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Abstract

It is well known that most of the conventional video ques-
tion answering (VideoQA) datasets consist of easy questions
requiring simple reasoning processes. However, long videos
inevitably contain complex and compositional semantic
structures along with the spatio-temporal axis, which re-
quires a model to understand the compositional structures
inherent in the videos. In this paper, we suggest a new com-
positional VideoQA method based on transformer architec-
ture with a deformable attention mechanism to address the
complex VideoQA tasks. The deformable attentions are in-
troduced to sample a subset of informative visual features
from the dense visual feature map to cover a temporally
long range of frames efficiently. Furthermore, the depen-
dency structure within the complex question sentences is
also combined with the language embeddings to readily
understand the relations among question words. Extensive
experiments and ablation studies show that the suggested
dense but efficient model outperforms other baselines.

1. Introduction

Along with the immense success of deep learning meth-
ods to understand the contents of images and text, various
applications requiring complex reasoning have been pro-
posed. Especially, visual question answering (VQA) [2] is
one of the most important tasks, which asks a diverse set
of questions about the visual contents and requires under-
standing the semantic structures inherent in the contents.
By virtue of the emergence of transformer architectures and
their pre-training schemes, the performance of the VQA has
shown successful performance [34, 39]; however, it is not
straightforward to apply the architectures to the video do-
main. Compared to the image and text, video data involves
more complex semantic structures along with not only spa-
tial but also temporal-axis. As described in Figure 1, long
videos inevitably contain multiple events, and the events
can have multiple and complex correlations. Therefore, it
is important to temporally ground the multiple events and
their semantic structure.

* indicates equal contribution

Figure 1. Example of an intricate VideoQA problem. The semantic
elements of the video, which consists of characters, their actions,
and the relationship between the characters, is continually chang-
ing along with temporal axis. Therefore, it is hard to answer the
questions requiring understanding the complex semantic structure.

Most of the previous datasets proposed for VideoQA
consist of relatively short clips containing an event or a sin-
gle action class, with relatively easy questions [22, 36, 31,
46]. For this reason, the understanding of the short clips can
be sufficiently addressed with image-based architectures by
selecting a few representative frames from the clips. How-
ever, in the case of long videos having various events and
complex relationships between the events, conventional ar-
chitectures struggle to learn over large timescales. For these
cases, it is essential to address the temporal grounding of the
various events by considering enough frames within videos.

In this paper, we suggest a novel video/text understand-
ing method for intricate VideoQA tasks, which consist of
complicated questions requiring multiple reasoning steps.
The two main ideas of the suggested methods are 1) ef-
ficiently sampling as many as possible informative visual
features from the videos to learn the inherent temporal se-
mantic structures and 2) considering the hierarchical de-
pendency model to understand complex questions requiring
multiple reasoning steps.

First of all, we suggest a deformable sampling module,
which allows dense but efficient visual token sampling. Ob-
viously, the conventional sparse sampling method [29], se-
lecting a few frames followed by temporal pooling to get
a single feature vector to be applied to downstream tasks,
causes incomplete understanding for the long and intricate
videos. As can be seen in Figure 1, at least 3 intervals from
the video should be considered to get a correct answer to
the question. Unfortunately, there is a fundamental trade-
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off between computational cost and the number of frames
to be learned with the model. To settle the problem, we in-
troduce a deformable attention module that effectively se-
lects a subset of meaningful visual features along spatio-
temporal axis. Specifically, the suggested method considers
the semantics of the given query sentence.

Secondly, we introduce a dependency attention module
to learn dependency-aware feature vectors of question to-
kens. As the input videos contain a more complex semantic
structure, getting complicated questions requiring multiple
reasoning steps are inevitable. Therefore, it is necessary to
take into account the semantic structure within questions to
learn desirable embeddings of the question tokens. We sug-
gest leveraging the semantic structure from the dependency
parse tree of the questions. By combining the deformable
sampling module and the dependency attention module, our
method is able to deal with the intricate compositional rea-
soning problems.

In experiments, we evaluate our model on Action
Genome Question Answering (AGQA,[18]) dataset. The
AGQA dataset is one of the most challenging benchmarks
for VideoQA because it requires complex reasoning steps
on long videos. Extensive experiments not only show im-
pressive quantitative results on QA accuracy but also verify
the effectiveness of each module by a comprehensive abla-
tion study.

In summary, our contributions are as follows:

• We empirically reveal that covering a long time span
is advantageous for complex problems, which needs
spatio-temporal reasoning.

• We introduce a deformable sampling-based VideoQA
model, DSR, which aims to solve compositional rea-
soning problem.

• Our experiments on VideoQA benchmarks show that
the proposed method has the ability to perform com-
plex spatio-temporal reasoning.

2. Related Work

Visual Question Answering VQA is the task of under-
standing how two inputs, text-based questions and visual
features, relate to one another, proposed by Antol et al. [2].
For image-based question answering tasks, a significant
amount of works propose attention-based model architec-
tures to fuse question and image representations [1, 35, 25,
17]. Kim et al. [25] show remarkable performance by uti-
lizing a bilinear attention network that finds bilinear inter-
actions between two modalities. Moreover, inspired by the
recent success of pre-trained language models [13, 11], uni-
versal pre-training frameworks for a vision-language rep-
resentation learning achieve state-of-the-art performances

not only on VQA but also on general visual-language
tasks [39, 34].

However, question-answering in the video domain is
under-explored compared to those in the image domain.
Contrary to the growing interest in measuring video rea-
soning capabilities [22, 18, 30, 31, 45], existing VideoQA
models mostly deal with short clip videos or simple ques-
tions [28, 8, 38, 29]. Since a video is a sequence of images
containing the temporal dimension, understanding richer
spatio-temporal features and temporal localization of natu-
ral language is essential. To fuse the temporal feature, Fan et
al. and Seo et al. attempt to utilize separate motion and
appearance feature modules and integrate them with addi-
tional fusion network [28, 8, 38]. Le et al. [28] propose
a hierarchical conditional relation network to embed the
video input at different granularities. However, separated
modules have limitations in effectively interacting with lin-
guistic questions, and the performances fell behind as the
transformer-based model rises. Kim et al. [26] propose
a contrastive learning based training scheme that shows
competitive performance, but only specializes in multiple-
choice tasks. The current state-of-the-art model in VideoQA
is ClipBERT [29], which is based on a cross-modal trans-
former. ClipBERT enables end-to-end learning by employ-
ing sparse sampling while it is unsuitable for intricate tasks
that require advanced spatio-temporal reasoning since ran-
dom sparse sampling loses several semantic structures. We
propose a dense but efficient VideoQA model based on a
transformer, which can maintain whole semantic structures.

Efficient Transformers Transformer architecture [40]
has shown remarkable performance on various downstream
tasks. However, computational cost and memory consump-
tion of Transformer increase quadratically depending on the
length of input sequences. There has been a surge of re-
search interests recently in exploiting efficient transformer
architectures to mitigate the problem. For example, vari-
ous algorithms that approximate the quadratic cost atten-
tion matrix based on low-rank matrix factorization have
been proposed in the field of natural language process-
ing [41, 10, 44]. Also, in the vision domain, the scope of
self-attention is restricted to local neighborhoods or specific
axis based on the locality assumption of objects [21, 9, 4, 3].
However, the above algorithms are defined for the single
modality. In contrast, we aim to address cross-modal spar-
sification based on a question conditional visual token sam-
pling algorithm for the VideoQA task where non-local and
fine-grained features are required.

3. DSR: Deformable Sampling-based VideoQA
model for Compositional Reasoning

In this section, we introduce a detailed explanation of our
model. We consider the intricate VideoQA problems, which
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Figure 2. The overall architecture of DSR. Two details are missed
for simplification; deformable sampling is conditioned on ques-
tion context embedding, and global visual features are used as ad-
ditional input to the cross-modal transformer.

require compositional spatio-temporal reasoning. Our goal
is to learn a generalizable visual-reasoning representation
with deformable sampling and dependency modeling.

3.1. Transformer-based dense sampling model

We propose Deformable Sampling-based VideoQA
model for compositional Reasoning (DSR), dense but ef-
ficient one that utilizes deformable sampling for video fea-
tures and dependency modeling for text questions. Figure 2
gives an overall architecture of DSR, which is based on
a cross-modal transformer. Each visual feature and ques-
tion token are independently encoded with a vision back-
bone model and a language encoder, respectively. Inputs
of the cross-modal transformer are conditionally sampled
video features and dependency guided question tokens. We
denote visual and language inputs of transformer as V =
[v1, v2, ..., vLv

] ∈ Rd×Lv and L = [l1, l2, ..., lLq
] ∈ Rd×Lq ,

respectively, where Lv is the number of visual tokens sam-
pled from conditional sampling module, Lq represents the
number of question tokens, and d indicates representation
dimension. These embeddings of two different modalities
are concatenated as input to a 12-layer transformer for
cross-modal fusion, with special tokens [CLS] and [SEP].

We first uniformly sample the frames from a video,
which is sufficiently dense to cover the full length of a
video. However, as the length of the video increases, us-
age of whole dense frames becomes impossible since it
can not fit into a single transformer due to memory limi-
tations. Thus, motivated by Zhu et al. [48], we introduce a
deformable sampling module to only sample necessary vi-
sual features from full dense frames, conditionally to ques-

tion embeddings. Consequently, relatively few visual fea-
tures compared to initial dense features are sampled from
the module. A detailed explanation of conditional sampling
is stated in Section 3.2. Language inputs (i.e., question to-
kens) also go through the pre-stage modeling step to enable
compositional reasoning. The dependency attention module
forces specific attention head of transformer to understand
dependency parsing structure, representing the relationship
between words in a question sequence. It will be explained
in Section 3.3.

The output vector of [CLS] token, hcls, is an aggregated
representation of the entire input sequence of the cross-
modal transformer, used to predict the answer. We consider
all the QAs as open-ended word tasks, which choose one
correct word as the answer from a pre-defined answer set
of size C. We calculate a classification score by applying a
linear classifier and softmax function on the final output and
train the model by minimizing cross-entropy loss,

Lopen = −
C∑

c=1

1{y = c} log(pc), (1)

in which p = softmax(FFN(hcls)) ∈ RC and y is the
ground truth answer label. During inference, conditionally
sampled visual features and dependency modeled linguistic
features are utilized to predict answers with proper reason-
ing, in the same manner with the training phase. In sum-
mary, our model achieves state-of-the-art performance on
intricate VideoQA tasks by allowing end-to-end learning
while covering temporally long and spatially fine-grained
visual features, which are both important for advanced mod-
eling. Different from the model that only observes a single
or a few video clips, DSR can tackle the data that needs
compositional reasoning.

3.2. Conditional Visual Feature Sampling

In this section, we describe how to effectively sample
a subset of visual tokens from the long and dense feature
map. Since video data has an additional temporal axis com-
pared to image data, the feature map size of a video clip
is much bigger than the feature map from an image. Thus,
most of the VideoQA algorithms pool the feature map spa-
tially [32] or temporally [29] and concatenate the sequence
of visual features to question word vectors. Then, the con-
catenated feature is used as an input for a transformer-based
QA model. However, the pooling-based approach would be
sub-optimal for compositional VideoQA tasks that require
long and fined-grained visual cues. Here, we assume that
most visual features in spatio-temporal feature maps are re-
dundant and uninformative for answering given questions.
In the next section, we describe how to sample a few infor-
mative visual features from the dense feature map.
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Figure 3. Illustration of the proposed deformable sampling mod-
ule. The figure represents a single head of a single CDA layer. For
simplicity, we only visualize a deformable attention procedure of
one reference point, which is solely colored as blue.

Conditional Deformable Attention Let X ∈
Rd×t×h×w be a dense visual feature map extracted
by a visual encoder such as ResNet [19]. The d, t, h, and w
indicate dimension, temporal length, height, and width of
the feature map, respectively. Based on the 2-d deformable
attention module [48], we define our 3-d Conditional De-
formable Attention (CDA) to sample question-conditional
visual features from the spatio-temporal feature map X and
a given question L as follows:

CDA(zq , pq , X, L) =

M∑
m=1

Wm[

K∑
k=1

Amqk ·W ′
mX(pq +∆pmqk)],

where,Amqk = WA
m z̄q , ∆pmqk = W∆p

m z̄q , z̄q = zq ⊕ pool(L),

(2)

in which q is an element index for input query vector zq of
a transformer layer and 3-d reference point pq . In the first
transformer layer, the input query zq ∈ RLv×d is the learn-
able query, where Lv is the number of queries which is the
same as the number of sampled visual features. Also, before
feeding zq to the first transformer layer, we make a pooled
question context L̂ = pool(L) ∈ R1×d and add the question
context to each learnable query by the broadcast vector ad-
dition, ⊕, to make CDA sample visual features conditioned
on the given question context. For the rest of the layers, the
z̄q is the output vector of the previous transformer layer.
M and K denote the total number of attention heads and
sampled key vectors, respectively. W , W ′, WA

m , and W∆p
m

are learnable linear projection layers. Amqk denotes the at-
tention weight of the kth sampling point in the mth atten-
tion head for a given query z̄q , where

∑K
k=1 Amqk = 1.

∆pmqk ∈ R3 is 3-d sampling offset. Since pq +∆pmqk is a
real-valued vector, we apply trilinear interpolation to com-
pute X(pq + ∆pmqk). With CDA, we can get Lv sampled
visual tokens V ∈ Rd×Lv where Lv is much smaller than
the t×h×w, e.g., 25 vs. 30 × 7 × 7. The overview of CDA
is illustrated in Figure 3.

Regularization for Sampling Diversity For the question
and answering task, sampled visual tokens from CDA are
concatenated with question words, and a transformer-based
model takes the concatenated features to predict an answer.
Thus, it is important that the sampled visual tokens should
be as diverse as possible to provide sufficient information
for a given question. In Deformable DETR [48], offset pre-
dictions can be diverse without the collapse since each ob-
ject query is trained to match a target object based on the
Hungarian loss. However, in QA task, proper regularization
is crucial to prevent the collapse because the model gets gra-
dient feedback only from answering loss. To reinforce the
diversity of sampled visual tokens, we explore three types of
additional regularization terms. Here, we consider batched
features where the V and X have shapes of (N × d × Lv)
and (N × d × thw), respectively. The first regularization
term is Soft Orthogonality (SO) [43], which is defined as
follows:

(SO) λ

N∑
i=1

∥V ⊤
i Vi − I∥2F , (3)

where i indicates the index in a mini-batch. The SO aims
the Gram matrix of the sampled tokens to be close to the
identity matrix, I . Thus, each sampled visual token could
be distinctive and independent.

The second regularization term is Maximal Coding Rate
(MCR) [47], which formulated as follows:

(MCR) − λ

N∑
i=1

1

2
log det

(
I +

d

Lvϵ2
V ⊤
i Vi

)
, (4)

Maximizing the MCR results in the largest possible volume
spanned by the vectors in the Gram matrix of the sampled
tokens. Thus, the sampled tokens should be as independent
as possible.

The last regularization term that we explore is the con-
trastive loss [6]. Here, we set the anchors, positive, and neg-
ative examples as sampled visual features Vi, the feature
map Xi, and feature maps of others Xj ̸=i in the batch, re-
spectively.

(Contrastive) − λ

N∑
i=1

log
exp(sim(V̂i, X̂i)/τ)∑N

j=1 1[j ̸=i]exp(sim(V̂i, X̂j)/τ)
, (5)
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Figure 4. Example of dependency structure.

Figure 5. Adjacency matrix generated from dependency relations.

where V̂ and X̂ are the global averaged pooled of V and
X , respectively. Also, we use the cosine similarity as the
similarity function sim(·, ·) and τ is set to 0.1 by default.

Global Context Features The sampled visual features
from our CDA represent fine-grained local information that
is required to answer the given question. However, the in-
teraction between local and global information is also cru-
cial to solving the spatio-temporally complex QA task more
accurately. Thus, we introduce additional global informa-
tion Xg ∈ RN×d×t that is extracted by applying the spatial
pooling to feature maps X ∈ RN×d×t×h×w. As a result, we
get the global-local visual feature Xgl ∈ RN×d×(Lv+t) by
concatenating the global and sampled local visual features.

3.3. Dependency Attention Module

In this section, we explain the details of the dependency
attention module that extracts dependency-aware vector
from question tokens. Motivated from Deguchi et al. [12],
we introduce a self-attention module that incorporates de-
pendency relations. Previous studies show that the perfor-
mance of neural machine translation has been improved by
incorporating sentence structures [5, 15, 42]. While most
visual-language learning tasks only rely on a pre-trained
language model to encode question embeddings, we believe
that comprehension of sentence structure is crucial for non-
conventional questions, and the dependency-based attention
module would also work for the VideoQA task.

Language features are first learned through the depen-
dency attention module before feeding into the cross-modal
transformer. The module is consist of an L-layer trans-
former, where one attention head of the i-th multi-head self-
attention layer is trained with constraints based on depen-
dency parsing value. Let Oi−1 ∈ RLq×d is the output of
previous layer. The dependency attention module first maps

Oi−1 to dhead-dimensional subspaces of multi-head atten-
tion as

Qdep = Oi−1WQdep , (6)

Kdep = Oi−1WKdep , (7)

Vdep = Oi−1WVdep , (8)

where WQdep , WKdep , and WVdep are d × dhead dimen-
sional parameter matrices. Dependency attention weight
matrix, Adep, is calculated by the bi-affine operation [14]
as follows,

Adep = softmax(QdepUKT
dep), (9)

where U ∈ Rdhead×dhead . Each value of Adep represents
the dependency relationship between two words, and the
probability of token q1 being the governor of token q2 is
modeled as Adep[q2, q1]. Then, likewise the original self-
attention module, attention output is obtained by multiply-
ing Adep and Vdep. Finally, attention outputs of all the heads
(i.e., one dependency outputs and nhead − 1 conventional
outputs) are concatenated and the rest are calculated like
the conventional multi-head attention.

Although Adep can be learned by additional dependency
loss function as in Deguchi et al. [12], we explicitly force
the correct dependency value not only in the training phase
but also in inference. The gold parse provides an upper
bound for using dependency relations and enables accurate
structural modeling. Figure 4 shows the example of depen-
dency relationships and Figure 5 represents the relations in
an adjacency matrix that utilized as a gold value of Adep.
The gold value forces each token to only give attention to
its governor.

To apply dependency relations to the transformer mod-
ule, we reorganize the adjacency matrix for subword se-
quences. When a word is separated into multiple subwords
by BPE [37], the governor (i.e., the head) of the rightmost
subword is set to the governor of the original word and the
governor of each subword other than the rightmost one is
set to the right adjacent subword.

4. Experiment
In this section, we evaluate our proposed model on com-

positional spatio-temporal reasoning datasets. We first in-
troduce the details of benchmark datasets in Section 4.1.
Section 4.2 describes experimental setup including imple-
mentation details. We also provide extensive quantitative
experiments and ablation studies in Section 4.3, to show
how each of the proposed modules works. Lastly, we qual-
itatively confirm that our model samples reasonable visual
frames conditioned on given questions, in supplementary
materials.
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4.1. Dataset

Action Genome Question Answering We validate DSR
using AGQA dataset proposed by Grunde-McLaughlin et
al. [18], the most challenging benchmark for VideoQA.
While most of the existing benchmarks only utilize short
video clips, use simple and biased questions, and focus
on questions that require commonsense or external knowl-
edge, AGQA consists of long video clips with an average
length of 30 seconds. Each question generated by a hand-
crafted program necessarily requires spatio-temporal rea-
soning steps.

We adopt a balanced, novel composition, and more com-
position version of AGQA [18]. A balanced dataset, 3.9M
of QA pairs associated with 9.6K videos, minimizes the bias
by balancing the answer distributions and types of question
structures. Novel composition is constructed to test whether
models can disentangle distinct concepts and combine them
well. For example, compositions like “before standing up”
are removed from the training set, while each word “before”
and “standing” appear. It tests how well the model performs
on questions with those novel compositions in inference.
More composition tests whether models generalize to more
compositional steps. The training set only contains sim-
pler questions with ≤ S compositional steps, while the test
set contains only questions with > S reasoning steps. The
model generalized to novel compositions and more com-
positional steps can be regarded as a successful VideoQA
model that understands compositional semantic structures.

Open answer questions have many possible answers,
while binary questions have answers that are yes/no or be-
fore/after. Except for the first table, all the tables adopt a
10% version of the balanced dataset for the training and in-
ference phase. We provide details of the dataset we used in
supplementary materials.

TVQA [30] is an intricate multiple-choice VideoQA
dataset composed of 60-90 second long video clips. Al-
though the video clips, questions, answers, subtitles, times-
tamps, and objects are given from the dataset, we only uti-
lize video clips and QA pairs to verify intricate composi-
tional reasoning ability. Most baselines use subtitles and
propose the model that maximizes the subtitle knowledge
since the performance gained from subtitles is much larger
than that from video, however, we claim only to use videos,
questions, and answers for video question answering tasks
to show the video understanding ability.

Benchmarks with short videos MSRVTT-QA [46] is
created based on videos in MSRVTT and questions are au-
tomatically generated from video descriptions. It consists
of 10k videos and 243k QA pairs, with an average video
length of 15 seconds. TGIF-QA [23] is web GIF VQA,
containing 165K QA pairs on 72K GIF videos with an av-
erage length of 3 seconds long. MSRVTT and TGIF are

not only short but also easy videos. These videos only re-
quire simple spatial reasoning while AGQA requires intri-
cate spatio-temporal reasoning. According to the original
paper, MSRVTT is a set of simple clips that each can be de-
scribed with a single sentence, thus confined to a single do-
main. Lei et al. [29] support it by showing that adding more
clips does not improve performance for both datasets; even
somewhat has a negative effect. Our model does not stand
out in simple tasks since it aims to solve intricate reason-
ing problems by modeling dense features, but even shows
competitive results on the datasets.

4.2. Experimental Setup

Baselines We compare our approach against four recent
VideoQA methods [33, 8, 28, 29]. PSAC [33] utilizes a
co-attention block after unimodal self-attention blocks to
simultaneously attend to both modalities. HME [8] mod-
els question, appearance, and motion features with different
LSTM encoders. Additional visual and question memories
help the multimodal fusion. HCRN [28] designs conditional
relation networks and stacks them to accommodate diverse
input modalities and conditioning features. ClipBERT [29]
inputs a few short clips independently to a cross-modality
transformer and aggregates prediction scores from multiple
clips as the final score. For PSAC, HME, and HCRN, the
performances reported in Grunde-McLaughlin et al. [18]
are utilized.

Implementation Details 2D ResNet-50 [20] and word
embedding layers of BERT-base model [13] are adopted
as visual and language backbones. Specifically, 5 Conv
blocks of ResNet-50 and an extra convolution layer are
used for spatial down-sampling. We initialize visual/text
encoder and cross-modal transformer with image-text pre-
trained weights proposed from ClipBERT [29], which lever-
ages large-scale image-text datasets [7, 27].

We use a 4-layer transformer to construct our CDA. In
each transformer layer, we set the number of attention heads
and sampling points to 4 and 8, respectively. Also, we use
a 2-layer transformer for the dependency attention encoder.
The first attention head of the first layer corresponds to a
dependency-guided self-attention module. 3D and 1D posi-
tional embeddings are applied for visual and language em-
beddings, respectively. We also add different type embed-
dings to both video and text inputs of the cross-modal trans-
former to indicate their source type. We report more details
such as hyperparameters in supplementary materials.

4.3. Quantitative Results

Comparision with baselines on varied benchmarks We
compare DSR with state-of-the-art models on the afore-
mentioned datasets. As shown in Table 1, DSR consistently
outperforms all the baselines on AGQA dataset. Compared
to the best baseline, ClipBERT, our model achieves better
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Types PSAC [33] HME [8] HCRN [28] ClipBERT [29] DSR(Ours)

Full
Balanced

Binary 54.19 59.77 58.11 63.83 65.92 (+2.09)
Open 27.20 36.23 37.18 48.54 49.54 (+1.00)
All 40.40 47.74 47.42 53.03 54.36 (+1.33)

Novel
Composition

Binary 43.00 52.39 43.40 53.87 59.57 (+5.70)
Open 14.80 19.46 23.72 36.45 38.73 (+2.28)
All 32.49 40.11 36.06 40.82 43.96 (+3.14)

More
Composition

Binary 35.39 48.09 42.46 42.93 47.79 (-0.30)
Open 28.00 33.47 34.81 45.93 48.08 (+2.15)
All 31.13 39.70 38.00 45.32 48.02 (+2.70)

Table 1. Quantitative comparison with the baselines on AGQA datset. Full balanced, novel composition, and more composition represent
different subset of AGQA as described in Section 4.1. The bold represents the best score.

Methods MSRVTT-QA Action Transition FrameQA TVQA

Co-Memory [16] 32.0 68.2 74.3 51.5 -
PSAC [33] - 70.4 76.9 55.7 -
HME [8] 33.0 73.9 77.8 53.8 -
HCRN [28] 35.6 75.0 81.4 55.9 -
QueST [24] 34.6 79.5 81.0 59.7 -
multi-stream [30] - - - - 43.8
ClipBERT [29] 37.4 82.4 87.3 58.8 44.4
DSR(Ours) 37.2 81.7 87.6 58.3 48.8

Table 2. Experimental results on benchmark datasets.

points of 1.33, 3.14, and 2.70 on full balanced, novel com-
position, and more composition datasets, respectively. We
run three independent trials on Table 1,2,5 and confirmed
the statistical significance of DSR via t-test. The notice-
able thing is that DSR, the model concentrates on complex
spatio-reasoning, especially records high scores on novel
composition and more composition subsets. Since these two
subsets are intentionally curated to test the generalizability
and the reasoning ability of the model, the results give proof
of the quality of DSR. The experimental results according
to the number of compositional steps are in supplementary
materials.

Table 2 shows the results on MSRVTT-QA, TGIF-
QA, and TVQA dataset. We experiment over three tasks
(i.e., Action, Transition, FrameQA) in TGIF-QA bench-
mark. Even though the MSRVTT-QA and TGIF-QA mostly
only require an understanding of the spatial features rather
than temporal reasoning of given questions, our method
achieves a score comparable with ClipBERT. Moreover,
DSR achieves the state-of-the-art result in the V+Q setting
of TVQA, where subtitles and timestamps are not used for
training.

QA Performance based on Sequence Length of Visual
Features Here, we analyze the efficiency and effective-
ness of DSR when addressing long sequence visual features.
We first explore how the QA accuracy varies as we increase
the number of frames so that the visual feature covers a

NFrames NV Tokens Binary Open All

2 2×7×7 60.22 46.05 50.21
4 4×7×7 60.32 47.40 51.20
8 8×7×7 61.29 46.37 50.75
32 w/ DSR 32 + 25 64.47 48.58 53.24

Table 3. Accuracy based on various sequence length of visual fea-
tures.

longer temporal range. In this experiment, we set fps as 1
by default. From Table 3, we observe that the QA accuracy
increases as we show more frames to the model. However,
since the computational cost of self-attention operations in
the transformer-based QA module increases quadratically
based on the input sequence length, there is a limitation to
consider a more long-ranged sequence without any sparsifi-
cation of visual features. On the contrary, DSR can sample a
subset of informative visual features from the dense feature
map, the number of visual features can be controllable as
a hyperparameter. As a result, we achieve higher accuracy
even with a much less number of visual tokens (57 vs. 392).
More detailed analyses of memory efficiency according to
sequence lengths of our DSR are discussed in supplemen-
tary materials.

Sparse Sampling vs. Dense Sampling In this experi-
ment, we compare the effectiveness of randomly sampled
sparse features and densely sampled features for the intri-
cate compositional reasoning task. In the ClipBERT [29],
they propose a sparse sampling-based training strategy due
to the high computation cost and memory consumption. The
Sparse Random in Table 4 follows the training convention
of ClipBERT. They randomly sample multiple clips across
the whole video, and each clip consists of 2 consecutive
frames with fps 2. Then, a shared transformer-based QA
model independently predicts answers based on the multi-
ple clips. Finally, the answer logits from each clip are av-
eraged as a final decision. In contrast to sparse sampling,
dense sampling aims to see longer sequences temporally
with just one clip to address the intricate spatio-temporal
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Sampling Method NFrames NClips Acc.

Sparse Random
2 1 50.57
2 2 52.17
2 4 52.80
2 16 52.93

Dense w/ DSR 32 1 53.24

Table 4. Comparison of sparse sampling and dense sampling
strategies.

reasoning task, AGQA. We observe that dense sampling
with DSR shows higher accuracy than sparse sampling.
Since DSR can sample a few diverse informative visual
features from the spatio-temporally dense feature map, the
model can effectively associate question words and sampled
visual features, which leads to the highest accuracy in Ta-
ble 4.

Ablation study In this section, we conduct extensive ab-
lation experiments about the hyperparameters of DSR. The
first row in Table 5 is our best configuration among all
controllable variables. Firstly, we observe that there is an
improvement with the dependency attention module. The
dependency encoder helps structurization of question se-
quences by forcing dependency relations. Then, we explore
the best number of visual features to be sampled. When we
increase the number of object queries from 5 to 25, there
are consistent improvements in the QA accuracy. However,
if we set the number of object queries to 50, the QA ac-
curacy drops slightly. We analyze that noisy and redundant
visual features could be sampled if we consider too many
sampling points. Thus, we set the number of object queries
to 25 by default for the experiments in prior sections.

The next ablation is about the effectiveness of the global
context features. From the sixth and seventh rows in Ta-
ble 5, we observe that the global context features are no-
tably helpful to boost the QA accuracy. While the “only
local” model shows lower accuracy than the “only global”
model, we achieve the best performance with the combina-
tion of global features and local features. This indicates that
a proper association of global and local features is crucial
to address the complex spatio-temporal reasoning task.

Subsequently, we explore the 3 types of sampling regu-
larization terms. We find that the Soft Orthogonality (Eq 3)
regularization achieves the best performance. The MCR
regularization shows a high variance in the norm of gradi-
ents, which causes an unstable training process. We conjec-
ture that the high variance comes from the logdet operator.
Also, the contrastive loss shows the lowest accuracy. This
could be due to the small batch size caused by the 12-layer
transformer and ResNet-50 taking video data as input.

Finally, we compare DSR to a random sampling strat-
egy of visual features. For the random sampling strategy, we
randomly sample 57 visual features from the dense feature
map during the training phase. Then, we uniformly sample

Dep. # of Obj. q Glob. Reg. Sampl. Acc.

✓ 32 + 25 both SO Deform 53.24

✗ 32 + 25 both SO Deform 52.26

✓ 32 + 5 both SO Deform 47.55
✓ 32 + 10 both SO Deform 51.29
✓ 32 + 50 both SO Deform 52.04

✓ 32 only global SO Deform 50.64
✓ 25 only local SO Deform 45.72

✓ 32 + 25 both - Deform 50.97
✓ 32 + 25 both Cont. Deform 49.84
✓ 32 + 25 both MCR Deform 51.06

✓ 57 local - Rand 51.81

Table 5. Results on ablation experiments.

the visual features from the flattened dense feature map at
the inference phase. As expected, DSR with the diversity
regularization and the global-local fusion achieves higher
accuracy by a large margin than the random sampling un-
der the same number of visual tokens. This indicates that
our two strategies, avoiding collapsed sampling and global-
local information interaction, are essential in this sampling-
based VideoQA task.

In addition, we 1) analyze the diversity and suitability of
sampled tokens by visualizing the output of the deformable
sampler, 2) visualize the effectiveness of the dependency
attention module, and 3) validate that the performance gain
of DSR comes from novel modules we proposed, but not
from the increased parameter, in supplementary materials.

5. Conclusion
This paper presents the state-of-the-art compositional

reasoning model for video question answering tasks, DSR,
which utilizes deformable sampling module and depen-
dency attention module for efficient video-text representa-
tion learning. Based on our finding that the dense model
performs better than the sparse model on the compositional
reasoning dataset, which is a different point of view from
previous work, we conditionally sample question-related vi-
sual features from a dense feature map. This process re-
markably reduces the number of visual tokens needed for
cross-modal transformer while rather improving the effi-
ciency; maximum allowed batch size and performance in-
crease. The dependency-based attention module eases the
model to conduct multi-step reasoning by guiding a particu-
lar attention head with structuralized dependency relations.
Extensive experiments verify our model especially stands
out against others on intricate benchmarks. Comprehensive
ablation studies demonstrate each factor fairly contributes
to our model.
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