments using the query grammatical structure is
shown in the top row of Table 2. This is compared against
the alignment scores produced by the same framework but
without breaking the query into REs (Middle row) and the
random alignments (Bottom row). There is a 5 points gain
from the random scores and over 1 point from the question-
image pairs without phrases, indicating our linguistic-visual
alignments is a reliable inductive prior for attention in VQA.

Model R@1 R@5 R@10 Acc.

Unsup. RE-image grounding 14.1 35.6 45.5 45.4

Unsup. grounding w/o REs 12.0 33.0 42.9 44.3

Random alignment score (10 runs) 6.6 28.4 43.3 40.7

Table 2. Grounding performance of the unsupervised RE-image
grounding when evaluated on out-of-distribution image-caption
Flickr30K Entities test set. Recall@k: fraction of phrases with
bounding boxes that have IOU≥0.5 with top-k predictions.

No. Models Acc.

1 UpDn baseline 63.3

2 +GAP w/ uniform-values vector 63.7
3 +GAP w/ random-values vector 63.6
4 +GAP w/ supervised grounding 64.0

5 +GAP w/ unsupervised visual grounding 64.3

Table 3. VQA performance on VQA v2 validation split with differ-
ent sources of attention priors.

Models Acc.

1. UpDn baseline, β′ ≡ β (γ(θ) ≡ 1.0) 63.3

Attention as priors
2. w/ β′ ≡ β∗(γ(θ) ≡ 0.0) 60.0
Effects of the direct use of attention priors
3. +GAP w/o 1st stage fine-tuning 63.9
4. w/ 1st stage fine-tuning with attention priors 64.0
Effects of the gating mechanisms
5. +GAP, fixed γ(θ) ≡ 0.5 64.0
6. +GAP (multiplicative gating) 64.1
Effects of using visual-phrase associations
7. +GAP (w/o extracted phrases from questions) 63.9

8. +GAP (full model) 64.3

Table 4. Ablation studies with UpDn on VQA v2.

Effectiveness of unsupervised linguistic-visual alignments
for VQA We examine the effectiveness of our attention
prior by comparing it with different ways of generating val-
ues for visual attention prior β∗ on VQA performance. They
include: (1) UpDn baseline (no use of attention prior) (2)
uniform-values vector and (3) random-values vector (nor-
malized normal distribution), (4) supervised grounding (pre-
trained MAttNet [53] on RefCOCO [19]), and (5) GAP. Ta-
ble 3 shows results on UpDn baseline. GAP is significantly
better than the baseline and other attention priors (2-3-4).
Especially our unsupervised grounding gives better VQA
performance than the supervised one (Row 5). This surpris-
ing result suggests that pre-trained supervised model could
not generalize out of distribution, and is worse than underly-
ing grounding phrase-image pairs extracted unsupervisedly.
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1st RE-image pair

2nd RE-image pair

3rd RE-image pair

(a)

Original picture

Before GAP After GAP

Question:
what vehicle is to the left of the 
vehicle in the train station?

GT answer: “car”  

Prediction: “train” Prediction: “car”
(b)

Figure 6. Qualitative analysis of GAP. (a) Region-word alignments of different RE-image pairs learned by our unsupervised grounding
framework. (b) Visual attentions and prediction of UpDn model before (left) vs. after applying GAP (right). GAP shifts the model’s highest
visual attention (green rectangle) to more appropriate regions while the original puts attention on irrelevant parts.

Model Top-1 attn. Top-5 attn. Top-10 attn.

UpDn baseline 14.50 27.31 35.35

UpDn + GAP 16.76 29.32 36.53

Table 5. Grounding scores for top-1, top-5 and top-10 attention of
UpDn before and applying GAP on GQA validation split.

Ablation studies To provide more insights into our
method, we conduct extensive ablation studies on the VQA
v2 dataset (see Table 4). Throughout these experiments,
we examine the role of each component toward the optimal
performance of the full model. Experiments (1, 2) in Ta-
ble 4 show that UpDn model does not perform well with
either only its own attention or with the attention prior it-
self. This supports our intuition that they complement each
other toward optimal reasoning. Rows 5,6 show that a soft
combination of the two terms is necessary.

Row 7 justifies the use of structured grounding. It shows
that phrase-image grounding gives better performance than
question-image pairs only. In particular, the extracted RE-
image pairs improves performance from 63.9% to 64.3%.
This clearly demonstrates the significance of the grammatical
structure of questions as an inductive bias for inter-modality
matching which eventually benefits VQA.

Quantitative results We quantify the visual attentions of
the UpDn model before and after applying GAP on the GQA
validation set. In particular, we use the grounding score
proposed by [16] to measure the correctness of the model’s
attentions weights comparing to the groundtruth grounding
provided. Results are shown in Table 5. Our method im-
proves the grounding scores of UpDn by 2.26 points (16.76
vs. 14.50) for top-1 attention, 2.01 points (29.32 vs. 27.31)
for top-5 attention and 1.18 points (36.53 vs. 35.35) for
top-10 attention. It is to note that while the grounding scores

reported by [16] summing over all object regions, we report
the grounding scores attributed by top-k attentions to better
emphasize how the attentions shift towards most relevant ob-
jects. This analysis complements the VQA performance in
Table 3 in a more definitive confirmation of the role of GAP
in improving both reasoning attention and VQA accuracy.

Qualitative results We analyze the internal operation of
GAP by visualizing grounding results on a sample taken
from the GQA validation set. The quality of grounding is
demonstrated in Fig. 6(a) with the word-region alignments
found for several RE-image pairs. With GAP, these good
grounding eventually benefits VQA models by guiding their
visual attentions. Fig. 6(b) shows visual attention of the
UpDn model before and after applying GAP. The guided
attentions were shifted towards more appropriate visual re-
gions than attentions by UpDn baseline.

6. Conclusion
We have presented a generic methodology to semanti-

cally enhance cross-modal attention in VQA. We extracted
the linguistic-vision associations from query-image pairs
and used it to guide VQA models’ attention with Grounding-
based Attention Prior (GAP). Through extensive experiments
across large VQA benchmarks, we demonstrated the effec-
tiveness of our approach in boosting attention-based VQA
models’ performance and mitigating their reliance on super-
vised data. We also showed qualitative analysis to prove the
benefits of leveraging grounding-based attention priors in im-
proving the interpretability and trustworthiness of attention-
based VQA models. Broadly, the capability to obtain the
associations between words and vision entities in the form of
common knowledge is key towards systematic generalization
in joint visual and language reasoning.
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