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Abstract

While point cloud semantic segmentation is a signifi-
cant task in 3D scene understanding, this task demands a
time-consuming process of fully annotating labels. To ad-
dress this problem, recent studies adopt a weakly supervised
learning approach under the sparse annotation. Different
from the existing studies, this study aims to reduce the epis-
temic uncertainty measured by the entropy for a precise se-
mantic segmentation. We propose the graphical information
gain based attention network called GaIA, which alleviates
the entropy of each point based on the reliable information.
The graphical information gain discriminates the reliable
point by employing relative entropy between target point
and its neighborhoods. We further introduce anchor-based
additive angular margin loss, ArcPoint. The ArcPoint opti-
mizes the unlabeled points containing high entropy towards
semantically similar classes of the labeled points on hyper-
sphere space. Experimental results on S3DIS and ScanNet-
v2 datasets demonstrate our framework outperforms the ex-
isting weakly supervised methods.

1. Introduction
Point cloud semantic segmentation is a fundamental task

in the field of computer vision. With the success of deep
neural networks, large-scale point cloud semantic segmen-
tation on the 3D scene has drawn more attention due to
its wide applications (e.g., augmented/virtual reality, au-
tonomous driving, and robotics). However, a fully super-
vised method for point cloud semantic segmentation re-
quires well-labeled point-wise annotations, and this entire
process of data annotation is expensive [31, 32, 40, 25, 7,
43, 17, 41, 17, 20, 50, 30, 39]. To address this issue, recent
studies have adopted a weakly supervised learning approach
to train networks with partial annotations of point clouds.
Previous studies [44, 5, 45, 48, 49, 16, 26, 47, 24] improved
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Figure 1. Comparison of performance recognition and information
uncertainty. Prediction of the network A has higher uncertainty in
the table compared with the network B.

the semantic segmentation performance close to that of
fully supervised one on small-scale datasets (e.g., ShapeNet
[4] and PartNet [28]) as well as large-scale datasets (e.g.,
S3DIS [2] and ScanNet-v2 [8]).

In contrast to existing studies, this study focuses on alle-
viating epistemic uncertainty to obtain high-quality feature
representations under sparse annotation. In Fig. 1, if two
networks show a similar performance or visualization re-
sult, it is hard to determine which network is semantically
well-embedded. To observe whether there is a difference
in the estimation of the two networks, Shannon entropy
[37] was employed for epistemic uncertainty quantification
[21, 27]. In measuring the entropy of each point, it was ob-
served that the reliability of the network prediction may dif-
fer even if the same result is obtained. Starting from this ex-
perimental result, the question was raised as to whether al-
leviating epistemic uncertainty improves segmentation per-
formance along with satisfactory point cloud embedding.
To address epistemic uncertainty reduction, we introduce
two approaches: reducing the entropy of each point and ef-
fective optimization for points containing high entropy.

Reducing epistemic uncertainty is regarded as alleviat-
ing the entropy of each sample [15, 14, 38]. To reduce
the entropy of each point, we treat points with low entropy
as credible information to update the probability distribu-
tion of points containing high entropy. Reliable points near
the ambiguous decision boundary of the network are iden-
tified by measuring relative entropy, because not all reliable
points are important. As a relative entropy measure, this
study introduces graphical information gain, which is de-
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termined by the relative entropy between the entropy of the
target point and that of its neighborhood. When a point has
entropy lower than that of its neighborhood, it is more reli-
able. Based on the reliability, we enhance the point repre-
sentation and update the point including the high entropy by
propagating the credible information to the uncertain points.

Under the sparse annotation, effective optimization of
the unlabeled points is important for achieving satisfactory
semantic segmentation. Existing studies organize the rela-
tion network [45, 49] or class prototypical matrix [48] to
optimize the unannotated points. For loss computation, the
softmax function is widely employed to present class prob-
ability. However, the softmax has a limitation in terms of
data optimization in that it can neither explicitly enhance
the similarity of intra-class features nor discriminate inter-
class features [9]. Moreover, previous studies equally fo-
cused on all unlabeled points during the optimization pro-
cess. Although the points containing low entropy are se-
mantically well-embedded in the optimization process, the
network should focus more on optimizing the unannotated
points with high entropy to improve segmentation perfor-
mance. Therefore, it is necessary to overcome the draw-
backs of softmax and address the optmization of highly un-
certain points.

This study proposes a graphical information gain-based
attention network (GaIA) for weakly supervised point cloud
semantic segmentation. GaIA aims to reduce epistemic
uncertainty using the graphical information gain and the
anchor-based additive angular margin loss called ArcPoint.
The graphical information gain measures the relative en-
tropy between the entropy of the target point and that of its
neighborhoods to discriminate reliable information. Based
on relative entropy, GaIA updates the feature embedding of
the unlabeled points containing high entropy toward seman-
tically similar embedding of the labeled points. To address
the limitation of softmax and focus on unlabeled point op-
timization, we introduce ArcPoint loss. By penalizing the
unannotated points with high entropy using an additive an-
gular margin in loss computation, ArcPoint optimizes the
uncertain points embedded in the hypersphere toward a se-
mantically similar embedding of the labeled points. The
main contributions of this study are as follows:

• Epistemic uncertainty reduction is studied to improve
weakly supervised point cloud semantic segmentation
performance. To the best of our knowledge, this is the
first approach to focus on epistemic uncertainty reduc-
tion for a performance gain in the weakly supervised
point cloud semantic segmentation.

• For epistemic uncertainty reduction, we propose the
graphical information gain to measure the relative en-
tropy between the entropy of target point and that of its
neighborhoods to identify reliable information.

• The proposed ArcPoint loss contributes to the epistemic
uncertainty reduction by enabling the network to embed
the unlabeled points with high entropy toward the reli-
able labeled points.

• GaIA improves mIoU by 2.2%p and 4.4%p compared
with existing weakly supervised learning methods on
two benchmark datasets (e.g., S3DIS and ScanNet-v2)
under the 1 and 20 pts annotation.

2. Related work
2.1. Weakly supervised semantic segmentation on

point cloud

Studies on 3D point cloud semantic segmentation have
improved performance using fully annotated supervision
learning [31, 32, 40, 25, 7, 43, 17, 41, 17, 20, 50, 30, 39].
Despite this achievement, annotating all point clouds re-
mains a time-consuming task. To address this problem,
recent studies have adopted a weakly supervised learning
approach. Weakly supervised point cloud semantic seg-
mentation performs segmentation with partial annotations
for the point cloud. Existing studies generated semanti-
cally transformed types of point clouds, such as 2D segmen-
tation maps [42], subcloud-level annotation [44], and su-
perpoint [5]. With sparse annotation, previous approaches
have employed pre-training method [16, 48], contrastive
learning [16, 26, 24], and learning distribution consistency
[45, 49, 24, 47] to learn spatial information of point clouds.
For learning the topology of a point cloud, graph-structure
was utilized to represent features of points [5, 26, 49]. Dif-
ferent from the previous approaches, we propose a novel
weakly supervised framework that aims to reduce network
uncertainty and effectively optimize unlabeled points.

2.2. Uncertainty quantification and reduction

Uncertainty quantification is important for precise
decision-making in various domains [1], such as au-
tonomous driving [11, 6] or medical image analysis [23,
36, 35, 29, 34]. Uncertainty in the predictive process is
caused by three components: data uncertainty, epistemic
uncertainty, and distributional uncertainty [33, 12, 21, 27].
Among these three types of uncertainty, this study focuses
on epistemic uncertainty, which measures the information
uncertainty in predicting network parameters given the data
[12, 27]. Uncertainty can be reduced, such that the lower
the uncertainty, the higher is the network performance is
[15, 14, 27]. Based on this property, we introduce a net-
work that focuses on epistemic uncertainty reduction to im-
prove point cloud semantic segmentation performance. For
the uncertainty quantification measure, Shannon entropy,
which represents information uncertainty [37], is adopted,
whereby the entropy of each point is estimated to identify
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Figure 2. Overall architecture.

reliable information. Our approach updates uncertain points
near the ambiguous decision boundary of the network by
propagating credible features.

2.3. Sparse annotation embedding

Using point cloud data is a more attractive approach
compared to a transformed representation (e.g., a voxel
or mesh). However, it is difficult to employ raw point
clouds due to their disordered and unstructured proper-
ties [31, 10]. Furthermore, it is challenging to generate
a high-quality feature representations from partially anno-
tated point clouds. Thus, existing studies focus on the fea-
ture representation of labeled points shared with unlabeled
point clouds [45, 48, 49, 26, 24, 47]. To obtain the fea-
ture embedding, previous studies minimize the difference
between the ground truth and projected label [42, 48]. In ad-
dition to the aforementioned studies, other approaches opti-
mize the divergence between two probabilistic distributions
[45, 49, 26, 24, 47]. In the training process, the above stud-
ies employed the softmax function. However, the softmax
has a limitation when classifying an open-data set in that
it is not in the training data [9]. Thus, the convergence of
intra-class data and divergence of inter-class data should be
enhanced to effectively embed unfamiliar data. Moreover,
previous studies have optimized all unlabeled data equally.
In contrast to these studies, we focus on the optimization of
unlabeled points with high entropy for effective optimiza-
tion. The uncertain points are closely embedded along with
the semantically similar labeled points on the hypersphere
by using the labeled points as anchor.

3. Method
3.1. GaIA overview

Architecture: GaIA is designed to alleviate epistemic
uncertainty. To reduce the high entropy of the uncertain
points, we organize the entropy block and ArcPoint loss.
As depicted in Fig. 2, 3D U-Net is implemented as a back-
bone network with sub-manifold sparse convolution and

sparse convolution as in [13, 20]. Input X is a point set
of N points. Each point xi ∈ R6 is represented by a
concatenation of 3D coordinates and RGB colors, where
i ∈ {1, ..., N}. Then, X is voxelized to a size of 0.02m.
The semantic features are extracted by feeding X to a
couple of convolution and entropy blocks. Each convolu-
tion block comprises a sequence of batch normalization-
ReLU-sparse convolutional operations (SPConv3D). Sub-
sequently, the entropy block computes the entropy variation
between the target point entropy and entropy of its neigh-
borhoods, referred to as graphical information gain in this
study. As an attention weight, graphical information gain
enhances reliable point representation and propagates the
information to their neighborhoods. After extracting se-
mantic features from the encoder blocks, X is reconstructed
using a decoder. The entropy block at the decoder is ex-
cluded because applying the entropy block to each decoder
block results in computational inefficiency. In fact, when a
decoder with an entropy block is organized, the inefficiency
increases with respect to the performance gain.

Learning strategy: To embed the unlabeled points,
we adopt a Siamese network branch [3, 22] to GaIA. The
Siamese branch maintains the consistency between the pre-
diction of the original input X and that of the affine trans-
formed input aff(X). This learning strategy improves the
embedding performance by imposing constraints on unan-
notated points [45]. For the affine transformation of a given
input point X , we apply a random noise, flipped with the x
and/or y axes, and rotated at random angles to the x axis.
Subsequently, to achieve a more robust network against the
sparse annotation, we impose more constraints on X by
employing an elastic distortion. Initially, GaIA is trained
excluding the Siamese branch for 100 epochs because the
constraints result in unstable entropy for each point at ear-
lier stages. After optimizing the original network, we adopt
the Siamese branch to minimize the discrepancy between
network predictions.

Optimization: Existing studies [45, 48, 49, 26, 24, 47]
employed softmax cross-entropy loss and treat the points
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Algorithm 1 Entropy block operation
1: Input: Point cloud representation X ∈ RN×d.
2: Initialize: X̃ = F(X), where X̃ ∈ RN×Y and

graph G(N,E)← KNN(Xloc, K).
3: Get H: Hi = −

∑Y
y=1 P (xi = y) · logP (xi = y),

where P (xi) = softmax(xi) and xi ∈ X̃ .
4: Calibrate: H̃i =

∑k
j ̸=i (Di,j)

−2 ·Hj/
∑k

j ̸=i (Di,j)
−2,

where xj ∈ neighbor(xi).
5: Get GI: GIi = |Hi − H̃i|.
6: Neighbor aggregation: xn

i = (
∑k

j ̸=i xj ⊗GIj)/K.

7: Update point embedding: X̃ = X̃ + (X̃ ⊗GI) + X̃N ,

where xn
i ∈ X̃N .

8: Output: O = F(X̃), where O ∈ RN×d.

equally for network optimization. Different from the previ-
ous approaches, this study focuses on optimizing the points
including high entropy. Inspired by ArcFace [9], which
addresses the limitation of conventional softmax cross-
entropy loss, is adopted as a baseline form of the loss func-
tion. However, ArcFace loss cannot deal with a large num-
ber of unannotated points because it requires the ground
truth in the training phase. Thus, we propose an anchor-
based additive angular margin loss called ArcPoint. Arc-
Point loss aims to embed the unlabeled points toward se-
mantically similar points by employing labeled points re-
garded as anchors. In Fig. 2, ArcPoint at first optimizes the
distance θy(x

a
i ) between the class-prototypical weight ma-

trix Wy and annotated point xa
i ∈ Xa on the normalized hy-

persphere. Afterward, unannotated points containing high
entropy xu

j ∈ X̃u are identified and the angle between Xa

and xu
j is computed. Here, Xa functions as an anchor in

leading the xu
j towards the nearest class Wy . A more de-

tailed computing process for ArcPoint loss is demonstrated
in Section 3.3.

3.2. Graphical information gain

Graphical information gain (GI) measures the relative
entropy between the entropy of the target point and that of
its neighbors to identify reliable information. GI is the-
oretically based on information uncertainty [37]. The en-
tropy H represents the information uncertainty using the
probability of event i as follows: H = −

∑
i Pi · logPi.

That is, if the probability distribution of the classes is
sparse, a network can make a reliable decision for class
prediction. Focusing on this property, entropy is utilized
through three phases to alleviate epistemic uncertainty: i)
measure entropy of each point, ii) compute graphical in-
formation gain, and iii) update the point embeddings with
reliable representations. As shown in Algorithm 1, the in-
put point cloud X ∈ RN×d is projected onto X̃ ∈ RN×Y

using the SPConv3D operation F(·), where Y denotes the

Figure 3. Visualization of a decision boundary and graphical in-
formation gain. Red points indicate high entropy and GI values.

Figure 4. Embedding process of the ArcPoint loss.

number of classes. In addition, based on the coordinates
Xloc, the k-nearest neighbor algorithm is applied to the in-
put X to identify the neighborhood. In line 3, entropy Hi

for each point xi is computed. To obtain GI , we aggregate
the entropy of neighborhoods Hj that are inversely propor-
tional to the Euclidean distance (Di,j) between target point
xi and its neighborhood xj in line 4. Inverse Di,j imposes
more weights on the neighborhood entropy, which is geo-
metrically close to the target xi. In line 5, GI , which is
regarded as relative entropy, is obtained by subtracting the
calibrated entropy H̃ from the original entropy H . When
the target point contains lower entropy compared to that of
its neighborhoods, the results are more reliable. As de-
picted in Fig. 3, it is recognized that the GI highlights
reliable points with low entropy near the ambiguous deci-
sion boundary of the network. Subsequently, we enhance
the reliable representations using xi ⊗ GIi, and neighbor-
hood information is aggregated along with normalization in
lines 6 and 7. Based on both enhanced representations, the
point embeddings are updated to reduce epistemic uncer-
tainty. Finally, the entropy block reconstructs the updated
representation X̃ ∈ RN×C to O ∈ RN×d by using the
sparse convolutional operation F(·). Further analysis of the
GI is offered in the Supplementary-analysis on graphical
information gain.

3.3. Loss function design

Anchor based additive angular margin loss: Arc-
Point is designed to effectively embed unannotated points
by addressing the limitation of conventional softmax cross-
entropy and ArcFace losses. Fig. 4-(a) and -(b) illustrate
the original embedding process of ArcFace which embeds
the intra-class anchor point similarly while discriminating
the inter-class point. Following both (a) and (b), the angles
between the unlabeled points and anchors are measured, in-
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Algorithm 2 Anchor based additive angular margin loss
1: Input: labeled anchor xa

i ∈ Xa, unannotated points
Xu ∈ RN×d, yth class-prototypical weight matrix
Wy ∈ Rd, re-scaler s, and margin parameter m.

2: Get angle and add angular margin:
θy(x

a
i ) +m = arccos(

W⊺
y ·xa

i

||Wy||·||xa
i ||

) +m

3: Calculate H: H = −
∑Y

y=1 P (lu = y) · logP (lu = y),

where P (lu) = softmax(s ·( Xu·W
||Xu||·||W || )), and W ∈

Rd×Y

4: Discriminate the points containing high entropy:
xu
j ∈ X̃u ⊂ Xu, where H > F (γ)

5: Estimate the nearest anchor: ŷ = argmax(
Xa·xu

j

||Xa||·||xu
j ||

)

6: Add angular margin for unannotated points:

θy(x
u
j ) +m = arccos(

W⊺
ŷ ·xu

j

||Wŷ||·||xu
j ||

) +m

7: Calculate final logit:

l =


s · cos(θy(xi) +m), if i ∈ {a, u}, where

xa ∈ Xa and xu ∈ X̃u

s · cos(θy(xu)), otherwise
8: Output: Final logit l

cluding different classes. Subsequently, in Fig. 4-(d), the
nearest anchor of each unannotated point is determined by
the smallest angle. Afterward, the unannotated point em-
bedding is relocated toward the class which is the same as
the nearest anchor. The detailed embedding process is pre-
sented in Algorithm 2.

In line 2, the ith labeled anchor point xa
i ∈ Rd belong-

ing to the class y is embedded on the hypersphere by com-
puting the angle θy(x

a
i ) between xa

i and Wy . Here, Wy

denotes the yth column of class-prototypical weight matrix
W ∈ Rd×Y . The angle with an additive angular margin m
is penalized to enhance intra-class intensity and inter-class
distinction. To optimize the unannotated points along with
epistemic uncertainty reduction, we focus on the points with
high entropy. In lines 3 and 4, the entropy of unannotated
points is calculated using a re-scaled logit lu to discrimi-
nate the target points X̃u that contain high entropy. Here,
the function F (γ) denotes the γ quantile of H , such that the
higher area of γ in the distribution of H is adopted. Subse-
quently, to estimate the nearest anchor regarded as a class,
we measure cosθ between the entire anchor Xa and target
point xu

j , which is the jth instance of the target points X̃u.
Following the estimation, the angular margin m is added to
the angle θŷ(x

u
j ) measured by the estimated class weight

Wŷ and xu
j in line 6. For the final logit calculation, both

θy(X
a) and θy(X̃

u) are applied to the margin, except for
the other cases. The logit passes the cross-entropy loss
through a softmax function. In the inference phase, logit
is computed without the additive angular margin as follows:

logit = s·( X·W
||X||·||W || ). This optimization effect is discussed

in Section 5.2 by visualizing similarities between Xa and
X̃u corresponding to each class.

Loss configuration: The loss function L comprises the
ArcPoint based both softmax cross-entropy loss Lce and
distribution discrepancy reduction loss Lsia, as follows:
L = Lce + Laff

ce + Lsia. In Eq (1), A denotes the num-
ber of labeled points, and the annotated points are opti-
mized by using the penalty term m. In Eq (2), when the
Siamese branch is applied to GaIA, the segmentation loss
Laff
ce for the affine transformed input aff(X) and distri-

bution discrepancy reduction loss Lsia, which are based on
ArcPoint, are organized. The Lsia minimizes the L2 dis-
tance between all probabilistic predictions of the original
network and those of the Siamese branch. In this process,
the unannotated points are optimized. Here, the unlabeled
points containing low entropy are not subject to the angular
margin, but are involved in distance minimization.

Lce = − 1
A

A∑
i=1

log es·cos(θy(xa
i )+m)

es·cos(θy(xa
i
)+m)+

∑Y
j=1,j ̸=y) e

s·cosθj

(1)

Lsia = ||P (X)− P (aff(X))||2, where

P (X) = 1
N

N∑
i=1

es·cos(θy(x
a,u
i

)+m)

es·cos(θy(x
a,u
i

)+m)+
∑Y

j=1,j ̸=y) e
s·cosθj

(2)

4. Experiment
4.1. Experimental setup

Datasets: S3DIS [2] contains 271 scenes for six areas
from three different buildings consisting of 3D RGB point
clouds. Each point was annotated with one of 13 semantic
categories. All the classes were used in the instance eval-
uation. GaIA was evaluated on two settings: i) Area 5 is
used for testing and all others are utilized for training, ii) in
the 6-fold cross validation each area is treated as the test set
once. Experiments were also conducted on the ScanNet-
v2 [8] which consisted of 1,613 scenes annotated with 20
classes. The dataset was split into 1,201 training, 312 vali-
dation, and 100 test scenes. To make it comparable to other
approaches,the benchmark results are reported for the offi-
cial test set.

Implementation details: For a sparse annotation set-
ting, the points corresponding to the supervision ratio (1pt,
20 pts, and 1%) per class were labeled for each scene. GaIA
was trained on a RTX A6000 GPU using the Adam opti-
mizer with an initial learning rate of 0.01 and weight decay
of 0.0001. The number of neighbors K was initially set
to 16 and then reduced by 4 following the encoder block.
The angular margin m was empirically determined to be
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Table 1. Comparison with existing methods on S3DIS dataset.
Method Supervision Area 5 6-Fold

PointNet [31] 100% 41.1 47.6
PointNet++ [32] 100% – 54.5
PointCNN [25] 100% 57.3 65.4
KPConv [41] 100% 67.1 70.6

MinkowskiNet [7] 100% 65.3 –
RandLA-Net [17] 100% 63.0 70.0
PointASNL [46] 100% – 68.7

PointTransformer [50] 100% 70.4 73.5
Hou et al. [16] 100% 72.2 –

CBL [39] 100% 69.4 73.1
HybridCR [24] 100% 65.8 70.7

Zhang et al. [48] 1% 61.8 65.9
PSD [49] 1% 63.5 68.0

HybridCR [24] 1% 65.3 69.2
GaIA (Ours) 1% 66.5 70.8

Xu and Lee [45] 1pt (0.2%) 44.5 –
PSD [49] 1pt (0.03%) 48.2 –

HybridCR [24] 1pt (0.03%) 51.5 –
OTOC [26] 1pt (0.02%) 43.7 –

MIL Transformer [47] 1pt (0.02%) 51.4 –
GaIA (Ours) 1pt (0.02%) 53.7 –

Figure 5. Comparison of qualitative results on S3DIS.

0.1 and re-scale factor s was set to 16. For S3DIS, we
set the batch size to 150, and a batch size of 8 was em-
ployed for ScanNet-v2. GaIA was implemented using the
PyTorch framework. As evaluation metric, the mean inter-
section over union (mIoU) was adopted.

4.2. Experimental results

S3DIS: GaIA was compared with existing fully super-
vised (100%) [31, 32, 25, 41, 17, 46, 7, 50, 16, 39] and
weakly supervised (1pt and 1%) [45, 48, 49, 26, 47, 24]
methods on S3DIS area 5 and 6-Fold, as listed in Tab.
1. Under the 1pt and 1% annotation on area 5, GaIA
improved mIoU by 2.2%p and 1.2%p, respectively, com-
pared to HybridCR [24]. In comparison of 6-Fold result on
S3DIS, GaIA achieved the close performance on as that of
the fully supervised state-of-the-art method [50] (-2.7%p)
and surpassed the existing weakly supervised method [24]

Table 2. Comparison with existing methods on ScanNet-v2.
Method Supervision mIoU

PointNet++ [32] 100% 33.9
PointCNN [25] 100% 45.8
KPConv [41] 100% 68.4

RandLA-Net [17] 100% 64.5
PointASNL [46] 100% 66.6

MinkowskiNet [7] 100% 73.6
VMNet [19] 100% 74.6
BPNet [18] 100% 74.9
Mix3D [30] 100% 78.1

Zhang et al. [48] 1% 51.1
PSD [49] 1% 54.7

HybridCR [24] 1% 56.8
GaIA (Ours) 1% 65.2

Hou et al. [16] 20 pts / scene 55.5
OTOC [26] 20 pts / scene 59.4

MIL Transformer [47] 20 pts / scene 54.4
GaIA (Ours) 20 pts / scene 63.8
GaIA (Ours) avg 7.8 pts / scene (1pt) 52.1

(+1.6%p). In Fig. 5, we visualized the qualitative results
on S3DIS dataset. Compared to the baseline network ex-
cluded the Siamese branch, entropy blocks, and ArcPoint
loss, GaIA precisely detected the classes, in particular, the
beam and door. Additional visual comparison is reported in
Supplementary.

ScanNet-v2: The benchmark results of the ScanNet-v2
are listed in Tab. 2. Compared to the existing weakly super-
vised methods, HybridCR [24], GaIA improved mIoU by
8.4%p under the 1% annotation setting. Moreover, in lim-
ited annotations (LA) benchmark, GaIA outperformed Hou
et al. [16] (+8.3%p), OTOC [26] (+4.4%p), and MIL Trans-
former [47] (+9.4%p). Remarkably, despite having more
than 100× fewer annotations (1pt, 0.005%), GaIA exhib-
ited a performance surpassing that of Zhang et al. (+1.0%p)
and close to that of PSD (-2.6%p). As depicted in Fig. 6,
GaIA was effective in epistemic uncertainty reduction com-
pared to the baseline. When both networks exhibited similar
segmentation results (cols 1 to 3), GaIA estimated the point
cloud with higher reliability (rows 4 and 5). Although the
segmentation results of both networks were unsatisfactory
(cols 4 and 5), GaIA framework effectively alleviated epis-
temic uncertainty compared to the baseline.

5. Ablation study
5.1. Effectiveness of the proposed components

Ablation studies were conducted to analyze the contri-
bution of each proposed component to performance gain.
As listed in lines 1 and 2 of Tab. 3, the Siamese branch
highly contributed to the performance gain compared with
the baseline. This is because the Siamese branch is directly
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Figure 6. Comparison of qualitative results on ScanNet-v2 validation set. H denotes the entropy visualization.

Table 3. Comparison of the quantitative results on ScanNet-v2 val-
idation set corresponding to the proposed components. (·) indi-
cates officially measured test scores.

Base. Sia. EB. AP. AF. 1pt (0.005%) 1%
✓ 33.2 (43.6) 42.7 (53.9)
✓ ✓ 37.4 49.5
✓ ✓ ✓ 39.1 51.7
✓ ✓ ✓ 40.8 52.4
✓ ✓ ✓ ✓ 41.1 52.8
✓ ✓ ✓ ✓ 41.9 (52.1) 54.9 (65.2)

involved in the optimization of unlabeled points, which oc-
cupy the largest proportion of the data. This tendency was
also observed in a previous study [45]. When the proposed
components were applied to the baseline with the Siamese
branch, it was confirmed that the performance gain mainly
originated from the entropy block (EB) compared with the
ArcPoint loss (AP), as listed in lines 3 and 4. Under the
1pt annotation setting (0.005%), employing both compo-
nents improved the performance by 8.7%p and 4.5%p com-
pared to the baseline and Siamese network, respectively. We
demonstrated more detailed analysis on the proposed com-

ponents in Supplementary.

5.2. Effectiveness of ArcPoint loss

We conducted quantitative and qualitative experiments
to validate the effectiveness of ArcPoint loss. In Tab. 3,
ArcPoint loss was compared with the conventional soft-
max cross-entropy loss (line 4) and ArcFace (AF) loss (line
6). For a fair comparison, the Siamese branch with en-
tropy blocks was employed. ArcFace outperformed the
conventional softmax cross-entropy and L2 losses on 1pt
and 1% annotations with 0.3%p and 0.4%p gains, respec-
tively. Embedding on the hypersphere (e.g., ArcFace and
ArcPoint) exhibited better performance compared with con-
ventional losses. However, compared to ArcPoint loss,
the gain of ArcFace was inevitably low because ArcFace
could not be utilized in the optimization of the unlabeled
points. In contrast, ArcPoint achieved improvement (i.e.,
1.1%p and 2.5%p, respectively) by applying an additive an-
gular margin to the unlabeled points containing high en-
tropy. To verify the effectiveness of ArcPoint, we visualized
the cosine similarities between the anchors and unannotated
points. Excluding the entropy block from the GaIA, the net-
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Figure 7. Comparison of cosine similarity. 50,000 anchors and
unannotated points with high entropy were randomly sampled
from the S3DIS dataset. In each heatmap, the rows and columns
indicate anchors and unannotated points, respectively.

Table 4. Comparison of the performance on ScanNet-v2 validation
set corresponding to F (γ). F (γ) and (·) denote the γ quantile of
H and officially tested score, respectively.

Sup. 0 ↑ 0.1 ↓ 0.3 ↓ 0.5 ↓ 0.5 ↑ 0.7 ↑ F (0.9) ↑
1% 52.1 49.3 (59.5) 49.5 49.8 53.0 53.8 54.9 (65.2)
1pt 39.2 37.1 (47.4) 37.7 38.1 40.6 41.1 41.9 (52.1)

work was compared with the baseline including the Siamese
branch. In Fig. 7, dark-colored vertical lines indicate that
the unlabeled points have low cosine similarity compared
to other anchors. That is, the ArcPoint loss effectively opti-
mizes the unlabeled points by employing both anchors and
angular margin penalty.

5.3. Effectiveness of optimization with selective pe-
nalization

To validate the selective penalization for the optimiza-
tion effect, which focuses on points with high entropy, F (γ)
values were experimented with in multiple ranges. In Tab.
4, it is observed that the more attention imposed on the
points containing high entropy (F (0.5 to 0.9) ↑), the higher
the performance is compared with applying the penalty to
the point with low entropy (F (0.1 to 0.3) ↓). In particu-
lar, although all points including high entropy were equally
treated in the penalization (F (0) ↑), the performance was
reduced. This is because the points containing high entropy
were considered under the same conditions, not selectively
penalized. This tendency was consistently observed in both
1pt and 1% supervisions. In other words, it is effective to
optimize the points, including high entropy, through selec-
tive penalization.

6. Discussion
This study aims to reduce epistemic uncertainty by us-

ing the entropy of each point for effective and precise
point cloud semantic segmentation. This claim includes the
premise that the lower entropy of the network, the more pre-
cise the semantic segmentation result is. However, although
the network contains low epistemic uncertainty, it can still
estimate incorrectly. Hence, the entropy distribution was
examined for each class and the distributions of true and
false predictions were compared. In Fig. 8, it is observed

Figure 8. Comparison of entropy distribution with respect to pre-
diction. The x and y axes indicate entropy and the number of sam-
ples, respectively. Distribution highlighted with red indicates dis-
tribution of false prediction.

Figure 9. Comparison of point-wise entropy variation for false pre-
dictions during training steps. X-axis indicates the entropy.

that GaIA alleviated the number of false predictions with
low entropy compared with the baseline which included the
Siamese branch. In particular, GaIA reduced the false pre-
dictions for the classes floor and chair, by approximately
6 M and 0.6 M, respectively. Moreover, we observed the
number of false predictions progressively decreased along
with epistemic uncertainty reduction following the training
steps, as depicted in Fig. 9. In other words, GaIA, which
alleviates epistemic uncertainty, resulted in the reduction of
false prediction with high reliability. Further analysis on
the false prediction with high reliability is offered in Sup-
plementary.

7. Conclusion

This study addressed epistemic uncertainty reduction in
effective and precise point cloud semantic segmentation.
Graphical information gain based attention network called
GaIA was proposed. The graphical information gain and
anchor-based additive angular margin loss called ArcPoint
were main contributions of our approach. Specifically, the
graphical information gain represents the reliable informa-
tion by computing the relative entropy between the entropy
of the target point and that of its neighborhoods. ArcPoint
effectively optimizes unlabeled points containing high en-
tropy. The experimental results of our method on two large-
scale datasets demonstrated the improved performance of
the proposed method compared with existing weakly super-
vised point cloud semantic segmentation methods.
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