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Abstract

The demand of high-resolution video contents has grown

over the years. However, the delivery of high-resolution

video is constrained by either computational resources re-

quired for rendering or network bandwidth for remote

transmission. To remedy this limitation, we leverage the

eye trackers found alongside existing augmented and vir-

tual reality headsets. We propose the application of video

super-resolution (VSR) technique to fuse low-resolution

context with regional high-resolution context for resource-

constrained consumption of high-resolution content with-

out perceivable drop in quality. Eye trackers provide us the

gaze direction of a user, aiding us in the extraction of the

regional high-resolution context. As only pixels that falls

within the gaze region can be resolved by the human eye,

a large amount of the delivered content is redundant as we

can’t perceive the difference in quality of the region beyond

the observed region. To generate a visually pleasing frame

from the fusion of high-resolution region and low-resolution

region, we study the capability of a deep neural network of

transferring the context of the observed region to other re-

gions (low-resolution) of the current and future frames. We

label this task a Foveated Video Super-Resolution (FVSR),

as we need to super-resolve the low-resolution regions of

current and future frames through the fusion of pixels from

the gaze region. We propose Cross-Resolution Flow Prop-

agation (CRFP) for FVSR. We train and evaluate CRFP on

REDS dataset on the task of 8× FVSR, i.e. a combination of

8× VSR and the fusion of foveated region. Departing from

the conventional evaluation of per frame quality using SSIM

or PSNR, we propose the evaluation of past foveated region,

measuring the capability of a model to leverage the noise

present in eye trackers during FVSR. Code is made avail-

able at https://github.com/eugenelet/CRFP.

1. Introduction

The impact of video super-resolution (VSR) in our daily

life has become more prominent in the recent years as high

quality contents can be delivered while its lower quality

counterpart is rendered or stored, saving either computa-

tional or storage resources. The application of deep neu-

ral networks to the task of rendering high-resolution frames

using its low-resolution sampled counterpart has brought

forward substantial improvements that enables technologies

like Deep Learning Super-Sampling (DLSS) [11] and Deep-

Fovea [24, 51]. They deliver high quality content on a

computationally-constrained platform. While existing VSR

techniques are implemented on a pixel level and are able to

reconstruct video content to a point that is visually pleasing,

certain context that are of high-quality that is meant to be

delivered might not be fully reconstructed, restricting high

frequency context from being delivered, e.g. texts and fine

textures. Results of VSR techniques are visually acceptable

up to 4× VSR, while frames generated using 8× VSR have

distinctive flaws that affects the overall viewing experience.

We argue that VSR methods while being useful for deliv-

ering general contexts, it should open up the possibility of

fusing super-resolved frames with regional high-resolution

(HR) context(s), e.g. HR patches, that are crucial for the

understanding of the gist of the delivered content.

With the increase in adoption of augmented and virtual

reality (AR/VR) devices [12, 49, 17], the demand for high-

resolution content will show similar spike. As more pixels

are required for the immersive experience for AR/VR, de-

velopers are searching for effective ways to reduce the com-

putational cost of rendering frames for AR/VR. A feasible

approach is to include an eye tracker in the AR/VR head-

set to estimate the gaze direction of the user [7]. Frames are

rendered based on the gaze direction of the user [40, 24], re-

sulting in huge reduction in computational cost. Our work

leverages the eye tracker of such devices for the task of

Foveated Video Super-Resolution (FVSR). FVSR is useful

if we are to transfer HR content to be viewed in real-time,

especially to AR/VR devices. Transferring the HR frames

at its full resolution might not be feasible at a bandwith-

constrained environment. For FVSR, only the pixels that

fall in gaze region are transmitted in HR while the rest are

transmitted in low-resolution (LR). This results in huge sav-
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ings in bandwidth as it is empirically shown that the human

eye is only able to perceive and resolve around ∼1% of pix-

els in a frame [46, 15]. The main challenge of FVSR is the

transfer of context from the HR to the LR region, to prevent

abrupt transition in visual quality.

As prior works of VSR don’t consider the fusion of LR

and HR context, cross-temporal operation or alignment is

performed on the feature maps of lowest spatial resolution,

i.e. during the propagation and aggregation stages [4, 5].

The temporally-aggregated low spatial resolution feature

maps are then upsampled using a sequence of upsampling

filters to reconstruct the HR frame. To incorporate regional

HR context(s) into the super-resolution pipeline, we need to

have precise spatial locality for the placement of the HR re-

gion. To do so, we propose a Cross-Resolution Flow Propa-

gation (CRFP) framework that follow existing VSR frame-

work which sequentially performs propagation, alignment,

aggregation and upsampling. To aggregate the foveated

context into the super-resolution pipeline, few modifica-

tions are made. Foveated region are fed to the Feature Ag-

gregator (FA) using a feedback mechanism. Multiple FAs

are placed at the features of lowest resolution and a single

FA is placed before an output block with features having the

targeted resolution. As the spatial resolution of the feature

maps of the final stage (after upsampling stages) matches

the spatial resolution of the HR region, i.e. matching coor-

dinates, the spatial fusion of both features can be precise.

Leveraging VSR techniques for the construction of CRFP,

we show promising results for FVSR that are not achievable

by existing VSR techniques.

The closest work to our proposed research direction of

FVSR is DeepFovea [24]. DeepFovea performs video in-

painting given a sequence of sparse frames. As FVSR is a

novel task, the only comparison we make is with the archi-

tecture we bootstrap CRFP on, BasicVSR++ [5] (SoTA in

VSR), modified for the task of FVSR. Our contributions are

summarized as follows:

1. We propose a new task of Foveated Video Super-

Resolution (FVSR). FVSR requires an eye tracker to

work and is applicable to the growing adoption of

AR/VR devices for the streaming of HR video.

2. We propose a Cross-Resolution Flow Propagation

(CRFP) technique for FVSR, demonstrating convinc-

ing results for FVSR.

3. To quantitatively measure the performance of FVSR,

we propose the evaluation of Past Foveated Region us-

ing PSNR and SSIM to better evaluate the capability

of a model to retain contexts from previous frames.

2. Background and Related Work

Visual Perception of Foveated Video. As video contents

are designed to be consumed by the human eye, we can ex-

ploit how visual signal is encoded for processing at the vi-

sual system to compress our data source without inducing

perceptible loss in visual quality. Curcio et al. [8] shows

that there’s a rapid decrease in the number of photoreceptors

in the eye from the fovea to the periphery, also known as ec-

centricity. Despite the loss in spatial resolution, Rovamo et

al. [37] shows that temporal sensitivity remains static spa-

tially, requiring the displayed video to have smooth transi-

tion across frames. The perception of spatial detail at a cer-

tain spatial frequency (visual acuity) is limited by the den-

sity of the midget ganglion cells that provide the pathway

out of the eye [26, 36]. Dacey and Patersen [9] show that

there’s an order of 30× reduction in cell density from the

fovea to periphery (0◦- 40◦), giving us a hint on the size of

the foveated region to be cropped from the HR image. The

central 5.2◦region of the retina has high sensitivity, cover-

ing only 0.8% of total pixels on a regular display [46, 15].

This finding points us to the choice of cropping ∼1% of the

total pixels as the foveated region in our experiments.

Studies in [44, 48] shows that in peripheral regions, mis-

match between optical, retinal and final neural sampling

resolutions leads to aliasing in our peripheral vision. Alias-

ing zone is the gap between the detection and resolution

thresholds [35]. Context between the detection and res-

olution threshold are details can be detected but not re-

solved whereas context within the resolution threshold can

be clearly resolved and detected. The role of FVSR is

to attempt to reconstruct the context of the targeted frame

such that the quality of the reconstructed pixels within the

aliasing zone is visually pleasing. This is measured by

the outskirt of foveated region in the experimental section.

Naive downsampling of video with eccentricity will intro-

duce aliasing and jitter effect when viewed. Guenter et al.

[15] progressively compute three gaze-centered concentric

rings to address this problem. Stengel et al. [40] propose

to perform sparse rendering in the periphery with either

stochastic sampling and inpainting. Temporal models from

VSR are referred for the design of models for FVSR [5, 47].

Single Image Super-Resolution. Early work on super-

resolution processes each frame seperately. SRCNN is a

simple 3-layer super-resolution convolutional neural net-

work proposed by Dong et al. [10]. Kim et al. [27] ex-

plores a deeper architecture, VDSR, a 20-layer deep net-

work with residual connections. ResNet [18] and generative

adversarial networks [14] is adopted by Ledig et al. [29]

in SRGAN and Sajjadi et al. [38] in EnhanceNet to gen-

erate high-frequency detail. Tai et al. [42] propose DRRN

that uses recursive residual blocks. Tong et al. propose SR-

1767



DenseNet [45] which uses DenseNet [19] as its backbone.

Pan et al. [33] propose DualCNN that uses two branches to

reconstruct structure and detail components of an image.

Video Super-Resolution. To exploit temporal informa-

tion across frames in a video, temporal alignment or mo-

tion compensation is used either explicitly or implicitly.

Explicit VSR makes use of information from neighboring

frames through motion estimation and compensation. Ear-

lier work for motion estimation is based on optical flow, e.g.

Liao et al. [31] uses optical flow methods [52] along with a

deep draft-ensemble network to reconstruct the HR frame.

Kappler et al. [25] predicts HR frame by taking interpo-

lated flow-wrapped frames as inputs to a CNN. VESPCN

[3] is the first VSR work that jointly trains flow estima-

tion and spatio-temporal networks. SPMC [43] uses an op-

tical flow network to compute LR motion field to gener-

ate sub-pixel information to achieve sub-pixel motion com-

pensation. TOFlow [53] shows that task-oriented motion

cues achieves better VSR results than fixed flow algorithms.

RBPN [16] propose a recurrent encoder-decoder module

to exploit inter-frame motion that is estimated explicitly.

EDVR [47] uses a deformable convolution module to align

multiple frames to a reference frame in feature space and

uses a temporal and spatial attention module for fusion. Jo

et al. [23] are the first to propose the use of dynamic up-

sampling filters (DUF) for VSR. To consider neighboring

frames for implicit VSR, a common approach is by using

a sliding window, i.e the concatenation of images within

a fixed window length [53, 23, 16, 47, 21]. Most sliding

window methods are symmetric, i.e. past and future frames

are considered for the reconstruction of the targeted frame

(non-causal), making them unsuitable for streaming appli-

cations. Recurrent methods [39, 13, 20] passes informa-

tion from previous frames through a hidden representation.

Our work is based on the idea of flow-guided deformable

alignment from BasicVSR++ [5]. Such idea has been ear-

lier studied by several works [22, 41].

3. Methods

We propose Cross-Resolution Flow Propagation

(CRFP), a novel framework for FVSR. CRFP is able

to aggregate context from gaze region that is of high

resolution (HR) to the low resolution (LR) counterpart. To

provide high fidelity video stream, HR context of previous

frames should be captured and retained by the framework

such that future frames can be better super-resolved using

the retained context. This design works in tandem with

the nature of eye tracking devices. The gaze coordinate

predicted by eye tracking devices is usually corrupted by

additive Gaussian noise, pFov
t

∈ N (µFov
t

, σT
t
), having the

predicted gaze coordinate oscillating around the actual

gaze direction µFov
t

under a Gaussian noise of the eye

tracker of standard deviation σT
t

. This is analogous to

the application of super-resolution techniques to handheld

cameras [50, 28, 1], where the natural hand tremor is

exploited during the reconstruction of the original frame.

The better a model is at capturing and retaining HR context

from past foveated region, the better it can exploit the

prediction noise from the eye tracker. In Section 3.1 we

discuss the pathways in our architecture that contributes

to the retention of context from past foveated region. In

Section 3.2 we provide in-depth description of the Feature

Aggregator. In Section 3.3 we show how context from the

foveated region is aggregated into the feedback and frame

generation pipeline. We illustrate an overview of CRFP in

Figure 1.

3.1. Cross­Resolution Flow Propagation

To adopt the HR context for the super-resolution of

LR context corresponding to current and future frames, an

architecture that focuses on cross-resolution propagation

of context is required. CRFP is proposed to handle this

problem, introducing two core building blocks for cross-

resolution context aggregation, namely the Feature Aggre-

gator (FA) and Output Block (OB). These building blocks

are connected by several information pathways, i.e. Feed-

back Pathway, DCN Propagation Pathway, Flow Field Path-

way, Warped Feature Pathway, Fovea Pathway and Low-

Res Feature Pathway, each playing different roles in the ag-

gregation process. The goal of FVSR is to super-resolve

the LR frame at timestep t, xLR
t

, while considering an ad-

ditional foveated region of HR, xFov
t

. Without any external

factors, the LR frame xLR
t

propagates through the Low-Res

Feature Pathway. xLR
t

is first encoded by an encoder ELR

followed by a pixel shuffle + convolution block S2
s↑ for 2×

up-sampling, giving us h0
t
,

h0
t
= S2

s↑

(

ELR(xLR
t

)
)

. (1)

The encoded features are then fed to several FA blocks

along the Low-Res Feature Pathway to be aggregated with

information from other pathways,

{hl+1
t ,Dl+1

t } =

FAl

(

S4
s↓(h

l

t
); ĥt−1,Ft, S

4
s↓(h̃t−1),D

l

t
,W(zl

t
;Ft),

l = 0, ..., L− 1. (2)

In our design, we have L = 4 where the first three FAs

are placed at the feature of the lowest spatial resolution and

one FA placed after the up-sampling stage S4
s↑. The moti-

vation of such placement is to enable the aggregation of in-

formation at different spatial resolution while keeping com-

putational cost low. Placing FA after the up-sampling stage

would increase the computational cost quadratically in ac-

cordance to the up-sampling rate but the aggregation of HR
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Figure 1. Overview of Cross-Resolution Flow Propagation for 8× FVSR. The core building blocks are Feature Aggregator (FA) and Output

Block (OB). Foveated region is regionally aggregated at the OB. The OB has two outputs, the super-resolved frame x̂HR
t and the fovea-

aggregated feature h̃t that is fed to earlier stages of the network through the Feedback Pathway. Features at the lower spatial resolution

encoded by ELR and features of the highest spatial resolution right after the upsampling (Pixel Shuffle + Convolution) block S4
s↑ that

passes through the Low-Res Feature Pathway, are aggregated with features from other pathways (Feedback, DCN Propagation, Flow Field,

Warped Feature) through the FA. Repeated adoption of FA sharing the same input and output connection pattern is abbreviated as “· · ·”
in the illustration. We use the same downsampling (Pixel Shuffle + Convolution) block S4

s↓ (tied-weights) to encode features from the

Feedback Pathway and Warped Feature Pathway for the FA.

context is more precise since it’s closer to the coordinate

system of the pixel space. The output of the final FA hL−1
t

is concatenated (⊕) with the encoded foveated region hFv
t

as input for the OB to render the super-resolved frame x̂HR
t

and to estimate the fovea-fused feature h̃t to be propagated

to earlier layers through the Feedback Pathway for aggrega-

tion with features of future frames,

{

x̂HR
t

, h̃t

}

= OB
(

hL−1
t ⊕ hFv

t
,S8

i↑(x
LR
t

)
)

. (3)

Note that OB also takes in the bilinearly-upsampled LR

frame S8
i↑(xt)

LR with details deferred to Section 3.3. hFv
t

originates from the Fovea Branch,

hFv
t

= EFv
(

xFv
t

⊕ crop(S8
i↑(x

LR
t

),pFv
t
)
)

. (4)

hFv
t

is the result of a fovea encoder EFv applied to the con-

catenation of the HR foveated region xFv
t

and the 8× bi-

linearly up-sampled LR frame xLR
t

cropped (crop) using

gaze coordinate pFv
t

. The fovea-fused feature h̃t−1 from

the previous time-step is down-sampled using a pixel shuf-

fle + convolution block S4
s↓ to match the spatial resolution

of the features of earlier layers in the FA. The same down-

sampling block is utilized to down-sample the warped ver-

sion of h̃t−1,

ĥt−1 = W
(

h̃t−1,S
8
i↑(Ft)

)

. (5)

W is the warping operator that warps an input image using

optical flow Ft. Ft is bilinearly up-sampled using S8
i↑(·) to

match the size of h̃t−1. Ft is estimated using an optical flow

estimator F based on frames from time-steps t and t− 1,

Ft = F(xLR
t

,xLR
t−1). (6)

The flow field Ft is also bilinearly up-sampled S2
i↑ to match

the spatial resolution of features in the FAs. As there is a

Deformable Convolutional Layer (DCN) embedded within

the FA, we pass the feature responsible for the generation of

DCN parameters, i.e offsets and masks, across FAs through

the DCN Propagation Pathway, acting as residual connec-

tion, also known as Flow Propagation,

{hl+1
t ,Dl+1

t } = FAl
(

S4
s↓(h

l

t
); ·, ·, ·,Dl

t
, ·
)

,

l = 0, ..., L− 1, (7)

D0
t
= 0. (8)

All FAs except the FA after the up-sampling stage shares

the same input configuration. For the final FA, the Low-

Res Feature hL−2
t and DCN parameters DL−2

t are inde-

pendently 4× up-sampled using pixel shuffle and convolu-

tion. The previously 2× bilinearly up-sampled flow field is

further 4× bilinearly up-sampled. The fovea-fused feature

h̃t−1 and ĥt−1 bypasses the down-sampler S4
s↓ in the earlier

layers and are fed directly into the final FA.

3.2. Feature Aggregator

With the high-level connections between modules de-

fined, we discuss the inner workings of FA here. An il-

lustration of FA is shown in Figure 2. In FA, DCN state
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DCN

tanh

Res

Figure 2. Illustration of Feature Aggregator (FA). C’s are convo-

lutional layers, DCN is the Deformable Convolutional Layer and

Res is the residual block. DCN warps the fovea-aggregated fea-

ture h̃t−1 from the Feedback Pathway using the estimated offsets

Ol

t and is weighted by estimated masks Ml

t. The result of DCN

is concatenated with features from the Warped Feature Pathway

ĥt−1 and the Low-Res Feature Pathway hl

t and fed to a Residual

Block to predict the Low-Res Feature of the upcoming stage hl+1
t

and the optional DCN state vector (DSV) zlt+1. Each FA has its

own DSV that involves in the estimation of masks and offsets of

DCN. Variables and connections that involves the DSV are repre-

sented with dashed outline/line.

vector (DSV) zl
t

along with features from the Warped Fea-

ture Pathway ĥt−1, Low-Res Feature Pathway hl
t

and Flow

Field Pathway Ft are responsible for the estimation of

masks Ml
t

and offsets Ol
t

required for DCN,

Dl+1
t = Cl

FA

(

Cl

in

(

ĥt−1 ⊕ hl

t
⊕

Su

i↑(Ft)⊕W(zl
t
;Su

i↑(Ft))
)

⊕Dl

t

)

, (9)

Ml

t
= σ

(

Cl

M(Dl+1
t )

)

, (10)

Ol

t
= tanh

(

Cl

O(D
l+1
t )

)

. (11)

Note that u = 8 if l = L − 2 and u = 2 otherwise, Cl

are convolutional blocks and Dl
t

is the feature responsible

for the estimation of Ml
t

and Ol
t
. Dl

t
is passed to the up-

coming DCN block as residual connection. We can then

perform DCN on the feature from the Feedback Pathway

h̃t−1 (down-sampled with S4
s↓ for l < L − 2) as follows,

ḣl

t
= DCN(h̃t−1;M

l

t
,Ol

t
), (12)

= Cl

DCN

(

Ml

t
⊙W(h̃t−1;O

l

t
)
)

, (13)

ḣl

t
(p) =

K
∑

k=1

wl

k
· h̃t−1

(

p+ pk +Ol

t
(p)

)

· Ml

t
(p). (14)

Finally, we can estimate DSV for the next time-step zl
t+1

along with the low-res feature for the upcoming stage hl+1
t

by passing the DCN-warped feature ḣl
t

along with features

from the Warped Feature Pathway ĥt−1 and Low-Res Fea-

ture Pathway hl
t

to a Residual Block,

{hl+1
t , zl

t+1} = Res
(

ḣl

t
⊕ ĥt−1 ⊕ hl

t

)

. (15)

Masked Fovea Encoding 
Parameters of 

Feedback for next timestep

Figure 3. Illustration of Output Block (OB). Given the gaze coor-

dinate pFv
t , the encoded foveated region features hFv

t are aligned

to the designated position where regional convolution is applied

on the concatenated features to generate the fovea-fused feature

h̃t. h̃t is passed through the Feedback Pathway to provide context

from the foveated region to the FA blocks. Finally, the frame is

rendered at the targeted resolution by adding the estimated result

as residual to the bilinearly up-sampled LR frame S8
↑(x

LR
t ).

DSV is helpful in retaining information that might poten-

tially be corrupted by the warping operation of the upcom-

ing time-step, e.g. future occlusion.

3.3. Output Block

After passing through several stages of FAs, comes the

final stage where the frame at the targeted resolution will be

rendered using the Output Block (OB). We show an illus-

tration of OB in Figure 3 The OB takes in hL−1
t from the

Low-Res Feature Pathway and hFv
t

from the Fovea Pathway

along with the bilineally up-sampled LR frame S8
↑(x

LR
t

) for

frame rendering,

h̃t = Cfb
(

hL−1
t ⊕ hFv

t

)

, (16)

x̂HR
t

= Cout
(

h̃t

)

+ S8
↑

(

xLR
t

)

. (17)

The estimated results acts are residuals that enhance the bi-

linearly up-sampled frame. h̃t contains context from the

foveated region and is responsible for the enhancement of

feature from earlier stages of the upcoming time-steps. The

quality of h̃t affects the capability of a model to retain HR

context that will potentially be picked-up and utilized by the

FAs of earlier stages. As prediction of gaze coordinates us-

ing eye trackers usually comes with noise, the capability of

a model to retain past HR context is beneficial for the task

of FVSR, affecting the overall visual fidelity of transmitted

foveated video stream.

4. Experiments

This work studies the novel task of FVSR. Experimen-

tal setup is referred from the task of VSR, with several

tweaks to shift the focus of experiments towards FVSR.

Since FVSR is targeted for video streaming applications on

AR/VR devices that are paired with an eye tracker, we de-

sign our experiments to fit such use case through the demon-

stration of the retention of past foveated region.

Dataset. Our experiment setup for FVSR bootstraps on

the VSR experiments of BasicVSR [4, 5]. We train and
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Figure 4. Visual comparison on the task of 8× FVSR. The foveated region (red box) slides from left to right from frame t to frame t+ T

where T = 6. PSNR and SSIM plots are for performance comparison, with brighter pixel value indicating higher performance.

evaluate on REDS [32]. We use REDS41 as our test set

and REDSval42 as our validation set. The remaining clips

are used as our training set. We carry out our study on 8×
FVSR since less visual attention is allocated to the region

beyond the foveated region. We apply 8× Bicubic Down-

sampling to obtain the LR frame for FVSR.

Architecture. We use an encoder-decoder for the optical

flow estimator F that is separately trained on MPI Sintel

dataset [2]. Each convolution block is composed of a sin-

gle convolutional layer paired with leaky ReLU as its non-

linear activation function. Each up/down-sampling block

is composed of a single convolutional layer paired with

pixel shuffle operation. The encoders ELR and EFv are

composed of 2 convolutional blocks. For comparison pur-

pose, we modify BasicVSR++ [5] for the task of FVSR.

BasicVSR++ is made causal and foveated region is fed di-

rectly to the layer of lowest spatial resolution. For com-

putationally efficiency, we allocate three FA blocks to the

up-sampled encoded LR frame and a single FA block right

before the output block. Detailed configuration is deferred

to the supplementary materials.

Training and evaluation. We train our models using Py-

Torch [34] as our deep learning framework using a single

RTX3090 GPU. Runtime in 1 are measured using frame of

size 1080p. The initial learning rate of our model and flow

estimator are set to 1 × 10−4 and 2.5 × 10−5 respectively.

1Clips 000, 011, 015, 020 of REDS training set.
2Clips 000, 001, 006, 017 of REDS validation set.

The total number of training iterations is 300K with a batch

size of 8. We use Charbonnier loss [6] as our loss function

for better robustness against outliers. Images of RED4 are

of size 1280 × 720. We crop regions of size 256 × 256
which are down-sampled to 32 × 32 as our LR frame dur-

ing training. We also crop regions of size 128 × 128 from

the 256× 256 patch to be our foveated region. For training,

the coordinate of the foveated region is randomly sampled

across whole image. The coordinate of the foveated region

is constrained to not move out of boundary. For evalua-

tion, we show results that slides foveated region in a raster

scan order. We also show results that has the fovea coor-

dinate oscillate in the vicinity of additive Gaussian noise

present in eye trackers to demonstrate the actual use case

of CRFP for FVSR task. The foveated region is cropped

to represent ∼1% of the total pixels in a HR image. We

down-sample the LR frames to be of size 160× 90 and the

cropped foveated region size is 96 × 96. We use PSNR,

SSIM and VMAF [30] as metrics to measure the quality of

the super-resolved frame. VMAF is targeted towards video

stream and is shown to have higher correlation to the hu-

man perception of visual fidelity of video when compared

to PSNR and SSIM.

4.1. In­Depth Study of Foveated Video Super­
Resolution

To evaluate the effectiveness of FVSR, we need to mea-

sure the capability of method in retaining HR context of the

foveated region and propagating it to future frames. The

fusion of both HR and LR context is also important for op-
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timal visual fidelity. We can evaluate FVSR using these two

regions:

1. Foveated region: measures the efficiency in the fusion

and the transferring of HR context to the current LR

frame.

2. Past foveated region(s): measures the efficiency in the

retaining of HR context of past foveated frame(s) and

propagating it to future frames.

As there is no prior work in this field, a fair comparison

would be adopting a modification of the SoTA in VSR, Ba-

sicVSR++ [5], to fit the task of FVSR. We name the mod-

ified version as BasicFVSR++. We modify it to be causal,

i.e. only frames prior to the current frames are considered

for FVSR. We also reduce its size for the ease of experi-

mentation. Foveated region is fused with features of ear-

lier layers which differs from our contribution that consid-

ers the fusion on a higher spatial resolution. There are sev-

eral variations of CRFP that are ablated and studied. CRFP

(removal of flow propagation) corresponds to the removal

of the DCN Propagation Pathway. CRFP correspond to the

vanilla version that doesn’t include the DSV. CRFP + DSV

(no fovea) corresponds to the study of CRFP that includes

DSV but without the Fovea Pathway. CRFP + DSV cor-

respond to the inclusion of the optional DSV. CRFP-Fast

includes DSV and applies the DCN blocks within FA only

to a fixed region of size 720 × 720 to focus on low-latency

FVSR. Quantitative analysis of all regions are summarized

in Table 1. From the results, we can see that CRFP is better

than BasicFVSR++. We show the runtime and parameter

count of different models for FVSR in Table 2. In Figure

4, we also show a qualitative comparison of all methods on

two different time-steps with a frame interval of T = 6 in

between. CRFP is visually better when compared to Ba-

sicFVSR++. From the SSIM plots, we can clearly observe

past HR contexts are better retained.

Foveated Region. We do not directly place the HR frame

(foveated region) onto the super-resoluted frame to prevent

sharp transition of quality across regions of different reso-

lutions. With the HR frame propagated through a series of

convolutional layers, there will definitely be a slight drop

in quality as convolutional filtering is a noisy process. To

measure the efficiency in the propagation of fovea informa-

tion in the main branch, we use PSNR and SSIM as metrics

to evaluate the pixels that fall in the foveated region. Our

results show that CRFP outperforms BasicFVSR++ by 4.02

dB. DSV module is also beneficial for the propagation of

fovea information across the network with less parameters,

showing a marginal boosts of 0.13 dB. Qualitative results

in Figure 4 show that finer details can be reconstructed by

CRFP when compared with BasicFVSR++.
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Figure 5. Comparison visual quality of past foveated regions

across different methods. Two regions containing high frequency

contents are shown. Refer to the license plate of the car and the

tiles on the pavement to spot the distinction across different meth-

ods.

Past Foveated Regions. An important property of FVSR

is the capability of a model to retain HR context(s) that cor-

responds to foveated region of previous time-step(s). To

measure this property, we slide the foveated region across

frames using a horizontal trajectory, i.e. a straight line from

left to right. The region covered by the trajectory of the

foveated region should retain past HR context with high

probability. We evaluate the retention capability of a FVSR

model by measuring the PSNR and SSIM at the region cov-

ered by the fovea trajectory. Our results show that CRFP

is much better than BasicFVSR++ at retaining information

from previous frames, showing 0.25 dB increase in PSNR.

The inclusion of the DSV module has similar performance

as the vanilla variant while requiring less parameters. The

effect of past frame retention is more prominent in the vi-

sualizations shown in Figure 5. We can see that fine-details

from previous HR contexts are still present after an interval
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Table 1. Performance comparison of 8× FVSR evaluated using REDS4 at proposed regions using PSNR, SSIM and VMAF.

Method
Foveated Region Past Foveated Region(s) Whole Image

PSNR SSIM PSNR SSIM PSNR SSIM VMAF

Bicubic 26.16 0.6077 24.72 0.5994 23.34 0.6077 5.1621

BasicFVSR++ [5] 37.99 0.9560 30.36 0.8269 25.95 0.7250 68.40

CRFP + DSV (no fovea) 29.23 0.7128 28.24 0.7187 25.52 0.7001 64.38

CRFP 42.07 0.9831 30.22 0.8337 25.84 0.7202 66.32

CRFP 42.01 0.9835 30.61 0.8451 26.13 0.7336 70.24

CRFP-Fast 42.14 0.9831 29.44 0.7983 23.72 0.6365 24.40

CRFP + DSV 42.14 0.9836 30.59 0.8455 26.07 0.7338 70.30

Table 2. Runtime and model parameters comparison for 1080p

video using Nvidia RTX 3090.

Method Runtime (ms) # Parameters

BasicFVSR++ [5] 35 2.35M

CRFP + DSV (no fovea) 41 2.17M

CRFP 39 2.16M

CRFP 42 2.21M

CRFP-Fast 14 2.17M

CRFP + DSV 41 2.17M

of a T = 9 frames.

4.2. Simulating FVSR with Eye Tracker Noise

To simulate the application of CRFP to an actual use case

of FVSR, we follow the pattern found in eye trackers to in-

fluence the trajectory of the foveated region’s coordinates.

In Figure 6, we show results for coordinates oscillating un-

der an additive Gaussian noise of σT = 10, σT = 50 and

σT = 100. We can observe that with σT = 100 a larger

region can be super-resolved with the context transferred

from the past foveated regions. This experiment shows

that the capability of a model on retaining context from

past foveated region is a good measure of performance and

transfers well to the task of FVSR. The design of this ex-

periment is to demonstrate the importance of the transfer-

ring of context from past foveated region to future frames

for the task of FVSR. The better the performance in retain-

ing context from previous frames the more resilient it is to

the noise present in trackers. The results with σT = 100
demonstrates that context surrounding the gaze region can

be clearly reconstructed despite high variation in the eye

tracker’s reading.

5. Conclusion

We propose a novel research direction of Foveated Video

Super-Resolution (FVSR) with reliable metrics for the mea-

surement of the foveated visual quality. The measurement

of quality of past foveated region is shown to be beneficial

for the task of FVSR through experiments that simulates eye
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Figure 6. Simulating the actual use case of FVSR where there is

additive Gaussian noise present in an eye tracker. Various standard

deviations σ
T are tested and results show that larger σT demon-

strates the capability of the model on retaining HR context from

past foveated regions. Spot the difference on the stripes on the

man’s shirt and the lines on the ground. SSIM plots are also pro-

vided to assist the reader in spotting the differences across different

σ
T.

tracker noise. We show that with induced additive Gaus-

sian noise, CRFP is able to super-resolve context that falls

within the specified region through the adoption of con-

text from previous HR foveated region. Under these met-

rics, we demonstrate that CRFP is able to perform well on

the task of FVSR. CRFP is designed specifically for FVSR

and is suitable for video streaming in AR/VR applications.

CRFP is also designed to be of low-latency, suitable for

head-mounted AR/VR devices with limited computational

capacity.
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