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Abstract

Recent advances in Generative Adversarial Networks
(GANs) have enabled photo-realistic synthesis of single ob-
ject images. Yet, modeling more complex distributions, such
as scenes with multiple objects, remains challenging. The
difficulty stems from the incalculable variety of scene con-
figurations which contain multiple objects of different cat-
egories placed at various locations. In this paper, we aim
to alleviate the difficulty by enhancing the discriminative
ability of the discriminator through a locally defined self-
supervised pretext task. To this end, we design a discrimi-
nator to leverage multi-scale local feedback that guides the
generator to better model local semantic structures in the
scene. Then, we require the discriminator to carry out pixel-
level contrastive learning at multiple scales to enhance dis-
criminative capability on local regions. Experimental re-
sults on several challenging scene datasets show that our
method improves the synthesis quality by a substantial mar-
gin compared to state-of-the-art baselines.

1. Introduction
In recent years, generative adversarial networks (GAN)

[11] have achieved significant improvements due to exten-
sive studies on network structures [35, 53, 3, 24, 25, 38],
objective functions [30, 1, 27], and regularization tech-
niques [13, 32, 31]. Now GAN models can produce high-
quality images that are almost indistinguishable from real
ones, showing impressive results in the wide range of ob-
ject classes including human faces [24], animals [3, 38], and
cars [25]. Despite these successes, when it comes to more
complex images such as scenes with multiple objects, they
easily fail to achieve the same level of realism as in single
object images [4, 10].

In single object images, there is a common layout of each
component, allowing it easier for the discriminator to super-
vise where and how each component should be synthesized
to result in a realistic image. For instance, each compo-
nent of dog’s face, e.g., eyes, nose, and mouth, may vary in
shapes and proportions, but remain in a common layout that

forms the face. On the other hand, natural scene images ex-
hibit much more diverse and complex distributions as they
include a collection of objects in various sizes, shapes, and
spatial locations [4, 40, 18]. Therefore, it is much harder for
the discriminator to learn multi-layered differences between
real and fake images from local semantic structures, such as
objects, to overall scene layouts [39, 10]. As a result, even
state-of-the-art GAN models produce unsatisfactory results
of limited distribution coverage and low synthesis quality
with messy layouts and incomplete internal objects.

In this work, we explore a way to improve discriminative
ability on such complex scenes through a self-supervised
pretext task assigned to the discriminator. Self-supervised
representation learning has been extensively studied in re-
cent years and shown to yield beneficial representations for
various downstream tasks [5, 14, 12]. The progress con-
tinues to generative models and recent studies have shown
GAN models also can be improved by leveraging vari-
ous self-supervised pretext tasks such as rotation predic-
tion [6, 41, 17], consistency regularization [54, 56] and
contrastive learning [57, 21, 49]. While successful, exist-
ing studies mainly focus on enhancing image-level global
representations especially for single-object images, thus the
improvement tend to be limited for more complex data dis-
tributions, such as scene images containing various local
objects.

To better model complex local semantic structures in
the scene images, we propose to enhance local represen-
tations as well as the global representation with auxiliary
pretext tasks locally defined and at multiple scales. To this
end, we design a multi-scale discriminator having multi-
level branches where each branch processes local patches
of different sizes. Branch at each scale produces per-pixel
auxiliary representations as well as per-pixel discriminator
logits. These auxiliary representations are used to perform
pixel-level contrastive learning to enhance per-pixel classi-
fication task. Both tasks are defined for each scale level and
jointly optimized across all scales, thereby the discrimina-
tor could improve local-to-global discriminative ability to
better model local structures in complex scenes at various
scales.
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Figure 1. Overview of the proposed method. Our approach improves the discriminative ability by two means. First, we train the model
through multi-scale local adversarial feedback generated from feature pyramid of backbone network. To further enhance the feedback,
the discriminator performs multi-scale contrastive learning which aims to distinguish between positive features from the augmented image
T (x) and negative features from other irrelevant images.

We evaluate our method on several challenging scene im-
age datasets with metrics for both scene-level and object-
level synthesis quality. Compared to recent state-of-the-art
GAN models, our method consistently achieves better re-
sults in terms of visual quality and diversity. In particular,
our method significantly improves synthesis quality of indi-
vidual objects in the scene, demonstrating that multi-scale
representation learning effectively enhances the adversarial
feedback to better model local semantic structures.

2. Related Work

2.1. Discriminator Design for GAN

Discriminator’s ability to distinguish between real and
fake images plays a critical role in GAN training, since
the generator entirely relies on the feedback signal passed
from the discriminator. Such ability has been signifi-
cantly improved with the advances in discriminator archi-
tectures, from multi-layer perceptrons [11] to convolutional
networks [35, 22], residual networks [32, 24], and self-
attention based models [53, 3, 52]. However, even state-of-
the-art models still struggle in modeling complex scenes,
since they rely solely on global discriminator feedback
therefore missing high frequency details. To alleviate the
problem, we redesign the discriminator to utilize local feed-
back on multiple scales.

Local discriminator feedback has been used in various
conditional image generation tasks [58, 19, 33, 8, 51] in
the form of PatchGAN discriminator [20]. To cover mul-

tiple scales, Wang et al. [43] propose to use multiple Patch-
GAN discriminators to process each image interpolated at
different resolutions. These architectures have been help-
ful for modeling high frequency patterns, but they rely on
explicit conditions such as segmentation maps or input im-
ages, to model global layouts. In contrast, our method al-
lows to model local-to-global structures by utilizing multi-
scale feedback which emerges from natural hierarchy in-
herent in the pyramidal features of backbone network. Re-
cently proposed ProjectedGAN [37] has also verified the
usefulness of multi-scale features, but they focus on mixing
multiple levels of pretrained features rather than utilizing
local feedback.

2.2. Self-supervised Learning for GAN

Self-supervised learning has been recognized as one of
the most influential methodologies in recent years as it can
learn informative representations from a large amount of
unlabeled data. Recent studies have shown that GAN train-
ing can also benefit from various self-supervised pretext
tasks. A group of works [6, 41, 17] have shown that the
rotation prediction task prevents catastrophic forgetting in
GAN and leads to better results. Consistency regulariza-
tion [54, 56] stabilizes GAN training by imposing consis-
tency of discriminator output between a clean image and its
augmented version. More recently, several studies have ex-
plored the use of the instance discrimination task [45, 14, 5]
as an auxiliary task to further enhance the discriminator
[57, 21, 49]. The self-supervised pretext tasks generally
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involve various image transformation functions to acquire
different views of an image. In GAN training, differen-
tiable image transformations [23, 55] applied on both real
and fake images have shown to stabilize the training in lim-
ited data regimes and improve the data efficiency. Our work
relies on previous findings on improved GAN training with
self-supervised pretext tasks. However, while all previous
studies focus on enhancing global representation space by
integrating image-level tasks, in this work, we seek to en-
hance region-level representations to improve discrimina-
tive ability on local features.

2.3. Dense Representation Learning

Recent studies on self-supervised representation learn-
ing mainly focus on image-level representations for object-
centric images, i.e., ImageNet [9]. Despite their success, the
image-level global representations are often sub-optimal for
general vision tasks defined on complex scenes, as globally
pooled representations lose spatial information of local ob-
jects. Therefore, more recent works attempt to learn pixel-
level [34, 48, 44] or region-level [36, 46, 47] representa-
tions and have achieved meaningful improvements in dense
prediction downstream tasks such as object detection and
instance segmentation. We repurpose the dense representa-
tion learning as a mean to aid the real-fake discrimination
on multiple scales, thereby validate its efficacy on improv-
ing synthesis quality of local objects in complex scenes.

3. Method
In this section, we describe the proposed method,

namely, Multi-scale Contrastive Discriminator (MsConD)
in detail. First, we briefly introduce the image synthe-
sis methodology of standard GAN in Section 3.1. We
then describe the improved discriminator architecture in
Section 3.2, followed by multi-scale pixel-level contrastive
learning that further enhances the discriminator in Sec-
tion 3.3 and finally the full objective function which opti-
mizes the entire network in Section 3.4.

3.1. Generative Adversarial Networks

A standard GAN involves a minimax optimization be-
tween two networks, a generator G and a discriminator D
as follows:

min
G

max
D

Ladv(G,D) =

Ex∼pdata
[logD(x)] + Ez∼pz

[log(1−D(G(z)))] , (1)

where pdata is an empirical data distribution and pz is a
known prior distribution. D aims to distinguish between
real images and generated images while G aims to syn-
thesize realistic-looking images so that they can be distin-
guished as real ones by D. Intuitively, since G is opti-

mized by the criteria presented by D, the synthesis qual-
ity is limited to the discriminative ability of D. Therefore,
this work focuses on improving the discriminative ability by
two means: redesigning the discriminator architecture and
introducing an effective auxiliary task for it.

3.2. Multi-scale Discriminator with Multi-level
Branches

In unconditional image synthesis, a discriminator is typ-
ically equipped with several sub-sampling layers that pro-
gressively downsample the input high-resolution images
into lower resolution features constructing pyramidal fea-
ture maps [35, 3, 53, 24]. To enable discrimination of
each local feature in the feature maps, we use branches for
each scale l to translate the intermediate features into corre-
sponding local outputs. Each branch consists of three com-
ponents: residual blocks ϕl

res, a classification head ϕl
disc,

and a projection head ϕl
proj . All components are imple-

mented with 1× 1 convolution layers to process each local
feature individually. Figure 2 (left) shows the proposed dis-
criminator design.

Concretely, our discriminator D is composed of back-
bone network F and per-scale branch networks ϕl =
{ϕl

res, ϕ
l
disc, ϕ

l
proj}. Given an input image, the backbone

network F produces multi-scale feature maps. We denote
the feature map at scale level l as fl. fl is first transformed
into hl of the same shape by ϕl

res and then hl is processed
by two separate head networks, a real/fake classification
head ϕl

disc and a projection head ϕl
proj to produce two out-

puts U l and V l.

hl = ϕl
res(fl) ∈ RHl×Wl×Ch (2)

Ul = ϕl
disc(hl) ∈ RHl×Wl×1 (3)

Vl = ϕl
proj(hl) ∈ RHl×Wl×Cp , (4)

where Cp is number of channels of the projection output.
We denote the classification head output Ul and the pro-

jection output Vl for an input image x as Dl
disc(x) and

Dl
proj(x), respectively. Dl

disc(x) is used to compute per-
pixel adversarial loss at l-th scale while Dl

proj(x) is used to
perform pixel-level contrastive learning which will be de-
scribed in the following section. The adversarial loss at l-
th scale is computed by averaging all per-pixel adversarial
losses as follows:

Ll
adv(G,D) = Ex

[
1

HlWl

∑
i,j

log
[
Dl

disc(x)
]
i,j

]

+ Ez

[
1

HlWl

∑
i,j

log
(
1−

[
Dl

disc(G(z))
]
i,j

)]
,

(5)

where
[
Dl

disc(x)
]
i,j

refers to the classification output at
pixel (i, j). As shown in Figure 2 (left), the global rep-
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Figure 2. Discriminator architecture (left). Our discriminator produces multi-scale outputs from the intermediate features at different
layers via layer-wise branches. At each layer, the intermediate feature map fl is mapped into two different outputs: the discriminator output
Dl

disc(x) and the projection output Dl
proj(x). Two outputs are used to compute the per-pixel adversarial loss Ll

adv and the pixel-level
contrastive loss Ll

con, respectively. Spatially consistent Pixel-level contrastive learning (right). For each per-pixel feature (red ×) in the
projection output of the clean image x, the positive feature set (red +) in the augmented image T (x) is defined with a predefined distance
threshold t. On the other hand, the negative feature set are constructed with features from images in the same mini-batch.

resentation at the top of the backbone network is likewise
mapped to the global discriminator output and the global
projection output, which are used to compute the adversar-
ial and contrastive losses, respectively. See Section 1 in
Supplementary Material for more details.

3.3. Multi-scale Contrastive Learning for GAN

The redesigned discriminator learns to differentiate be-
tween real and fake images based on local-to-global region-
level decisions. To further enhance the discriminative abil-
ity, we propose to assign the discriminator an auxiliary self-
supervised task designed to enrich the region-level repre-
sentation on which each decision is performed.

Given a clean image x, its augmented view T (x) is ob-
tained by applying a differentiable transformation T . Then
the respective projection outputs V l

q and V l
k at l-th scale are

extracted through the projection branch:

V l
q = Dl

proj(x) ∈ RHlWl×Cp (6)

V l
k = Dl

proj (T (x)) ∈ RHlWl×Cp . (7)

Instance discrimination task [45, 14, 5] is a widely
adopted pretext task in self-supervised representation learn-
ing. Typically, it conducts training by contrasting the posi-
tive views of an instance from the negative views which are
irrelevant to the instance. In image-level instance discrimi-
nation task, the positive features can be easily obtained by
simply applying random transformations to an image. How-
ever, our objective is to learn local representations to sup-
port real-fake decision on individual local features, thereby
an instance for the task no longer represents the whole im-
age but local regions of an image. In this case, the positive

features should be cautiously identified to ensure sufficient
overlap between the regions represented by the features.
Otherwise, it can interfere with representation learning by
associating areas that are completely unrelated to each other
in the image.

In this work, we identify two feature vectors from V l
q

and V l
k as a positive pair if they are close enough to contain

the same region in the image [48]. The spatial closeness
is measured by the Euclidean distance between the coor-
dinates of two feature vectors in the image space. Figure 2
(right) shows an example. Concretely, we warp the pixels in
V l
k into the clean image space to obtain the reference coor-

dinates and compute all-pair Euclidean distances between
the coordinates of feature vectors in the two feature maps
V l
q and V l

k . For each feature vector vq ∈ RCp in V l
q , we

define the positive feature set from V l
k as follows:

pos(vq) = {vk ∈ V l
k : dist(vq, vk) < t}, (8)

where dist(vq, vk) denotes the Euclidean distance between
the coordinates of feature vectors vq and vk in the clean
image space, and t is predefined distance threshold.

On the other hand, we construct the negative feature set
neg(vq) with the same level features from other images in
the same mini-batch. It is worth noting that we use both real
and fake images for negative features in order to construct
larger negative set. We empirically observed that this leads
to a slight performance improvement. With positive and
negative feature sets, the contrastive loss at l-th layer can be
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formulated as:

Ll
con(x, T (x)) =

∑
vq∈V l

q

− log

∑
vk∈pos(vq)

evq·vk/τ∑
vk∈pos(vq)

evq·vk/τ +
∑

vk∈neg(vq)

evq·vk/τ
,

(9)

where τ is a temperature hyper-parameter which is set to
0.3. We normalize the feature vector vq and vk before com-
puting the contrastive loss thus the dot product between
them assesses the cosine similarity between the vectors.

We demand the discriminator to solve the same task for
fake images G(z) and their augmented views T (G(z)). In
this way, the discriminator can learn from infinite samples
generated by the model beyond the limited amount real im-
ages [49]. Finally, the contrastive loss at l-th scale is com-
puted using contrastive losses applied on both real and fake
sample as follows:

Ll
con(D) =Ex

[
Ll
con(x, T (x))

]
+

Ez

[
Ll
con (G(z), T (G(z)))

]
. (10)

3.4. Full objective

The total loss for MsConD is calculated using adversarial
loss and contrastive loss summed on all scales as follows:

Ladv(G,D) =
∑
l

Ll
adv(G,D) (11)

Lcon(D) =
∑
l

Ll
con(D) (12)

min
G

max
D

Ladv(G,D)− λLcon(D), (13)

where λ controls the strength of contrastive loss. We found
that λ = 0.2 gives desirable balance between the two loss
terms, and we use this value for all experiments.

3.5. Implementation and Training

The MsConD is implemented upon the resnet-based dis-
criminator of StyleGAN2 [25]. We adopt the training tech-
niques used in StyleGAN2 including lazy R1 regularization
and path length regularization. For augmentation T , we use
differentiable transformations including pixel blitting, ge-
ometric and color transformations following StyleGAN2-
ADA [23]. One notable difference is that StyleGAN2 com-
putes the R1 regularization loss using the global discrimi-
nator output, whereas MsConD computes the R1 losses for
each branch output and regularizes the network with the
sum of the losses. We use Adam optimizer with batch size
of 32, learning rate of 0.002, β1 = 0.0 and β2 = 0.99.
All models including the baselines have been trained for the
same number of training steps (10 million images).

4. Experiments
Datasets. We evaluate the proposed method on three chal-
lenging scene image datasets. Cityscapes [7] contains 25k
images of street scenes recorded from a driving car in 50
cities. LSUN [50] is a large collection of scene images
covering wide range of indoor and outdoor scenes. Among
them, we choose livingroom and kitchen dataset as bench-
mark datasets since they exhibit highly complex data dis-
tributions derived from diverse scene layouts with various
objects. Livingroom and kitchen datasets contain 1.3 mil-
lion and 2.2 million scene images, respectively. All images
used in the experiments are resized to 256× 256 resolution.

Evaluation metrics. To quantitatively evaluate the syn-
thesis quality, we use Frechet inception distance [15], Ker-
nel inception distance [2], Precision, and Recall [26]. Fol-
lowing the previous works [16, 23], all metrics are calcu-
lated using 50,000 fake images and all training images.

Perceptual quality of scene images is largely determined
by synthesis quality of individual objects within the scene.
Since there is no object-level label in the evaluation dataset,
we employ a pretrained object detector to identify objects
depicted in both real and generated scenes. Then we calcu-
late FID scores using the crops of detected objects for each
object category. The object crops detected from 50,000 real
images are used to obtain per-category real distributions.
For a fair comparison, we calculate the FID using the same
number of object crops from each model. We use YOLOR
[42] object detector trained on MS-COCO [28].

Comparison methods. We use several recent competitive
models as our baselines. UnetGAN [38] and StyleGAN2
[25] are utilized to compare different discriminator archi-
tectures. ADA [23] uses differentiable data augmentations,
while InsGen [49] applies image-level instance discrimi-
nation upon ADA. ProjectedGAN [37] is a parallel state-
of-the-art study using multiple discriminators to leverage
multi-scale features from pretrained networks. We use offi-
cially released code base of baseline methods except for Un-
etGAN where we employ better backbone of StyleGAN2.

We use the same StyleGAN2 generator for all methods
to fairly compare the discriminator ability except for Pro-
jectedGAN where the lighter generator, i.e., FastGAN [29]
generator, has been reported to perform better. Since we
observed that most methods are highly sensitive to the R1
penalty term [31], we carefully explored the best perform-
ing R1 weights in the range of 1 to 50 for each method.
For ADA and InsGen, we use the same set of image trans-
formations consisting of pixel blitting, geometric and color
transformations, which have shown the most stable results
in the literature. For other hyper-parameters, we use the
same values as originally proposed in each paper.
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Figure 3. Comparison of generated samples. We demand pre-trained generators to reconstruct the same real image query to compare
aligned results. Zoom in for details. Compared to the baselines, MsConD shows better results with more realistic scene components, such
as cars, buildings, tables, sofas, lamps, sink, drawers, etc. See Section 3 in Supplementary Material for more samples.
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Cityscapes Livingroom Kitchen

Method FID↓ KID↓ Prec↑ Rec↑ FID↓ KID↓ Prec↑ Rec↑ FID↓ KID↓ Prec↑ Rec↑

UnetGAN [38] 14.47 8.41 0.434 0.132 6.73 3.92 0.518 0.265 6.71 4.13 0.528 0.290
StyleGAN2 [25] 8.04 5.27 0.539 0.260 4.64 2.22 0.512 0.268 5.10 2.58 0.530 0.305
ADA [23] 5.03 1.86 0.604 0.221 4.95 2.34 0.507 0.267 6.47 3.62 0.484 0.272
InsGen [49] 4.21 1.64 0.583 0.349 4.17 2.09 0.556 0.318 5.76 2.57 0.535 0.312
ProjectedGAN [37] 5.07 1.94 0.620 0.270 5.51 2.36 0.571 0.273 4.38 2.11 0.587 0.250

MsConD (Ours) 2.63 0.99 0.605 0.485 2.73 1.14 0.538 0.431 2.88 0.97 0.544 0.429
Table 1. Comparison result on Scene-level generation metrics. FID, KID, Precision, and Recall are reported as evaluation metrics. We
highlight the best in bold and second best with underline. For KID, we report KID ×103.

Cityscapes car person traffic light truck bus

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

StyleGAN2 [25] 10.96 7.38 26.75 16.96 86.71 51.06 34.06 16.46 61.45 24.51
InsGen [49] 7.89 4.72 26.04 14.52 81.52 40.53 36.65 15.50 64.01 25.30
ProjectedGAN [37] 20.12 11.12 32.59 30.41 96.51 32.78 57.14 12.39 76.50 37.46

MsConD (Ours) 4.57 2.64 17.02 8.60 48.16 17.50 23.13 6.14 52.80 18.90

Livingroom couch chair potted plant tv vase

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

StyleGAN2 [25] 11.21 8.06 14.58 8.64 16.09 8.14 12.22 9.02 40.19 6.19
InsGen [49] 9.57 7.01 14.22 9.03 14.20 7.42 14.62 11.23 39.44 5.75
ProjectedGAN [37] 8.60 4.68 21.77 10.18 22.16 12.03 12.76 7.12 42.87 6.44

MsConD (Ours) 4.30 2.19 8.64 3.66 10.15 2.92 9.51 4.47 35.86 3.52

Kitchen oven chair microwave potted plant refrigerator

FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

StyleGAN2 [25] 8.91 4.98 19.89 11.32 11.82 7.57 21.77 10.89 19.11 10.05
InsGen [49] 9.15 4.87 19.70 10.49 11.74 6.14 20.18 7.89 17.45 8.83
ProjectedGAN [37] 13.78 6.01 21.74 9.42 20.06 12.29 25.95 8.24 21.55 13.60

MsConD (Ours) 5.01 1.36 13.28 5.54 8.85 3.33 15.17 3.40 12.36 4.86
Table 2. Object-level metrics for each object category. We compute FID and KID scores on the crops of detected objects for each object
category. Different object categories are detected according to different data domains. For KID, we report KID ×103.

4.1. Comparison to State-of-the-Art

Scene-level Metrics. Table 1 shows the quantitative com-
parison result using standard GAN metrics. In terms of FID,
our method outperforms all other baselines, achieving 37%,
35% and 33% relative improvements in each dataset com-
pared to the best baseline methods. Our method achieves
significantly improved recall across all datasets, demon-
strating its capability to synthesize diverse scene images.
Albeit ProjectedGAN achieves the highest precision, we
empirically observed that it produces larger fraction of arti-
facts than other methods. This is also verified by its inferior
object synthesis quality in Table 2. We speculate that the
pretrained feature space learned on object-centric images,
i.e., ImageNet, may not be best suited for learning more
complex data distributions.

Object-level Metrics. To validate if our method improves
the synthesis quality of individual objects in the scene, we
measure FID, KID, and IS scores for top 5 most frequent ob-

ject categories detected in each data domain. Table 2 shows
the comparative result. In all object categories, our method
achieves significantly improved metric scores over the base-
lines. These results validate that the proposed MsConD ef-
fectively incentivizes the generator to improve local details
and produce more realistic objects in the scene images. Fig-
ure 3 provides visual comparison between samples gener-
ated by different methods. As shown, our method produces
more realistic scene details with a well arranged layout over
other methods. See Section 3 in Supplementary Material for
more result.

4.2. Ablation study

In this section, we conduct an ablation study to inves-
tigate how each component of MsConD contributes to the
generation performance. Figure 4 summarizes the ablation
results. Figure 4 (a) shows scene-level FID when MsConD
is trained with different scales of feature maps. We compare
the model with/without multi-scale contrastive loss Lcon to

770



Figure 4. Quantitative Ablation Result. (a) Comparison results
in terms of scene-level FID under different model configurations.
For each configuration, we plot the results when different scales of
feature maps are utilized. For example, ‘1-8’ means that the model
uses feature maps whose height is from 1 to 8. (b) The effect of
distance threshold t using 1-16 full MsConD.
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validate its efficacy. As shown in the result, in both cases,
the generation performance increases as more feature maps
are utilized, yet the performance is prominently boosted
through multi-scale contrastive learning. We also report the
result with contrastive learning but without distance thresh-
old t to verify the effectiveness of our strategy for positive
feature sampling. In this case, we use all pairs of local fea-
tures from augmented images as positive samples without
any spatial constraints. The result shows that the perfor-
mance gain is far limited without the distance threshold,
since semantically irrelevant local features impede the rep-
resentation learning.

To further investigate the effect of distance threshold, we
report FID and Recall with varying thresholds in Figure 4
(b). The performance deteriorates if t is too high or too
low. When t is too low, only a narrow range of features are
utilized as positive features, degrading the sample diversity.
On the other hand, if the t is too high, irrelevant features
could be treated as the positive features, and possibly hinder
the learning.

Figure 5 shows samples generated by MsConD trained
under different configurations. When the model is trained
without multi-scale adversarial loss (W/O MS Adv.), local
objects tend to be incomplete and discontinued as the gener-
ator is not provided with local feedback. On the other hand,

MsConD (Full)MsConD W/O MS Adv. MsConD W/O MS Con.Real

Figure 5. Qualitative ablation result on Livingroom dataset.
Comparison of representative samples under different model con-
figurations. Zoom in for details.

when the model is trained only with multi-scale adversarial
loss (W/O MS Con.), we observe repetitive patterns often
appear in the generated images, which are known to be a
common side-effect of PatchGAN discriminator. These ar-
tifacts are prominently mitigated in the results of MsConD,
resulting in more realistic local objects. See Section 2 in
Supplementary Material for additional ablation study and
analysis.

5. Conclusion
Despite recent advances of GANs, challenges still re-

main in modeling more complex data distributions. One
of these challenges lies in learning complex and diverse lo-
cal structures, such as individual objects in scene images.
To mitigate the difficulty, we redesign the discriminator to
leverage local feedback from multi-scale features through
multi-level branches. In addition, we propose to enrich
the multi-scale representations through contrastive learning
in order to further enhance the multi-scale GAN feedback.
Experimental results show our method improves the local-
to-global discriminative ability, thus effectively incentivizes
the generator to synthesize diverse scene images with real-
istic details.

Acknowledgements
This work was supported by Institute of Information &

communications Technology Planning & Evaluation (IITP)
grant funded by the Korean government (MSIT) (No.2021-
0-00302). This work was also supported in part by the
National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT, and Future Planning
through the Basic Science Research Program under Grant
2020R1F1A1075952.

771



References
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.

Wasserstein generative adversarial networks. In Interna-
tional conference on machine learning, pages 214–223.
PMLR, 2017.
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