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Abstract

Despite the evolution of Convolutional Neural Networks
(CNNs), their performance is surprisingly dependent on the
choice of hyperparameters. However, it remains challenging
to efficiently explore large hyperparameter search space due
to the long training times of modern CNNs. Multi-fidelity
optimization enables the exploration of more hyperparam-
eter configurations given budget by early termination of
unpromising configurations. However, it often results in
selecting a sub-optimal configuration as training with the
high-performing configuration typically converges slowly
in an early phase. In this paper, we propose Multi-fidelity
Optimization with a Recurring Learning rate (MORL) which
incorporates CNNs’ optimization process into multi-fidelity
optimization. MORL alleviates the problem of slow-starter
and achieves a more precise low-fidelity approximation. Our
comprehensive experiments on general image classification,
transfer learning, and semi-supervised learning demonstrate
the effectiveness of MORL over other multi-fidelity optimiza-
tion methods such as Successive Halving Algorithm (SHA)
and Hyperband. Furthermore, it achieves significant per-
formance improvements over hand-tuned hyperparameter
configuration within a practical budget.

1. Introduction

Convolutional Neural Networks (CNNs) have recently
achieved a huge success in a wide range of computer vision
tasks [21, 25, 27, 29]. While the performance of CNNs is
greatly affected by the choice of hyperparameters [7], the
optimal combination of hyperparameters is hard to know
a priori. Therefore, model developers often explore the
hyperparameter configurations manually, which requires a
huge labor cost yet it is sub-optimal with respect to per-
formance [5]. Recent approaches in hyperparameter opti-
mization (HPO) [4, 22] try to automate this painful tuning
process by efficiently exploring multi-dimensional search
space. In practice, it is known that the automatic tuning pro-

cess has contributed significantly to improving the winning
rate during the development of AlphaGo [6].

As modern CNNs get more sophisticated and complex,
the search space of hyperparameters becomes larger and the
training time becomes longer, which makes it difficult to
explore diverse configurations. In order to speed up the HPO
process and save computational expense, multi-fidelity opti-
mization early stops unpromising configurations and adap-
tively allocates more resources to promising configurations.
The early termination of configuration is determined by a
low-fidelity approximation based on partial training results
which is computationally much cheaper than full training.

Successive Halving Algorithm (SHA) [16] and Hyper-
band [22] are the two most popular multi-fidelity optimiza-
tion methods. These methods explore orders-of-magnitude
more configurations by early stopping low-performing con-
figurations. However, we experimentally discovered that
the high-performing configurations typically do not perform
well in the early phase when training CNNs. Figure 1 illus-
trates the validation curves for the grid search of learning
rate with ResNet-56 on CIFAR-100 dataset. It demonstrates
that the best configuration does not outperform other con-
figurations until the late phase of the training process. This
slow-starting peculiarity of promising configurations limits
the performance of multi-fidelity optimization when training
CNNs due to the early termination of promising configura-
tions.

A CNN is learned with a predefined learning rate sched-
ule in general. From the beginning to the end of the learning
rate schedule influences the final performance of the CNN.
However, previous methods discard low-performing configu-
rations at an early/mid-point of the learning rate schedule and
consequently result in a sub-optimal configuration. Inspired
by this problem, we propose Multi-fidelity Optimization
with a Recurring Learning rate (MORL) which condenses
the learning rate schedule to fit into every round of promo-
tion. Even at an early phase of training, it enables precise
evaluation of a configuration as the model comes from the
entire schedule. To the best of our knowledge, this is the first
work that integrates the learning rate schedule into multi-
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Figure 1. Validation curves of grid search on learning rate from 0.01
to 0.1 with ResNet-56 on CIFAR-100 dataset (see section 4.1 for
the details). The fractional numbers on the plot show the ranking
of the best configuration (blue curve) every 30 epochs. The best
configurations do not outperform others until the late phase.

fidelity optimization.
Our experiments on a wide range of general computer

vision tasks including image classification [12], transfer
learning [38] and semi-supervised learning [2] verify the
efficacy of the proposed method. Throughout the experi-
ments, MORL consistently outperforms other multi-fidelity
optimization methods such as SHA and Hyperband. Fur-
thermore, it outperforms highly hand-tuned configurations
significantly within a reasonable budget. Also, we show
that our method is orthogonal to the existing Bayesian opti-
mization method and applicable to a variety of learning rate
schedules. The experimental results demonstrate that MORL
is a practical method available for a wide range of scenarios.

2. Related Work

Hyperparameter Optimization A CNN includes many
hyperparameters and it is very crucial to find a good hyperpa-
rameter configuration to achieve successful performance [5].
While the search space for hyperparameter is often very
high-dimensional and complex, it is hard to apply classical
optimization methods that incorporate gradient descent, con-
vexity or smoothness [9]. Therefore, model developers often
go through a manual tuning process which requires a huge
labor cost [5]. Hyperparameter optimization (HPO) aims to
automate this painful process and search good hyperparame-
ter configurations efficiently.

Bayesian optimization [4, 6] optimizes black-box func-
tion by adaptively suggesting hyperparameter configurations
given observations. In order to estimate the target function,
it first fits a probabilistic surrogate model with observations
of input configuration and its corresponding performance.
Then it selects the next configuration that maximizes acqui-

sition function. For instance, expected improvement [17]
attempts to trade off exploration against exploitation. By
iteratively fitting a surrogate model and evaluating proba-
ble configuration, Bayesian optimization outperforms brute-
force methods such as random search [4, 14]. However,
Bayesian optimization inherently can not be easily paral-
lelized due to the nature of sequentially fitting a probabilistic
model with previous observations [23]. Furthermore, it is
known that Bayesian optimization does not adapt well to
high-dimensional search spaces where it shows similar per-
formance to random search [36].

More related to our method, multi-fidelity optimization
methods enable to evaluate order-of-magnitude more con-
figurations by exploiting cheaper proxy tasks, e.g. training
model only for few iterations, using partial datasets or down-
sized images [4, 22, 18]. As training a single configuration
could take from days to weeks due to the increasing model
complexity and dataset size [37], it becomes more crucial
to speed up the HPO process by harnessing the power of
multi-fidelity optimization. Successive Halving Algorithm
(SHA) [16] uniformly allocates a small initial budget among
randomly selected configurations and early stops the worst
half configurations. It then doubles the budget and repeats
the same process until it reaches maximum resource. In
addition to its simplicity, SHA shows comparable perfor-
mance to other state-of-the-art HPO methods such as Vizier
[11], FABOLAS [18] and PBT [15] in a wide range of tasks
[23]. Hyperband further extends SHA by automating the
choice of initial budget via running different variants of
SHA with respect to initial resource. BOHB [8] combines
Hyperband with Bayesian optimization in order to benefit
from both adaptive resource allocation and configuration
sampling. Our approach enables more precise early stage
ranking among configurations by incorporating the learning
rate schedule into multi-fidelity optimization.

Recurring learning rate schedule Learning rate is one
of the most important factors when tuning the performance
of CNNs [32]. A typical learning rate schedule used by a
wide range of modern CNNs is a step learning rate schedule
where an initial learning rate is decayed by an adequate
factor at given milestone epochs [20, 12, 31, 13, 34]. In an
attempt to eliminate the need for tuning the initial learning
rate and its schedule, Cyclical Learning Rates (CLR) [32]
monotonically increases then decreases the learning rate
within reasonable bounds and repeats this process cyclically.
Stochastic gradient descent with warm restart (SGDR) [26]
periodically warm restarts SGD process where the learning
rate is reinitialized in each cycle and scheduled to decrease
following cosine annealing schedule. SGDR accelerates
the training process of CNN and it achieved state-of-the-art
performance by an ensemble of models obtained at the end
of each cycle. Our method differs from these methods in that
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we aim to improve multi-fidelity optimization by leveraging
the learning rate schedule.

3. Multi-fidelity Optimization with Recurring
Learning Rate

In this section, we introduce Multi-fidelity Optimization
with a Recurring Learning rate (MORL) algorithm which ex-
tends the Successive Halving Algorithm (SHA) to improve
low fidelity approximations by taking the optimization pro-
cess of CNNs into consideration. We first provide a brief
introduction to SHA, motivate the need for a recurring learn-
ing rate then introduce MORL algorithm in detail.

3.1. Successive Halving Algorithm

Given a reduction factor η and maximum resource r, SHA
trains the network with an initial resource allocated to each
configuration, evaluates the performance of all configura-
tions, and promotes top 1/η configurations to the next round.
It then increases the resource allocation for each configura-
tion by a factor of η and repeats the process until the resource
allocation per each configuration reaches r. By allocating
relatively small initial resources and early stopping, SHA
enables the evaluation of order-of-magnitude more config-
urations given a fixed budget. However, when low-fidelity
approximation does not reflect the final performance, SHA
ends up terminating configuration which will have high per-
formance at the end.

Figure 1 depicts the validation curves of grid search on
learning rate with stochastic gradient descent (SGD) and
step learning rate schedule which is typically employed
when training modern CNNs [20, 12, 31, 13, 34]. The top-
performing configuration rather shows inferior performance
in the early phase but begins to exhibit high performance
in the late phase. In this scenario, utilizing SHA results in
the early termination of the top-performing configuration.
While assigning a large initial budget could mitigate this
problem, it leads to evaluating only a small number of con-
figurations which limits the benefit of utilizing multi-fidelity
optimization.

3.2. Effect of Recurring Learning Rate

SGD updates the parameter of the network as θ = θ − lg
given a learning rate l, model parameter θ and gradient g.
Since convergence towards the final performance generally
occurs when the magnitude of the parameter update is small
[39], we assumed that it would be more reasonable to eval-
uate low-fidelity approximation when the learning rate is
small. As a typical learning rate schedule starts with a rel-
atively high learning rate and ends with a relatively low
learning rate, we condense the original learning rate sched-
ule to fit each round of promotion so that each round ends
with a small learning rate. We refer to this scheme as a
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Figure 2. Validation curves of grid search on learning rate with
a recurring learning rate schedule every 30 epochs, following the
same procedure as Figure 1. The best configuration consistently
shows a prominent ranking at the end of each cycle.

recurring learning rate where the learning rate schedule is
condensed and restarted every round of promotion. Figure
2 follows the same procedure as Figure 1 using a recurring
learning rate every 30 epochs with a cosine annealing sched-
ule, and reports the rank of the best configuration at the end
of each cycle. When compared with Figure 1, the slow-
starting property of the best configuration is much alleviated
while the final performance remains. The top-performing
configuration begins to outperform other configurations at
the late phase of each cycle where it has a relatively small
learning rate which confirms our assumption.

3.3. MORL Algorithm

Among various multi-fidelity optimization methods, we
opt for SHA due to its simplicity and theoretically princi-
pled justification. While maintaining the essence of SHA,
MORL enhances the ability to early differentiate promising
configurations with a recurring learning rate. The overall
procedure of MORL is summarized in Algorithm 1. MORL
first suggests a set of hyperparameter configuration H with
suggest hyperparameters subroutine given a num-
ber of configurations n, then it initializes the network with
create network subroutine for each hyperparameter h.
There exists a total of ⌊logη(r)⌋ −smin+1 rounds of promo-
tion where minimum resource of ηsmin is allocated to each
configuration on the first round and increases by a factor of
η every round until it reaches maximum resource r.

Each get start epoch and get end epoch sub-
routine computes the beginning and last epoch given expo-
nent s in each round, respectively. The start epoch estart is
set to ηs−1 + 1, except for the first round where it is set to
1. On the other hand, the end epoch eend is set to ηs except
for the last round which is set to r. In each round, every
hyperparameter h ∈ H is evaluated after training with allo-
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Figure 3. Illustration of learning rate schedules utilized in object classification task with maximum resource r of 164 epochs. The initial
learning rate l is 0.1. For the baseline (orange curve), we follow the schedule used in the original implementation.

Algorithm 1: MORL Algorithm.
Input: number of configurations n; maximum

resource r; initial learning rate l; reduction factor η
(default : 3); minimum exponent smin (default : 2);
H =suggest hyperparameters(n)

for h ∈ H do
Gh = create network(h)

end
for s ∈ {smin, smin + 1, . . . , ⌊logη(r)⌋} do

estart = get start epoch(s)

eend = get end epoch(s, r)

for h ∈ H do
for e ∈ {estart, estart + 1, . . . , eend} do

le =
l
2 (1 + cos eπ

eend−estart
)

train an epoch(Gh, le, h)
end
Ph = compute performance(Gh, h)

end
H =top k(H,P, η) // promote top 1/η

configurations to next round
end

cated resources. Given an initial learning rate l, the starting
learning rate for each epoch le is calculated with a cosine an-
nealing schedule [26] as le = l

2 (1+cos eπ/(eend − estart)).
While hyperparameter h might include the initial learning
rate l, we notate it independently for simplicity of the al-
gorithm. train an epoch subroutine trains the network
Gh for an epoch with hyperparameter h and learning rate
le which is updated after every gradient descent following a
cosine annealing schedule. Finally, the performance for each
configuration is computed then top 1/η configurations are
promoted to the next round. We opt for a cosine annealing
schedule due to its nature of recurrence. However, it is worth
noting that the effectiveness of MORL is not restricted to

certain learning rate schedules but can be combined with var-
ious learning rate schedules. This is demonstrated in section
5.3.

The value of reduction factor η and minimum exponent
smin adjust the number of promotion rounds and minimum
resource allocation. Since top 1/η configurations are pro-
moted and resource increases by a factor of η on each round,
the larger η leads to more aggressive termination and fewer
rounds of promotion. We set default η as 3 because given
certain conditions, it is theoretically optimal to set η = e ≈ 3
[22]. Nevertheless, we empirically found that MORL is quite
robust to the choice of η and generally works well with the
value of 2, 3, and 4.

In terms of minimum exponent smin, there exists a trade-
off between the number of configurations n and minimum
resource ηsmin allocated to each configuration given a fixed
budget. While small smin allows exploring more configu-
rations, it might prematurely evaluate the performance. On
the other hand, large smin allows a more precise low-fidelity
approximation but only a small number of configurations
can be evaluated. Following the empirical analysis of Cyclic
LR [32] that suggests the length of cycle to be between 4
to 20 epochs, we set minimum exponent smin = 2 which
sets the minimal resource ηsmin = 9. Our ablation study on
smin in section 5.1 further verifies the validity of our setting.

4. Experiments
In this section, we conduct a comprehensive evaluation on

a wide range of computer vision tasks including object clas-
sification, transfer learning, and semi-supervised learning to
verify the effectiveness of MORL for hyperparameter opti-
mization. We focus on comparison with SHA [16] and Hy-
perband [22] which are the de-facto standard multi-fidelity
optimization methods implemented in widely adopted HPO
frameworks [1, 24].

Our search space consists of learning rate l, weight de-
cay w, momentum 1 − m and batch size b where l, w are
sampled from log [10−6, 10], m from log [10−6, 1], and b
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Figure 4. Performance of various multi-fidelity optimization methods on CIFAR-100 with (a) VGG-11 and (b) AlexNet architecture.
Throughout the optimization process, MORL significantly outperforms other methods except for the very early phase.

from [16, 256]. While there exist various tasks that include
task-specific hyperparameters, we believe our search space
would serve as a good starting point that could be applied
to a wide range of tasks. For all experiments, one unit of
resource corresponds to one epoch and the maximum re-
source r is set to the training epochs specified in the original
implementation of each task. For each HPO experiment, we
allocate a budget of 64r which corresponds to 64 different
runs of an experiment when early-stopping is not applied.

4.1. Object Classification

We first evaluate MORL on object classification with pub-
licly available implementation1 of classification networks
and training schemes for a fair comparison with the human
baseline. For the baseline, we use the hyperparameter config-
uration suggested in the original implementation. We adopt
three different datasets: CIFAR-10/100 datasets [19] com-
prising 50,000 training and 10,000 test images of 10/100
object classes and Tiny ImageNet dataset [30] containing
100,000 training and 10,000 validation images of 200 object
classes. While the original images of Tiny ImageNet consist
of 64×64 pixels, they are downsized to 32×32 pixels for the
consistency with CIFAR dataset training process.

We follow the standard practice for data augmentation
[12] where each image is zero-padded with 4 pixels then
randomly cropped to the original size and evaluation is per-
formed on the original images. We utilize SGD optimizer
with an initial learning rate of 0.1, a weight decay of 5e-4, a
momentum of 0.9 and a batch size of 128 on a single GPU
for the baseline configuration. Following the original imple-
mentation, the networks are trained for 164 epochs and a step
learning rate schedule is applied where the initial learning

1https://github.com/bearpaw/pytorch-classification

rate is divided by 10 at 81 and 122 epochs. The illustration
of the learning rate schedule for the baseline and MORL is
shown in Figure 3.

Comparison of multi-fidelity optimization methods.
We first evaluate MORL compared to other multi-fidelity
optimization methods with varying initial resources. Fig-
ure 4 illustrates the performance of multi-fidelity optimiza-
tion methods along with the baseline and random search
on CIFAR-100 with VGG-11 [31] and AlexNet [20] archi-
tecture. Each SHA with smin = 0 and smin = 2 repre-
sents the most and intermediate aggressive method of SHA,
Hyperband performs grid search over possible values of
smin, and random search performs full training without
early-stopping. Throughout the optimization process except
for the very beginning, MORL exhibits considerably higher
performance compared to other methods. In the very early
stage, SHA(smin = 0) and Hyperband achieve moderate
performance by exploring more configurations and early-
stopping hopeless configurations which usually exhibit near
random-guessing accuracy. However, they slowly improve
the performance whereas MORL improves at a rapid pace.
For the rest of the experiments, we utilize SHA(smin = 2)
for the SHA method which exhibits better characteristics
than SHA(smin = 0).

Scalability to different datasets. We demonstrate the
effectiveness of MORL with respect to various datasets of
CIFAR-10/100 and Tiny ImageNet. Table 1 compares the
top-1 accuracy with the average and the 95% confidence
interval over 5 repetitions. MORL outperforms all other
methods in all of the datasets. Whereas other multi-fidelity
optimization methods often fail to surpass the hand-tuned
baseline given a limited budget and even exhibit lower per-
formance than random search, MORL consistently boosts
the performance of the baseline by a significant margin. It
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Table 1. Top-1 accuracy (%) on CIFAR10/100 and Tiny-ImageNet
with VGG-11. The reported results are the average and the 95% con-
fidence interval over 5 repetitions. MORL outperforms hand-tuned
baseline and other competing methods across varying datasets, and
obtains relatively narrow confidence interval.

CIFAR-10 CIFAR-100 Tiny-ImgNet
Baseline 91.89+-0.25 70.89+-0.26 48.21+-0.44
Random 91.65+-0.59 69.79+-1.84 47.63+-2.66

SHA 91.37+-0.35 70.27+-1.47 48.34+-1.95
Hyperband 91.46+-0.52 70.11+-1.09 47.99+-1.75

MORL 92.94+-0.16 72.74+-0.42 50.96+-0.33

Table 2. Top-1 accuracy (%) on CIFAR-100 with different network
architectures. MORL consistently improves the performance of
baseline with a meaningful margin in all tested networks.

AlexNet ResNet-20 ResNet-56 VGG-16
Baseline 44.08 68.67 71.54 73.58
Random 44.63 66.86 69.75 73.84

SHA 45.67 67.15 70.41 72.48
Hyperband 45.69 67.31 71.03 72.66

MORL 46.92 69.51 72.87 76.01

is worth noting that the model acquired by MORL does not
introduce any additional weights or computational overhead.
The performance gain merely comes from tuning hyperpa-
rameters of CNN’s optimization process.

Scalability to various CNN architectures. We further
verify the scalability of MORL with respect to diverse CNN
architectures including AlexNet, ResNet-20, ResNet-56 and
VGG-16 on the CIFAR-100 dataset. As shown in Table
2, MORL consistently outperforms other methods and im-
proves the performance of the baseline in all experiments.
Our results demonstrate the efficacy of MORL with respect
to varying CNN architectures. While SHA and Hyperband
only succeed to improve baseline performance on AlexNet,
MORL brings meaningful performance improvement even
for the relatively large model such as VGG-16. It further
implies the importance of HPO that the performance gain
obtained by tuning hyperparameter is not simply substituted
by increasing the capacity of CNN architecture.

4.2. Transfer Learning

A wide range of computer vision tasks employs a pre-
trained model that is trained on a large-scale dataset such
as ImageNet [30]. By utilizing meaningful features learned
from a large amount of data, transfer learning has success-
fully boosted the performance of CNNs in various tasks
[35]. In this scenario, it is reasonable to suspect that the
problem of slow-starter is probably mitigated as the network

Table 3. Top-1 accuracy (%) of transfer learning on CIFAR-10/100
and Tiny-ImageNet with VGG-16 pretrained on ImageNet dataset.

CIFAR-10 CIFAR-100 Tiny-ImgNet
Baseline 93.79 74.97 53.26
Random 93.50 74.47 52.64

SHA 94.17 75.22 54.11
Hyperband 94.01 74.99 53.96

MORL 94.46 76.86 55.52

converges fast from the pre-trained weights.
We follow the same training policy as our object classifi-

cation experiment except for the initial learning rate of the
baseline which is reduced by a factor of 10, following com-
mon practice for transfer learning. We opt for the ImageNet
pre-trained VGG-16 network, which is widely adopted in
various computer vision tasks [10, 25, 29] and train the net-
work on CIFAR-10/100 and Tiny ImageNet dataset. We
report the top-1 validation accuracy in Table 3. As expected,
SHA and Hyperband show improved performance with re-
spect to the baseline, whereas they often failed to outperform
when trained from scratch as shown in Table 1 and 2. Never-
theless, MORL consistently outperforms other methods by
a meaningful margin which suggests that the slow-starting
tendency is mitigated but remained in the transfer learning
setting as well.

4.3. Semi-Supervised Learning

We finally demonstrate the effectiveness of MORL in
semi-supervised learning (SSL) task which jointly learns
from a small number of labeled samples and a large number
of unlabeled samples. Since considerable amounts of unla-
beled images are utilized with the supervision from scarce
labeled images, it is crucial to find a good hyperparameter
configuration. We make use of pseudo-label based SSL al-
gorithm [2] which outperforms state-of-the-art consistency
regularization methods. For a fair comparison, we adopt
their official implementation2 utilizing its default training
seed in order to compare different methods under consistent
settings and facilitate further research.

The hand-tuned baseline consists of two-stage training.
It first trains the network only with the labeled data as a
warm-up phase, then finetunes the network with both labeled
and unlabeled data. While the warm-up stage stabilizes the
training process by initializing unlabeled data with more
reliable prediction, it incurs model developers to explore
a much larger search space since the hyperparameter for
each stage needs to be tuned independently. Furthermore,
it requires additional resources to train a model for the first
stage. However, if HPO provides better configurations which
enable stable training of the second stage, we can omit the

2https://github.com/EricArazo/PseudoLabeling
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Table 4. Top-1 accuracy (%) of semi-supervised learning on CIFAR-
100 with respect to a varying number of labeled data. While MORL
does not include a warm-up stage, it significantly boosts the perfor-
mance of the baseline which consists of two-stage training.

500 labels 1000 labels 2000 labels
Baseline 29.73 45.71 55.56
Random 31.19 46.65 54.08

SHA 32.77 45.21 54.65
Hyperband 32.56 45.51 54.99

MORL 35.22 48.52 57.18

Table 5. The best configuration obtained with MORL algorithm in
semi-supervised learning experiments. The optimized WD value
decreases as it uses more labeled samples. (LR: learning rate, WD:
weight decay, MMT: momentum, BS: batch size)

LR WD MMT BS
500 labels 0.0242 0.0043 0.5652 92

1000 labels 0.0311 0.0032 0.6834 87
2000 labels 0.0238 0.0027 0.3926 84

warm-up stage. Therefore, we exclude the warm-up stage
and train the network from scratch for multi-fidelity opti-
mization methods. However, for the baseline, we follow the
original two-stage training as the author suggested.

We utilize 13-CNN architecture [3] which is mainly ex-
plored in the paper and follow its data processing and op-
timization setting. Following the original implementation,
the network is trained using SGD optimizer with Dropout
[33] and Mix-up [40] regularization for 400 epochs where
the learning rate is decayed by a factor of 10 at 250 and
350 epoch for the baseline. Table 4 shows the top-1 accu-
racy of CIFAR-100 dataset with respect to a varying number
of labeled samples. Surprisingly, MORL achieves signifi-
cant performance improvement over the baseline throughout
the experiments even without the warm-up stage. It further
demonstrates the efficacy of MORL in various settings where
it works well with a varying number of labeled samples and
strong regularization methods such as Mix-up and Dropout.

We further report the top-performing configuration for
varying number of labels in Table 5, where each setting
shows a distinct configuration. While it remains challenging
to perform precise analysis due to the nature of hyperparam-
eters, we observe that higher weight decay is applied when
there exists a small number of labeled images. It conforms to
common intuition that more regularization is desired when a
small number of data is given as the network tends to overfit.
Our results suggest that it is important to tailor hyperpa-
rameters in each experiment setting, a process that can be
effectively automated by MORL.
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Figure 5. Comparison of different minimum exponent smin on
CIFAR-100 with VGG-11 architecture.

5. Ablation Study and Analysis
In this section, we perform an ablation study and an-

alytical experiments to gain an insight into the algorithm
design choice and potential extensions of MORL. We follow
the same procedure of object classification experiment on
CIFAR-100 in section 4.1 for the empirical study.

5.1. Ablation on Minimum Exponent

We conduct an ablation on minimum exponent smin

which adjusts the trade-off between the total number of
configurations and minimum resource given a fixed bud-
get. Since a minimum resource of ηsmin is allocated to each
configuration, small smin enables to explore more config-
urations by aggressive early-stopping whereas large smin

enables more precise low-fidelity approximation by allocat-
ing more resources to each configuration.

As shown in Figure 5, while smin = 0 achieves mod-
erate performance in the early phase by exploring order-
of-magnitude more configurations, it shows a slow rate of
improvement due to imprecise low-fidelity approximation.
On the other hand, it exhibits comparably low performance
throughout the optimization process when smin is large be-
cause only a small number of configurations can be explored.
This result indicates the importance of allocating adequate
initial resource and exploring various configurations. While
smin = 2 works generally well throughout the various tasks,
datasets and architectures, one might combine MORL with
Hyperband which automates the choice of smin. We found
that Hyperband works well with MORL, showing slightly
worse performance than smin = 2 (72.8 vs 72.6).

5.2. Integration with Bayesian Optimization

Bayesian optimization adaptively suggests configuration
to evaluate given observations of hyperparameter configura-
tion and its corresponding performance. By incorporating
the prior observations into fitting a probabilistic model, it
enables to explore more probable candidates compared to

2315



10 20 30 40 50 60
budget (r)

50

55

60

65

70

75
to

p-
1 

ac
cu

ra
cy

 (%
)

Baseline
MORL
TPE
TPE+MORL
Random

Figure 6. Performance of MORL combined with Tree-structured
Parzen Estimator (TPE) on CIFAR-100 with VGG-11. MORL
is orthogonal to TPE, complementing the limitation of Bayesian
optimization by allowing to explore much more configurations.

random search [4, 6]. However, vanilla Bayesian optimiza-
tion typically requires a lot of resources to achieve satisfying
performance as it needs to train a full model to get one
observation. Previous work [8] showed that Bayesian opti-
mization can be successfully combined with multi-fidelity
optimization to benefit from the advantage of each method.

Among various Bayesian optimization algorithms, we
choose Tree-Structured Parzen Estimator (TPE) [4] which
models density function based on good and bad observations.
It is widely adopted because it is relatively fast and robust
to high dimension. We borrow a TPE implementation of
the popular HPO framework [1] with the multivariate option
which considers the dependencies among hyperparameters.
As shown in Figure 6, TPE exhibits significantly better per-
formance compared to random search as it suggests more
plausible configurations. However, it shows limited perfor-
mance as it only evaluates a small number of configurations.
When integrating MORL with TPE, it consistently shows
the best performance throughout the HPO process. It im-
plies that the advantage of MORL is orthogonal to Bayesian
optimization methods and they complement each other by
exploring more configurations and adaptively suggesting
configurations. We summarize top-performing configura-
tions in Table 6. The top-5 high-performing configurations
are diversely distributed, not similar to each other, demon-
strating the importance of exploration in HPO.

5.3. Various Learning Rate Schedule
We finally demonstrate the scalability of MORL with

respect to various learning rate schedules. Specifically, we
further examine MORL with step, cyclical and linear learn-
ing rate which are widely used and adopted in popular deep
learning framework [28]. Step learning rate decays the learn-
ing rate by a given factor once the epoch reaches the spec-
ified milestone, cyclical learning rate [32] monotonically
increases then decreases learning rate within a cycle and

Table 6. Top-5 configurations of VGG-11 on CIFAR-100 obtained
by MORL combined with Bayesian optimization. (LR: learning
rate, WD: weight decay, MMT: momentum, BS: batch size).

LR WD MMT BS Accuracy
Top-1 0.0284 0.0147 0.0596 89 73.71
Top-2 0.0039 0.0148 0.7976 71 73.53
Top-3 0.0122 0.0187 0.7371 218 73.50
Top-4 0.0072 0.0216 0.3322 69 73.24
Top-5 0.0128 0.0218 0.3417 107 73.15

Table 7. Comparison of different learning rate schedules combined
with MORL on CIFAR-100 with VGG-16. The effectiveness of
MORL is not constrained to a certain learning rate schedule.

Top-1 Accuracy
Baseline 73.58

Step LR + MORL 75.80
Linear LR + MORL 75.89

Cyclical LR + MORL 75.68
Cosine annealing LR + MORL 76.01

linear learning rate linearly decreases learning rate given
cycle. Each learning rate schedule is condensed to fit each
round of promotion and restarted every round. For the step
learning rate, we follow the ratio of decaying epoch in sec-
tion 4.1. Table 7 shows the results of various learning rate
schedules combined with MORL. Throughout the all tested
learning rate schedules, MORL boosts the performance of
the baseline by a considerable margin. Furthermore, the
performance gap among varying schedules is within the al-
lowable range. These results show that the advantage of
MORL is not restricted to a certain learning rate schedule
but can be extended to various schedules.

6. Conclusion
In this work, we present Multi-fidelity Optimization with

a Recurring Learning rate (MORL) which enables precise
low-fidelity approximation among hyperparameter configu-
rations. By incorporating the learning rate schedule into
the multi-fidelity optimization process, MORL achieves
to search outstanding configuration within a practical bud-
get. Our extensive experiments on a wide range of settings
demonstrate the effectiveness of MORL in hyperparameter
optimization. While previous works often fail to improve
hand-tuned hyperparameters, MORL successfully outper-
forms human experts by a significant margin. Furthermore,
we verify that the proposed method is orthogonal to Bayesian
optimization and applicable to various learning rate sched-
ules. We hope that our work contributes to automating hy-
perparameter tuning process and pushing the boundary of
CNN’s performance in various applications.
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