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Figure 1. Visual illustration of our global-local self-distillation framework with a loss for each component. The global loss maximizes
the similarity of both global-representations while the local losses maximize the similarity between pairs of local-representations.

Abstract

The downstream accuracy of self-supervised methods is
tightly linked to the proxy task solved during training and
the quality of the gradients extracted from it. Richer and
more meaningful gradients updates are key to allow self-
supervised methods to learn better and in a more efficient
manner. In a typical self-distillation framework, the repre-
sentation of two augmented images are enforced to be co-
herent at the global level. Nonetheless, incorporating lo-
cal cues in the proxy task can be beneficial and improve
the model accuracy on downstream tasks. This leads to a
dual objective in which, on the one hand, coherence be-
tween global-representations is enforced and on the other,
coherence between local-representations is enforced. Un-
fortunately, an exact correspondence mapping between two
sets of local-representations does not exist making the task
of matching local-representations from one augmentation
to another non-trivial. We propose to leverage the spa-
tial information in the input images to obtain geometric
matchings and compare this geometric approach against
previous methods based on similarity matchings. Our study
shows that not only 1) geometric matchings perform bet-
ter than similarity based matchings in low-data regimes
but also 2) that similarity based matchings are highly hurt-
ful in low-data regimes compared to the vanilla baseline
without local self-distillation. The code is available at
https://github.com/tileb1/global-local-self-distillation.

1. Introduction
The last few years have seen a lot a progress in self-

supervised learning due to its ability to make use of large
unlabeled datasets. The trend has been to train ever larger
networks on ever larger datasets. However, this is very
costly both in terms of compute resources and environmen-
tal impact. This also impedes research on this topic to all
but a few large labs with the required infrastructure. Re-
cent works (e.g. [6, 8, 22]) train large models on distributed
computing clusters using hundreds of GPUs for a single run.
The cost for such clusters easily exceeds millions of dollars
and power consumption easily surpasses the 10s of kilo-
watts. It is therefore crucial to make the learning as efficient
as possible by leveraging as much self-supervisory signal as
possible from the input images. One way to achieve this is
to incorporate local cues in the self-supervised training.

Recently, transformer backbones using the self-attention
mechanism [42] have been gaining more popularity in the
computer vision field. Monolithic vision transformers [17]
have induced a wave of work on multi-stage vision trans-
formers [31, 51, 44, 38] which do not process patch tokens
at a single resolution (e.g. 16x16) but at multiple resolutions
via patch merging. These architectures encode an input
image into a representation which is coarser-grained than
the pixel-level, yet preserves the spatial structure of the in-
put image. Given the highly complex mapping from input
image to output representation, local regularization is even
more motivated.

Typical self-distillation frameworks aim to maximize the
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similarity between the global representation of two aug-
mented crops coming from the same input image. The idea
is to generate augmentations which carry the same seman-
tic meaning (e.g. image of dog) but contain different low-
level information (e.g. different lighting, background, scale
etc.). The backbone is then trained to output a represen-
tation of both augmented images which are coherent with
each other. Under this setup, the network should learn to
retain semantic content from the input image while discard-
ing redundancy and noise. To incorporate additional self-
supervisory signal in the training, one can devise a simi-
lar loss which acts on local-representations instead of the
global-representation. This leads to a dual objective where
two terms are optimized (local and global) as shown in Fig-
ure 1. As opposed to the global-representation, a single aug-
mented image does not lead to a single local-representation
but to a set of local-representations. This makes the expres-
sion for the local loss non-trivial. A question naturally arise:
How should one generate pairs of local-representations
i.e. which local-representation from one augmented image
should be matched to which local-representation from the
other augmented image?

Ideally, we would like to match local-representations
which share the same semantic content. In a self-supervised
setup, we don’t have access to such oracle and should rely
purely on data-driven approximations. Li et al. [28] propose
to use a matching function which is based on the similar-
ity of local-representations. The assumption is that similar
local-representations should be semantically close. In prac-
tice, this does not always hold, especially when augmented
images don’t overlap much. On the other hand, we propose
a geometric matching function. The assumption is that rep-
resentations originating from close-by regions of the input
image are semantically close. One can also easily threshold
the matching distance to avoid the above mentioned prob-
lem of little overlap between augmentations. We propose a
study comparing both approaches and summarize our con-
tribution as follows:

• To our knowledge, we are the first to introduce local self-
distillation for the features of multi-stage vision transform-
ers based on geometry.

• We study what is the best way to incorporate local
self-distillation including a similarity based proxy task
as in SOTA method [28] and our geometry based self-
supervised proxy task:

– We show that a similarity based self-distillation proxy
task can be hurtful in low-data regimes and performs
much worse than the vanilla setup without additional lo-
cal loss. The geometry based self-distillation proxy task
is more robust and improves the vanilla setup in all data-
regimes.

– We show comparable performance between both ap-
proaches in high-data regimes (e.g. ImageNet-1k [14]).

– Finally, we show that geometry based matchings lead to
a processing of the input image which better preserves
the spatial structure of images and show empirical evi-
dence of local-representation mode collapse when using
a similarity based matching function.

2. Related works
Self-supervised learning Early self-supervised methods
for representation learning make use of pretext tasks. As
pretext tasks, Noroozi et al. [35] solve a jigsaw puzzle and
Gidaris et al. [18] predict which rotation was applied on
an input image. Other approaches include predicting patch
context [16, 34], inpainting patches [36], predicting noise
[3], etc.

More recently, contrastive learning methods have been
the most popular. Contrastive learning is a scheme for
metric learning which leverages distinctiveness and simi-
larities between inputs. Chen et al. [7] propose a simple
framework for contrastive learning of visual representations
(SimCLR) which has kickstarted a lot of research in this
direction [10, 23, 8, 9, 11, 46, 49, 48]. Grill et al. propose
a framework called BYOL [20] where negative samples
in the contrastive loss are not needed to avoid collapse by
using a simple mean squared error loss (MSE) between
the output representations of two branches. Caron et al.
[6] (DINO) extend this framework by introducing visual
transformers as the backbone and by viewing this learning
paradigm as self-distillation. We were inspired by DINO,
yet observed that they only use the global representations,
leaving valuable cues at the local scale unexploited. Note
that self-supervised methods require large quantities of data
to get great results. Few works focus explicitly on self-
supervised pretraining on small-scale datasets [13, 39, 30].
Dense contrastive learning The above-mentioned methods
focus on learning a visual representation at the image-level.
Some works take a different approach and aim to learn
a representation at the pixel-level, which is useful for
dense tasks like segmentation. Pinheiro et al. [37] generate
positive pixel pairs corresponding to the same location
from an input image. Xie et al. [47] use a similar loss as
well as an additional pixel-to-propagation consistency task
improving the downstream task accuracy. Notable works
along the same lines include [15, 43].
Dense self-distillation Li et al. (EsViT [28]) focus on clas-
sification downstream tasks and propose a self-distillation
task leveraging the local features of a multi-stage visual
transformer (rather than pixel-representations) based on
their similarities. EsViT is thus not fully dense but does
share similarities with these approaches. We argue that
explicitly using the spatial information from the original
input images, as we do, provides stronger feedback than
matching local representations purely based on similarity,
as they do (especially in low-data regimes).
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Figure 2. High-level overview of a global-local self-distillation
framework. The augmentations x̃ and x̃′ are fed respectively
through the teacher and student backbone resulting in both global-
(z̄) and dense-representations (z). Then, these representations
are respectively fed through a teacher- and student-head to output
probability mass functions with which LG and LL are minimized
(more details in Sec. 3.4).

Vision transformers Visual transformers (ViT) have been
proposed by Dosovitskiy et al. [17] as an alternative to the
more common CNN backbone (e.g. ResNets [25]). Input
images are patchified, then each patch is flattened and fed to
a linear layer whose output serves as tokens in a traditional
NLP transformer backbone [42]. ViTs allow more complex
mappings between input and output as the architecture is
not translation invariant. In the absence of a supervisory
training signal, ViTs are adequate to model complex
dependencies and outperform ResNets, as shown by DINO
[6]. Some self-supervised works mimic the masked word
prediction task in NLP with a masked image modeling
task [2, 21]. More recently, multi-stage architectures have
been proposed where patches are not processed at a single
resolution but at multiple resolutions via patch merging.
Liu et al. [31] propose such an architecture where they
also process tokens in windows of restricted size to lower
the compute requirements. Other notable works along the
same lines include [50, 51, 44, 38, 40, 12].

3. Methodology
This section starts by reviewing necessary representa-

tion terminology (Sec. 3.1) and the augmentation pipeline
(Sec. 3.2). Then, the training scheme is discussed (Sec. 3.3).
Finally, we review the self-supervised loss needed to incor-
porate additional local cues. A high-level overview sketch
can be found in Figure 2.

3.1. Global- versus local-representations

Most previous works (e.g. [6, 7, 20, 10, 23]) use a self-
supervised loss based only on the global-representation of
the augmentations. With this term, we refer to either the
output of the backbone network after a global average pool-
ing or the [CLS] token in the case of vision transformer
backbones. In both cases, the global-representation is a vec-
tor z̄ ∈ Rd where d is the size of the latent space. On the
other hand, we use the term dense-representation to refer to
a representation in which spatial structure of the input im-
age is explicitly modeled. Such dense-representations usu-
ally take the form of a third-order tensor ∈ RH×W×d or

∈ RHW×d, where H and W are respectively the height and
width of the input image or a downscaled version thereof.
Examples of such dense-representation include the output
feature map of a CNN or an ordered sequence of tokens
from a visual transformer (excluding the [CLS] token). Fi-
nally, we use the term local-representation to refer to a 1D
slice zk ∈ Rd of a dense-representation associated to a cer-
tain local position k (of the K = HW possible locations).

3.2. Data augmentation pipeline as a composition
of geometric and photometric transforms

There are 3 main components in self-supervised frame-
works: 1) a data-augmentation pipeline, 2) a backbone
and 3) a self-supervised proxy task. Data augmentation
pipelines play a crucial role in self-supervised learning set-
tings since they produce the necessary augmented samples
needed to enforce a self-supervised loss. Previous work
[41] shows empirical findings on how the downstream task
accuracy is linked to parameters of the pipeline. In our
work, we assume the data augmentation pipeline as given
and use the same one as [6] and [28]. This pipeline is
the fruit of empirical testing from many previous works
[7, 26, 1, 5, 6].

The data augmentation pipeline is a long composition of
multiple transforms, including both geometric transforms
and photometric transforms. Geometric transforms include
CROP, RESIZE and HORIZONTAL FLIP while photo-
metric transforms include COLOR JITTER, SOLARIZE,
GAUSSIAN BLUR and GRAYSCALE. We denote the com-
position of all geometric transforms by G and the composi-
tion of all photometric transforms by P.

Geometric and photometric transforms are respectively
parametrized by vectors wgeo and wpho with wgeo =
[ulx, uly, lrx, lry, h, w, f ]. The first 4 elements represent
the location of the crop (in the form of upper left and lower
right coordinates) to be taken w.r.t. the original image. h
and w refer to the resized shape of the crop while f is a
binary variable indicating whether the crop is flipped hori-
zontally or not. The actual form of wpho is not relevant for
this analysis. The data augmentation pipeline is character-
ized by a distribution Daug from which all parameters are
sampled, i.e. w ∼ Daug with w = [wgeo,wpho].

Given a single input image x and a sampled augmenta-
tion parameter vector w, we generate an augmentation x̃ as
follows

x̃ = P (G(x,wgeo),wpho) (1)

3.3. Self-distillation

Before we can dive into the explicit expression of the
loss, we first review the self-supervised training scheme
which we use in our work. Within self-supervised learning
methods, contrastive ones are the most popular and have
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Figure 3. Visualization of the matchings enforced during training for Lsim
L (left) and Lgeo

L (right). The similarity matchings depend
on the state of the backbone during the training phase as they are a function of the local-representations (here shown after 300 epochs of
training on ImageNet-1k). The geometric matchings on the other hand are not a function of the local-representations and hence are fixed
throughout the training. Colors are used only to better distinguish different matchings.

been used mainly due to their ability to avoid mode col-
lapse in an explicit and simple manner. However, [10, 6, 20]
show that negative samples are not needed to learn repre-
sentations while avoiding collapse by including some of
the following tricks: use asymmetric predictors, use stop-
gradients in one branch, have one branch reflect a low-
passed (e.g. with an exponential moving average) version
of the other, run more gradient descent steps on one branch,
use some kind of normalization on the representation, etc.
However, [6] are the first to view “contrastive learning with-
out negative pairs” as a form of self-supervised knowledge
distillation. Knowledge distillation is a learning paradigm
where a student network learns to imitate the output of a
teacher network. In a self-supervised setting, both the stu-
dent gs and the teacher network gt, parametrized respec-
tively by θs and θt, are initialized to the same random
θinit. The student is then optimized such that its output
matches the one of the teacher w.r.t. a particular loss func-
tion. The teacher network is updated at each epoch to reflect
an exponential moving average of the student’s weights, i.e.
θt ← λθt + (1− λ)θs.

3.4. Self-supervised loss

The global-representation loss used in our study is the
same as proposed by DINO [6] and is explained in the fol-
lowing subsection using notations similar to EsViT [28].
Given a backbone f and an augmentation x̃, we obtain both
the global- (z̄) and the dense-representation (z) in a single
forward pass, i.e. (z̄, z) = f(x̃). By abuse of notations, we
will use z̄ = f̄(x̃) and z = f(x̃).

Given a student backbone fs and teacher backbone ft as
well as a set V = {x̃1, x̃2, x̃3, · · · } containing N = |V|
augmented views of the same input image, a single forward
pass of all augmentations in both networks results in:

1. two sets of global-representations Z̄s = {f̄s(x̃) : x̃ ∈
V} and Z̄t = {f̄t(x̃) : x̃ ∈ V}

2. two sets of local-representations Zs = {fs(x̃) : x̃ ∈
V} and Zt = {ft(x̃) : x̃ ∈ V}

3.4.1 Global-representation loss

The global-representations z̄ are then mapped to a dis-
crete probability mass function p̄ of dimension I using an
MLP-head h̄, i.e. p̄ = h̄(z̄). For each pair of global-
representations coming from the student and the teacher,
we use h̄ to map them to a probability mass function and
minimize their cross-entropy, more explicitly1:

LG =
1

N(N − 1)

∑
z̄∈Z̄t

∑
z̄′∈Z̄s

x̸̃=x̃′

H
(
h̄(z̄), h̄(z̄′)

)
(2)

with

H(p, q) = −
∑
i∈I

p(i) log q(i) (3)

where I is the support of the distributions p and q, in our
case I = [I] = {1, 2, · · · , I}. The summation constraint
x̃ ̸= x̃′ of the inner sum refers to the fact that we do not
have a term H

(
h̄(z̄), h̄(z̄′)

)
where z̄ and z̄′ are global-

representations corresponding to the same augmentation.

3.4.2 Similarity based local-representation loss

Similar to the global-representation loss, each local-
representation zk,∀k ∈ [K] is mapped to a probability
mass function pk using another MLP head h, i.e. pk =
h(zk). A local-representation zk from an augmented x̃
is matched to the best corresponding z′

k⋆ from another
augmented image x̃′. Here, the best corresponding local-
representation is selected as the local-representation z′

k⋆ in
the other augmentation x̃′ which has the highest similar-
ity with zk from the first augmentation x̃ as done in Es-
ViT [28]. This is shown on the left of Figure 3. The cross-
entropy between the probability outputs of matching local-
representations is then minimized for all matchings and all

1We choose to leave Eq. (2) in a more readable format avoiding the
multi-crop strategy [5] which we do use in practice. The full expression
for the loss with the multi-crop strategy can be found in the appendix.
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pairs of augmentations x̃ and x̃′. Given two dense repre-
sentations z and z′:

Lsim
L (z, z′) =

1

K

∑
k∈[K]

H (h(zk), h(z
′
k⋆)) (4)

where k⋆ = argmaxj
z⊤
k z′

j

∥zk∥∥z′
j∥

. Averaging over all

pairs of dense representations, the total local similarity
based self-supervised objective becomes

Lsim
L =

1

N(N − 1)

∑
z∈Zt

∑
z′∈Zs

x̃ ̸=x̃′

Lsim
L (z, z′) (5)

3.4.3 Geometric local-representation loss

Along the set of augmented views V , we also dispose over
a set Wgeo = {w1

geo,w
2
geo,w

3
geo, · · · } of vectors wgeo

which describe the geometric transforms x has undergone
to generate x̃. Using this set, we generate another set
E = {e1, e2, e3, · · · } where each element e ∈ RH×W×2

is an object of the same spatial dimension as its associated
dense-representation z ∈ RH×W×d. ek ∈ R2 (a slice of
e) encodes the (x, y) coordinates of the center point of the
patch associated to zk for every K = HW locations in z
w.r.t. the original input image grid x (not the augmentation
x̃). Note that e is a “positional encoding”, though it should
not be confused with the positional encoding used in trans-
formers to remove the permutation invariance of the tokens.

Here, the best corresponding z′
k⋆ from another aug-

mented image x̃′ is selected based on how close they
are w.r.t. to the original image grid x. The cross-
entropy between the probability outputs of matching local-
representations is then minimized for most matchings and
all pairs of augmentations x̃ and x̃′. As opposed to the sim-
ilarity based local loss, we do not average over all pairs of
local-representations. A matching zk ↔ z′

k⋆ obtained via
k⋆ = argminj

∥∥ek − e′j
∥∥2 might be very bad (in terms of

matching distance = d(k) = minj
∥∥ek − e′j

∥∥) when there
is no overlap between x̃ and x̃′. Therefore, we restrict our
averaging over the set of matchings zk ↔ z′

k⋆ which have
a low matching distance i.e. the zk and z′

k⋆ lie on the region
of overlap between x̃ and x̃′. The matching distance thresh-
old s is set to half of the maximum between 1) the length
of the diagonal of a local representation zk corresponding
to augmentation x̃ and 2) the length of the diagonal of a lo-
cal representation z′

k corresponding to augmentation x̃′. By
the length of the diagonal of a local representation zk, we
refer to the Euclidean distance between ek and an adjacent
diagonal ek∗ where e is the positional encoding described
in the first paragraph of Sec. 3.4.3. s is set to this value be-
cause if d(k) > s, either zk or z′

k⋆ falls outside the region
of overlap (if any) between augmentations x̃ and x̃′. Taking

Table 1. Overview of three different settings based on the local
loss used. LG and Lsim/geo

L refer respectively to the global- and
local-representation loss. The matching type column refers to the
matching type in the local-representation loss.

Setting Backbone Global loss Local loss Matching type Proposed in
Vanilla Swin-T/7 LG ✗ ✗ DINO [6]2

Similarity Swin-T/7 LG Lsim
L similarity EsViT [28]

Geometric Swin-T/7 LG Lgeo
L geometry New (ours)

the above into consideration and given two dense represen-
tations z and z′:

Lgeo
L (z, z′) =

1

K

∑
k∈[K]

1{d(k)<s}H (h(zk), h(z
′
k⋆)) (6)

where k⋆ = argminj
∥∥ek − e′j

∥∥2. e and e′ are the posi-
tional encodings associated respectively to z and z′. d(k) =
minj

∥∥ek − e′j
∥∥ is the matching distance of zk ↔ z′

k⋆ , s is
the dynamically set distance threshold and 1{condition} is the
indicator function. Averaging over all pairs of dense repre-
sentations, the total local self-supervised objective based on
geometry becomes

Lgeo
L =

1

N(N − 1)

∑
z∈Zt

∑
z′∈Zs

x̃ ̸=x̃′

Lgeo
L (z, z′) (7)

In the following section, we study the effect of the addi-
tional local cues by varying the total self-supervised objec-
tive in three different settings: Vanilla, Similarity
and Geometric. An overview of the three settings can
be found in Table 1. The sum of the global- and local-
loss is the total objective which is optimized w.r.t. the pa-
rameters of the student network. Pseudo code for our the
Similarity and Geometric setting can be found in
the appendix.

3.4.4 Computational complexity of the local loss

The local loss leads to limited compute overhead since it
only adds an additive term in both the forward and back-
ward pass which is very small compared to the backbone
computations. In the Similarity setting (with local loss
Lsim
L ), given two dense-representations z, z′ ∈ RHW×d,

the compute complexity is O(H2W 2d). This is for (HW )2

inner products, each of cost O(d). The argmax operation is
only O(HW ). In the Geometric setting (with local loss
Lgeo
L ), given two positional encodings e and e′ ∈ RHW×2,

the compute complexity is O(H2W 2). This is for (HW )2

L2-norms, each of cost O(1). The argmin operation is only
O(HW ). With a Swin-T backbone and 224x224 input im-
ages, H = W = 7 and d = 192 this results in a negligible
cost compared to the computations in the backbone.

2Note that we replace the ViT backbone with a Swin transformer so
that the only difference between the three settings is the local loss.
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4. Results

4.1. Rationale of the experiment design

To evaluate the merits of the additional geometric local
self-distillation, we compare the downstream performance
of this method with the Vanilla and Similarity set-
tings in which the local loss is removed or the geomet-
ric local loss is replaced by a similarity local loss (SOTA
method). We compare the 3 representation learning meth-
ods on ImageNet-1k using the linear and k-NN benchmarks
which are industry standard evaluations (Sec. 4.4). To get
a grasp of the robustness of the methods depending on the
dataset size, we run these benchmarks on randomly sam-
pled subsets of ImageNet-1k. We observe an improvement
of our method in all data regimes as well as a large perfor-
mance drop for the Similarity setting (SOTA method).
To corroborate our results in low-data regimes, we run the
same study on smaller scale datasets (as well as multiple
different backbones) in which analogous conclusions can
be drawn (Sec. 4.5). We hypothesise that the large perfor-
mance drop of the Similarity setting can be due to a
collapse at the local level and show empirical evidence to
confirm that (Sec. 4.6). Additionally, we propose a corre-
spondence matching analysis (both qualitative and quanti-
tative) to observe the effect of the local losses (Sec. 4.7).

We mostly focus on classification downstream tasks as
opposed to dense tasks e.g. object detection. Dense evalua-
tions are usually solved by fine tuning Mask-RCNN [24] on
top of the pretrained backbone. As such it is hard to distin-
guish whether a high downstream accuracy is due to a good
pretraining or due to the added capacity of Mask-RCNN.
Recent work (see Table 1 of [29]) even shows better down-
stream accuracy on a randomly initialized network than on
a pretrained one with MoCo v3. k-NN and linear evalu-
ation bechmarks for classification are better candidates
to evaluate the intrinsic quality of the pretraining since
they don’t require much processing. We do evaluate a dense
downstream task with little processing in Section 4.7.

4.2. Implementation details

Our backbone of choice is the Swin transformer [31] as it
outputs the necessary local-representations required for our
local loss. We follow the implementation details from [6]
and [28]. We use the adamw optimizer [33] with a batch
size of 512 and train for a total of 300 epochs. The learn-
ing rate is linearly increased during the first 10 epochs to its
maximum value of 0.0005 ∗ batchsize/256 as proposed by
[19]. It is then reduced throughout the training with a cosine
schedule [32]. We also use the sharpening and centering
tricks from [6] to avoid collapse. Regarding the augmenta-
tions, we use two global- and 8 local-crops (see appendix).
We refer the reader to [6] for more details.

Table 2. Comparison of multiple methods with similar
throughput with ImageNet-1k pretraining. Rows in blue are
results coming from our own runs to study the benefit of the addi-
tional local self-distillation.

Method Backbone #Params FLOPS #Epochs Linear k-NN
SimCLR [7] ResNet-50 24M 4B 800 69.3 -
SimCLR v2 [8] ResNet-50 24M 4B 800 71.7 -
BYOL [20] ResNet-50 24M 4B 1000 74.3 -
DINO [6] ViT-S/P=16 21M 4.6B 800 77.0 74.5
MoCo v3 [11] ViT-S/P=16 21M 4.6B 600 73.4 -
EsViT [28] Swin-T/W=7 28M 4.5B 300 78.0 75.7
Vanilla Swin-T/W=7 28M 4.5B 300 77.0 74.2
Similarity3 Swin-T/W=7 28M 4.5B 300 77.9 (+ 0.9) 75.3 (+ 1.1)
Geometric Swin-T/W=7 28M 4.5B 300 77.8 (+ 0.8) 75.4 (+ 1.2)

4.3. Evaluation benchmarks

We follow the two most common ImageNet [14] unsu-
pervised benchmarks from the literature [6, 45, 23, 20] i.e.
the linear and k-NN benchmarks. In both cases, the back-
bone network and MLP-heads are trained on the training
set without using labels. For the linear evaluation, a lin-
ear layer is added on top of the frozen global-representation
z̄ and is trained using the training set (data-augmentations
are used) including the labels. The classification accuracy
on the test set is evaluated using a center-crop of 224x224.
This evaluation protocol is quite computationally intensive
as the model needs to compute a forward pass for multi-
ple epochs. The k-NN benchmark on the other hand only
needs one pass. For each image in both the training and test
set, the global-representation of a center-crop (224x224) is
computed. Then, each image from the test set gets a label
assigned based on a vote from the k nearest neighbors in
the training set (anchor points). We use k = 20 to stay
consistent with previous works.

4.4. ImageNet-1k

Both the linear and k-NN benchmark results are reported
in Table 2. The first block of rows compares previous works
(including SOTA) with backbones of similar computational
requirements. These include ResNet-50 [25], ViT-Small
[17] and Swin-Tiny [31]. The second block of rows (in
blue) are results coming from our own runs to study the
benefit of the additional local cues. These runs were trained
for 7 days on 8x NVIDIA A100. The Similarity and
Geometric matchings outperform the Vanilla method
which enforces coherence only at the global level confirm-
ing that the additional local regularization is helpful.

4.5. Other datasets

To get a better idea of the robustness of the additional
self-supervised loss at the local level, we train all methods
on other datasets. We introduce the local loss to get stronger

3In theory, this row should match the the row EsViT [28]. However, the
authors of [28] do not report the downstream evaluations of the last epoch
but select the best epoch. This explains the slightly lower performance of
the blue row. More details can be found on their Github. All evaluations
from our own runs evaluate the model after the final epoch of pretraining.
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Figure 4. Comparison of the performance between the three different settings on ImageNet-1k subsets. Data points on the x-axis are
at 1%, 2%, 5%, 10%, 20%. The left plot shows the Top-1 k-NN accuracy. The two other plots are linked to the correspondence matching
Section 4.7 where the center and right plot respectively correspond to the accuracy and the error. The Geometric setting shows better
performance in all metrics.

self-supervision and more efficient learning, which is best
studied by looking at the behavior on small scale datasets.
These include an artificial setting where we sample 1%, 2%,
5%, 10% and 20% subsets of ImageNet-1k in order to eval-
uate the relative performances in low-data regimes. Even
though this is an artificial setting, these subsets are well cu-
rated, image-centered and contain a lot of diversity making
them ideal for such a study. We also include evaluations on
3 other datasets: Food-101 [4], NCT-CRC-HE-100K [27]
and ImageNet-100 (100 class subset of ImageNet-1k).

4.5.1 ImageNet-1k subsampled

The 1%, 2%, 5%, 10% and 20% subsets are obtained by
sampling respectively 10, 20, 50, 100, 200 images from
each class to avoid imbalances. Each method is indepen-
dently trained on a subset and evaluated on the k-NN bench-
mark. Note that this evaluation can be done using the full
training set or the training subsets. Since we are using very
little training data (e.g. 1%), we choose to evaluate the an-

Table 3. Performance comparison of Vanilla, Similarity
and Geometric on the k-NN and linear evaluation bench-
marks. Rows in different shades of gray are trained on the training
set of Food-101, NCT-CRC-HE-100K, ImageNet-100 and evalu-
ated on the corresponding test set. Each shade of gray represents
a different model (backbones from top to bottom: Swin-T/7x7,
Swin-T/14x14 and Swin-S/7x7). As a point of reference, the blue
rows are trained on ImageNet-1k and evaluated similarly (back-
bone: Swin-T/7x7). NA entries mean the training crashed due to
numerical instabilities.

Vanilla Similarity Geometric

k-NN linear k-NN linear k-NN linear
Food-101 69.3 79.4 1.7 (-67.6) 3.0 (-76.4) 73.1 (+3.8) 82.2 (+2.8)
NCT-CRC-HE-100K 91.9 92.1 46.0 (-45.9) 53.5 (-38.6) 89.5 (-2.4) 90.2 (-1.9)
ImageNet-100 76.5 82.0 76.2 (-0.3) 81.4 (-0.6) 79.5 (+3.0) 84.4 (+2.4)
Food-101 69.5 78.5 0.9 (-68.6) 2.1 (-76.4) 72.6 (+3.1) 80.7 (+2.2)
NCT-CRC-HE-100K 90.8 90.1 44.1 (-46.7) 34.1 (-56.0) 91.0 (+0.2) 89.4 (-0.7)
ImageNet-100 76.8 81.6 2.1 (-74.7) 1.9 (-79.7) 78.9 (+2.1) 83.0 (+1.4)
Food-101 70.9 79.6 NA NA 73.8 (+2.9) 82.5 (+2.9)
NCT-CRC-HE-100K 90.8 89.4 NA NA 90.5 (-0.3) 86.9 (-2.5)
ImageNet-100 78.6 83.1 76.1 (-2.5) 80.9 (-2.2) 80.2 (+1.6) 84.1 (+1.0)
Food-101 67.7 81.4 68.4 (+0.7) 82.2 (+0.8) 68.6 (+0.9) 82.2 (+0.8)
NCT-CRC-HE-100K 89.2 93.3 90.8 (+1.6) 93.1 (-0.2) 90.3 (+1.1) 94.2 (+0.9)
ImageNet-100 86.2 88.1 87.0 (+0.8) 88.8 (+0.7) 87.5 (+1.3) 88.3 (+0.2)

chor points on the full training data to make the metric more
robust and fair across all subsets. There are two main obser-
vations from the left plot of Figure 4: 1) incorporating local
cues using similarity matchings is hurtful for small subsets
and 2) geometric matchings on the other hand are robust and
provide additional accuracy on all subsets. Similarities be-
tween local-representations in low-data regimes are mostly
based on low-level features leading to collapse of the match-
ing function. We will confirm this in the following section.
Note that the y-scale of the left plot of Figure 4 goes from
0 to 50%: the relative difference between the vanilla and
the geometric matching method is in order of 1.5% which
is highly significant on this benchmark. Still, the size of
the dataset remains the dominant factor and regularization
based on local correspondences cannot replace that.

4.5.2 Smaller scale datasets & different models

The evaluation on Food-101 [4], NCT-CRC-HE-100K [27]
and ImageNet-100 with different models (Swin-T/7x7,
Swin-T/14x14 and Swin-S/7x7) can be found in Table 3.
The datasets are chosen because they all contain about 100k
images and images have a resolution similar to ImageNet-
1k. Rows in light gray are trained from scratch on the train-
ing set of Food-101, NCT-CRC-HE-100K, ImageNet-100
and evaluated on the corresponding test set. Rows in darker
gray are trained on ImageNet-1k and evaluated on the test
set of Food-101, NCT-CRC-HE-100K, ImageNet-100. In
most evaluations, the additional geometric local regulariza-
tion improves the performance on the downstream tasks. A
key finding from Table 3 is that the similarity based local
loss used in SOTA work EsViT [28] is hurtful in low-data
regimes while the geometric local loss is robust and shows
improvements in almost all evaluations. The takeaways are
similar irrespective of model size and window size. The per-
formance drop due to collapse (see Sec. 4.6) does a appear
a bit worse when using Swin-T/14x14 compared to Swin-
T/7x7. This can be explained by the fact that a larger win-
dow size allows tokens to attend to a wider set of tokens in
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Figure 5. Visual comparison of the similarity correspondence
between two augmentations. This is done for Vanilla,
Similarity and Geometric settings on 2 training data
regimes: 1% and 5% of the full ImageNet training data. Every
location on the right side is matched to a location on the left im-
age based on the distance in the learned feature space. Colors are
used only to better distinguish different matchings. Best viewed in
color and zoomed in.

general, or in particular, a wider set of similar tokens during
the transition to a collapsed state.

4.6. Collapse of the similarity matching function

In general, self-supervised methods (even with a single
global loss) are prone to mode collapse since they cannot
use labels as targets for their outputs and instead have to
bootstrap their own outputs during training. As such, a lot
of care has to be put in the design of the training algorithm.
In contrastive learning methods, a loss function with appro-
priate negative samples mitigates the issue [7]. Analogously
in self-distillation methods, a careful tuning of the temper-
ature parameters in the centering and sharpening trick is
required [6]. In a dual global-local objective framework,
collapse can also occur at the local level. Collapse at the
local level can happen when using the Similarity set-
ting proposed in [28]. Such failure cases are shown in the
appendix. Due to the nature of the backbone, collapse at
the local level implies collapse at the global level. That
is because the global-representation z̄ = f̄(x) is a direct
function of the dense representation z i.e. z̄ = g(z) with g
an average pooling layer or attention layer. When collapse
occurs (both global and local), we get that ∇xf̄(x) ≈ 0.
That is, the model discards all information from the input
image x leading to downstream evaluations close to a ran-
dom accuracy of 1

nb class as can be seen in some entries of
the Similarity column of Table 3.

If collapse of the matching function occurs, the method
cannot recover because Lsim

L is enforced making the col-
lapse even worse. The Geometric setting avoids this is-
sue by construction leading to a more robust training.

4.7. Correspondence matching based on similarity

We analyze the learned representation by looking at the
quality of correspondence matching based on the similari-
ties of local-representations. Two augmentations of an in-
put image from the validation set are computed using a
tweaked data augmentation pipeline where there always ex-
ists an exact correspondence mapping between the local-
representations i.e. augmentations are always cropped and
resized in the same manner. This spatial correspondence
mapping is used as ground truth and we evaluate the match-
ings obtained using token similarity for all three settings. In
the center and right part of Figure 3, the results are shown
using two metrics: 1) the classification accuracy (i.e., how
many of the local representations are matched correctly)
and 2) the distance error, both w.r.t. the ground truth cor-
respondence mapping. The geometric matchings processes
images in a way that better preserves the spatial informa-
tion. Qualitative evaluations can be found in Figure 5.

5. Conclusion & Future work

Self-supervised training of visual transformers using
self-distillation is becoming the standard way of obtaining
visual representation from images by solving a proxy task
at the image-level (global-level). We can leverage addi-
tional self-supervision by incorporating self-distillation at
the local-level. This is done by enforcing coherence be-
tween pairs of local-representations (acts as a regularizer).
We observe an improvement on downstream tasks using
multiple datasets. We study the effect of the matching func-
tion used to generate pairs of local-representations from
both augmentations. A geometry based matching function
shows advantages over a similarity based matching function
both in terms of 1) higher performance on downstream tasks
and 2) better preservation of the spatial relations of the in-
put images. This is particularly true in low-data regimes,
in which case we observe a collapse of the similarity based
matching function in some settings. We believe the insights
from this paper can lead to a better crafting of a data-driven
local-representation matching function to explicitly avoid
collapse and that an upscaling of these methods to very large
backbones can surpass the current state of the art.
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