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Abstract

This paper analyzes the effects of dynamically varying
video contents and detection latency on the real-time detec-
tion accuracy of a detector and proposes a new run-time ac-
curacy variation model, ROMA, based on the findings from
the analysis. ROMA is designed to select an optimal de-
tector out of a set of detectors in real time without label
information to maximize real-time object detection accu-
racy. ROMA utilizing four YOLOv4 detectors on an NVIDIA
Jetson Nano shows real-time accuracy improvements by 4
to 37% for a scenario of dynamically varying video con-
tents and detection latency consisting of MOT17Det and
MOT20Det datasets, compared to individual YOLOv4 de-
tectors and two state-of-the-art runtime techniques.

1. Introduction
Real-time object detection plays a fundamental role

in various applications such as self-driving cars, real-
time object tracking, real-time activity recognition, and
robotics [23, 13, 10]. However, using a single detector is
limited in improving detection performance on dynamically
varying video contents and dynamically varying compute
resources, due to a fixed backbone network. In this regard,
many run-time techniques explored how to select an optimal
selector out of multiple detectors to improve the detection
performance [13] or to save compute resources, given an
accuracy budget [9, 14]. E.g., switching between multiple
detectors in real-time according to object size distribution in
test data can improve the detection performance, compared
to utilizing a single detector [13].

Previous approaches utilizing multiple detectors [13, 9,
14] are limited in practice for real-time object detection ap-
plications. E.g., a run-time approach selects an optimal
network based on periodic accuracy assessment, requiring
labels from data [9]. However, the ground truths are not
known in real-time for many real-time applications. An-
other run-time approach selects an optimal network assum-
ing that available compute resources are fixed [13]. How-

ever, the available compute resources can vary in practice
according to the background workload. Lou et al. [14] con-
sidered dynamically varying compute resources but did not
consider the impact of dynamically varying object sizes and
speeds on the accuracy. Therefore, a natural question arises:
how can an optimal detector be selected without accessing
labeled data based on the effects of both dynamically vary-
ing video contents and available compute resources? To the
best of our knowledge, no solution to this problem exists in
the literature.

Real-time accuracy highly depends on the available com-
pute resources, unlike offline detection accuracy. E.g., if
a computing device is shared to analyze multiple video
streams, adding a new video analysis task will reduce the
amount of computation available to the other tasks. The re-
duced compute resources increase the detection latency, de-
grading the real-time performance. The increased latency
can be addressed by dropping frames [13, 10] or downsam-
pling frames [9, 12]. As such, the computational efficiency
of real-time video analytics is tightly bound to its real-time
accuracy.

We model the effects of dynamically varying object
sizes, moving speeds, and detection latency on the real-
time accuracy of each detector by separating the effects
into two parts: the effects of dynamically varying objects
on the accuracy and the effects of dynamically varying ob-
ject speeds and latency on the accuracy. We establish a
new model based on this idea and this model can be used
to choose the best performing detector out of multiple de-
tectors without label information. The model estimates are
computed based on information available at run-time: char-
acteristics of the objects detected in the current and previ-
ous frame, and the detection latency. We name our run-
time accuracy estimation model as Runtime Object Detec-
tion Accuracy Variation Estimation to Maximize Real-Time
Accuracy (ROMA). The main contributions of this paper in-
clude:

• Analysis of the effects of dynamically varying com-
pute resources and video contents on the real-time ac-
curacy variation.
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• A novel run-time accuracy estimation model, ROMA,
that estimates the Relative Average Precision (RAP) of
each detector to a currently running detector without
label information. ROMA is designed, independently
of detector types and computing platforms.

• Demonstrating ROMA using multiple YOLOv4 detec-
tors [3] on an NVIDIA Jetson Nano with the Multi-
ple Object Tracking Challenge 2017 (MOT17Det) and
2020 (MOT20Det) datasets [1] for dynamically vary-
ing video content and compute resources use cases.

We present related work in section 2, analysis of real-time
accuracy variation and the implementation of ROMA in sec-
tion 3, the experimental evaluation in section 4, and con-
clude our paper in section 5.

2. Related Work
Several researchers attempted to control the frame rate

of video streams at run-time according to dynamically vary-
ing video contents to improve real-time detection accuracy
[9, 12, 10]. Korshunov et al. [10] discussed that slower-
moving objects were correctly detected when a higher frac-
tion of the frames were dropped, implying that high frame
rates were unnecessary in such cases. Mohan et al. [18] es-
timated the least sufficient Frame Per Second (FPS) during
run-time for object tracking applications to save bandwidth
between cameras and the compute devices, given the accu-
racy budgets. E.g., if the tracked object is within a distance
threshold on the subsequent frames, the FPS is lowered until
it violates the threshold.

Zoph et al. [30] proposed Neural Architectural Search
(NAS) to seek optimal DNN models in the space of hy-
perparameters of network width, depth, and resolution.
Since then, many NAS variants attempted to seek resource-
efficient DNNs to deploy them on resource-constrained de-
vices [7, 20, 21, 22, 24, 2, 4]. E.g., Tan et al. [22] proposed a
resource-aware NAS, Efficientdet, to seek resource-efficient
detectors for object detection applications. Recently, a
feed-forward NAS approach [4] produced resource-efficient
DNNs, given computing resource and latency constraints.

A different strand of work aims to select the most appro-
priate detector from a set of available detectors [14, 13, 9] or
an appropriate channel width out of a single multi-capacity
detector [5, 28]. Lee et al. [13] exploit temporal locality and
select an optimal detector in real-time based on the sizes of
objects in the video. Boundaries between object sizes were
empirically determined using the MOT17Det dataset [1].
Their run-time technique “Transprecise Object Detection
(TOD)” selects the detector that corresponds to the median
object size found in the last frame. Lou et al. [14] pro-
pose a Latency-Aware Detection (LAD) run-time technique
that selects the detector with the highest latency that meets
the required frame rate, which corresponds to the detector

with the highest off-line detection accuracy that meets the
frame rate. Both TOD [13] and LAD [14] required multiple
resource-efficient detectors to be uploaded to DRAM at ini-
tialization time to minimize the time overhead of switching
detectors. E.g., TOD required an 11% additional memory
footprint to upload four different detectors on an NVIDIA
Jetson Nano device, compared to uploading a single heavy-
weight detector out of the four detectors [13].

Yu et al. [29] propose the run-time technique of prun-
ing unimportant neurons. A run-time decision maker [16]
switched between multiple detectors during run-time to im-
prove image classification accuracy. Fang et al. [5] im-
plemented a multi-capacity DNN, “NestDNN”, and dy-
namically selected an optimal sub-DNN of NestDNN to
improve image classification accuracy given compute re-
sources. Minhas et al. [17] selected an appropriate detec-
tor model according to dynamically varying accuracy con-
straints to improve the inference throughput.

A lightweight object tracking algorithm can be utilized
to improve bounding boxes locations at dropped frames.
For example, a Faster RCNN [19] coupled with various
object tracking algorithms were used as a new detector
candidate, and a decision maker chose the best configura-
tion of a Faster RCNN (e.g., the number of region pro-
posals and a DNN input resolution) coupled with an op-
timal object tracking algorithm according to dynamically
varying available compute resources and object moving
speeds [26, 27, 25]. The decision makers [26, 25] consid-
ered the average of object sizes, but the average of object
sizes is limited in representing the histogram of object sizes
appeared in a frame.

Each of these works addresses some aspect that ROMA
solves. However, none of these works provides an optimal
solution that handles all requirements at the same time: op-
erating without labeled data, adapting to dynamically vary-
ing object sizes and speeds, and adapting decisions based on
dynamically changing compute budget. It is possible to in-
corporate object tracking algorithm to infer bounding boxes
locations at dropped frames. The benefits may be minimal
due to the way mAP is measured. E.g., a minor correction
on the position with a tracking algorithm would have lim-
ited impact on whether the overlap is higher or lower than
50%. Therefore, we did not pursue this. In addition, the
latency of tracking (e.g., 20 − 550ms on an NVIDIA Jet-
son TX2 [27]) would drop many frames to maintain real-
time processing, which would cause a reduction in accu-
racy. We leave it as an open question whether ROMA can
be improved by incorporating a tracker.

3. ROMA: Run-Time Accuracy Variation
We discuss the real-time accuracy trade-off between the

offline accuracy and the latency of a detector using the Av-
erage Precision (AP) metric. Later, we discuss the ROMA.
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Figure 1. Accuracy Variation with Dynamically Varying Objects’ Speeds and Available Compute Resources

3.1. Real-Time Accuracy Characteristics

Central to our approach to processing the video stream
in real-time without running behind is to drop frames when
the frame rate cannot be achieved [10, 13]. When frames
are dropped, we apply the same object detection bounding
boxes as the previous frame that was analyzed. Figure 1 an-
alyzes the key problems that may occur when copying the
detection bounding boxes from analyzed frames to subse-
quently dropped frames.

Consider case (c) (Figure 1, center) as a baseline. As
the skier moves, it leaves the bounding box identified for
frame #1. In frame #2, the overlap between the previ-
ously identified bounding box and the skier is sufficient to
consider a correct detection (e.g., an Intersection of Union
(IoU) is larger than 50%). However, in frame #3, the skier
has moved further and the detection fails, based on infor-
mation in frame #1. As such, dropping frame #2 still allows
obtaining a correct prediction, while dropping frame #3 re-
sults in an incorrect prediction.

Accuracy for dropped frames is dependent on the video
contents, in particular the speed at which objects move and
the original video frame rate. Case (a) shows a scenario
where the movement of the skier is less than in case (c).
In this case, the skier can be detected correctly in both
frames #2 and #3 when those frames are dropped. In
case (b), the speed of the skier is higher, and the bound-
ing box found in frame #1 quickly becomes stale in both
frames #2 and #3.

Another major factor that impacts on real-time object de-
tection accuracy is computational latency. Computational
latency may vary across object detectors (trading-off com-

plexity of the detector against its accuracy), or when the
compute hardware is shared with other workloads. When
it takes longer to analyze a frame, then a higher number of
subsequent frames need to be dropped in order to keep up
with the real-time frame rate (case (d)). Alternatively, if
frames can be analyzed more quickly (case (e)), a higher
fraction of frames can be analyzed. As such, one expects a
higher detection accuracy.

In real-time object detection, the choice of object detec-
tor has a complicated impact on accuracy, as it simultane-
ously impacts on several factors. A heavyweight detectorre-
quires more computation to be performed, while achieving
higher accuracy than a lightweight detector [8]. However,
by requiring more computation, a higher number of frames
will need to be dropped (Figure 1, case (d)), which nega-
tively impacts on accuracy. Similarly, a lightweight detec-
tor may be able to analyze more frames, but it does so with
less accuracy than the heavyweight detector.

Additionally, the contents of the video frames impacts
on accuracy. E.g., lightweight detectors achieve comparable
accuracy to heavyweight detectors on large objects, but not
so on small objects [8]. The goal of this paper is to detangle
the complex interaction between video content and latency
of executing the object detector for real-time accuracy of an
object detector. As a use case, we exemplify one of stage-
of-the-art YOLOv4 detectors [3]. A YOLOv4 employs ei-
ther a 9-layered DNN backbone for a tiny version [6] or a
53-layered DNN backbone for a full version [3]. The two
knobs, the DNN’s resolution rDNN and the detector struc-
ture (i.e., tiny vs full version), can be used to control the
trade-off between speed and offline AP of YOLOv4 in real-
time. E.g., smaller objects can be detected more by employ-
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Figure 2. Notations for Frames and Frame Block Sizes

ing a higher rDNN or a full version detector. However, the
longer detection latency can hurt real-time accuracy.

While the ROMA model is informed by experiments
with YOLOv4s, other detectors might have different char-
acteristics not present in the YOLO detectors, and may re-
quire an extension of the model.

3.2. Notations for Frames and Frame Block Sizes

We describe our model that estimates RAPs in this sec-
tion. In the beginning, we use the notations for n detector
candidates in a detector pool d as follows:

d = {d1, ..., dn}. (1)

A video stream consists of a sequence of frames, which
are analyzed one by one by an object detector. The ithf frame
in the sequence is identified as fif , where if = 0, 1, 2, . . ..
Some frames are analyzed by the detector, while others are
dropped when frames arrive faster than they can be ana-
lyzed. The model estimates RAPs using a series of frames
consisting of the detected frame and subsequently dropped
frames. We refer to such a series of frames associated with
a detector as a frame block of a detector and the number of
frames consisting of a frame block as a frame block size.
E.g., the first frame in a frame block is analyzed by the
object detector and the remaining ones have been dropped.
Therefore, the first analyzed frame is commonly used for
each frame block associated with each detector and the
frame block size of each detector depends on the number
of dropped frames of a detector. Thus, we use the notation
fs(t) for the tth analyzed frame, where t = 0, 1, 2, . . . and
s(t) associates with a corresponding frame index if . This
way, we can link the analyzed frame index t to a frame se-
quence number if .

Fig. 2 describes our mathematical notations for frames
and frame block sizes with an example for the number of
detectors n = 3. As such, a frame block starting with fs(t)
consists of frames fs(t), fs(t)+1, fs(t)+2, . . . , fs(t)+bt,i−1,
where bt,i indicates the frame block size of a frame block
starting at fs(t) associated with a detector di. Likewise, we
use the notation dc(t) for a currently chosen detector to de-
tect objects at the frame fs(t), where c(t) associates with

a detector index i. We will estimate RAP of each detector
di based on its own frame block, compared to a currently
running detector dc(t).

The AP at fs(t) is the offline AP of a detector, and the AP
is expected to degrade gradually as the number of dropped
frames increase in proportion to the expected number of
missing objects due to IoU deviation between fs(t) and a
dropped frame. Hence, ROMA estimates the offline AP of
each detector and then seeks the accuracy degradation rate
at each dropped frame.

3.3. Offline AP Estimation of Each Detector

If the precision distribution is equivalent among the ob-
jects detected from each detector, the recall becomes the
main factor in determining the AP. The recall is improved in
proportion to the number of detected objects which highly
depends on object size distribution on a video frame. Based
on the above assumption, we estimate the number of objects
detected of each detector di for offline AP estimation using
the object size distribution detected at fs(t) using dc(t).

To do so, we first seek the detection performance ratios
between di and dc(t) at different object size regions using
an offline dataset (i.e., not used for evaluation dataset). We
divide the object sizes (i.e., the number of pixels) into the
H regions and measure the number of detected objects of
each detector di to form an pi vector as follows:

pi = [p1(di), p2(di), ..., pH(di)]
T , (2)

where pk(di) is the number of detected objects at the region
k using the detector di. Utilizing each pi generates a prior
histogram matrix P as follows:

P = [p1,p2, ...,pn]
T . (3)

Next, the number of objects directly detected on fs(t) using
the current detector dc(t) with respect to each region can
generate a vector p̃t,c(t) as follows:

p̃t,c(t) = [p̃1(dc(t)), p̃2(dc(t)), ..., p̃H(dc(t))], (4)

where p̃k(dc(t)) is the number of objects detected at region
k on fs(t) using the detector dc(t).

Next, the relative number of detected objects of di to
dc(t) at each region is estimated as follows:

ri,c(t) = [p1(di)/p1(dc(t)), ..., pH(di)/pH(dc(t))]
T . (5)

Notice that p̃k(dc(t)) is run-time detection information
which varies over time according to video contents on fs(t)
while pk(dc(t)) is offline detection information using offline
data, which is fixed over time. From this point forward, we
will use tilde notations for data measured during run-time
(e.g., p̃t,c(t)).
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Finally, we estimate the number of objects detected on
fs(t) using a detector di by utilizing both the run-time in-
formation p̃t,c(t) and the detection ratio information ri,c(t):

lt,i = rTi,c(t)p̃t,c(t). (6)

If i = c(t), we use the tilde notation, l̃t,c(t), since the num-
ber of detected objects at fs(t) is directly measured rather
than estimated.

3.4. AP Degradation at Each Dropped Frame

We estimate the AP degradation rate at each jth dropped
frame (e.g., fs(t)+j , where j ≥ 1), compared to the
AP on the analyzed frame fs(t). We use the notation
APt,i(fs(t)+j) for the estimated AP of a detector di at the
frame fs(t)+j in a frame block and the notation AP t,i for
the estimated average AP of di over frames in a frame block
starting with the frame fs(t):

AP t,i = Σ
bt,i−1
j=0 APt,i(fs(t)+j)/bt,i. (7)

Each APt,i(fs(t)+j) is either lower than or equal to
APt,i(fs(t)), since some of detected objects on fs(t) can
be lost due to limited overlap between objects’ bounding
boxes multiple frames apart. In this regard, we model
APt,i(fs(t)+j) by introducing an accuracy degradation ratio
parameter as follows:

APt,i(fs(t)+j) = APt,i(fs(t))× βs(t)+j , (8)

where each βs(t)+j represents an AP degradation ratio at the
frame fs(t)+j , compared to the AP at fs(t) (e.g., βs(t) = 1
always and 0 ≤ βs(t)+j ≤ 1, where j ≥ 1). We notice that
βs(t)+j can be shared among all detectors, since the ratio
mainly relies on the average of detected objects’ moving
speeds depending on video contents rather than a detector
type.

We estimate βs(t)+j with three steps. In step 1, we esti-
mate the frame block size bt,i of di. In step 2, we estimate
the number of missing objects per dropped frame due to the
IoU deviations using bt,i. In step 3, βs(t)+j is estimated
using the estimated number of missing objects per frame.

For the step 1, the detection latency of di, Lt,i, deter-
mines bt,i. If a detector is not switched between fs(t−1) and
fs(t), Lt,i is updated as follows:

Lt,i = (L̃t,c(t)/Lt−1,c(t))×Lt−1,i, if c(t) = c(t− 1). (9)

This way, if available compute resources varies between
fs(t−1) and fs(t), Lt,i is updated by using a latency vari-
ation ratio L̃t,c(t)/Lt−1,c(t). If the detector is changed be-
tween fs(t−1) and fs(t) (i.e., c(t− 1) ̸= c(t)), the estimated
latency Lt,c(t) is directly updated to the measured latency
L̃t,c(t):

Lt,c(t) = L̃t,c(t), if i = c(t) and c(t) ̸= c(t− 1). (10)

The rest of estimated latency Lt,i of the other detectors are
unchanged if c(t− 1) ̸= c(t):

Lt,i = Lt−1,i if i ̸= c(t) and c(t) ̸= c(t− 1). (11)

We do not utilize Eq. (9) for c(t) ̸= c(t− 1), so that the up-
date of other detectors’ latency utilizes the latency ratio de-
rived only from the direct measurements ( i.e., Lt−1,c(t) =

L̃t−1,c(t) if c(t) = c(t − 1)). Using an Lt,i and an FPS
constraint FPS, the bt,i is estimated as follows:

bt,i = f(FPS,Lt,i) = ⌊FPS × Lt,i⌋+ 1. (12)

Notice that each bt,i is varying with t according to the avail-
ability of compute resources.

For the step 2, we estimate the number of missing objects
per frame due to IoU deviation between bounding boxes de-
tected at fs(t−1) and fs(t). To do so, we measure the number
of objects m̃t during run-time that satisfy an IoU thresh-
old between the two consequent detected frames based on
Algorithm 1. Using m̃t, we seek the number of objects,

Algorithm 1 Measuring the number of objects satisfying an
IoU threshold

m̃t = 0 // Initialize the number of survived objects.
for io = 1, 2, ..., l̃(t−1),c(t−1) do

for jo = 1, 2, ..., l̃t,c(t) do
Measure IoU[io][jo] between the two bounding
boxes of io and jo
if IoU[io][jo] ≥ IoU threshold then

m̃t = m̃t + 1
break

end if
end for

end for

m̄t, that violates an IoU threshold between the two detected
frames as follows:

m̄t = l̃(t−1),c(t−1) − m̃t, (13)

where l̃(t−1),c(t−1) is the number of detected objects at
fs(t−1) measured by dc(t−1). Now, we can estimate the
number of missing objects per frame, ut, as follows:

ut = m̄t/bt,c(t). (14)

For the step 3, we estimate the number of objects de-
tected at fs(t)+j , qs(t)+j , using ut iteratively as follows:

qs(t)+j = qs(t)+j−1 − ut, (15)

where qs(t) = l̃t,c(t). Notice that we leverage tem-
poral locality and assume that ut (measured between
fs(t−1) and fs(t)) can be applied for the frames from
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fs(t) to fs(t+1). The ut objects out of qs(t)+j−1 objects
at fs(t)+j−1 are generally switched from TPs to FPs at
fs(t)+j , letting both precision and recall drop in propor-
tion to the ratio of (qs(t)+j/qs(t)+j−1) at fs(t)+j , com-
pared to fs(t)+j−1. Therefore, it is highly probable that the
AP at the frame fs(t)+j drops quadradically in proportion
to (qs(t)+j/qs(t)+j−1), compared to the frame fs(t)+j−1.
Now, we estimate βs(t)+j based on this observation:

βs(t)+j = βs(t)+j−1 × (qs(t)+j/qs(t)+j−1)
2. (16)

3.5. Estimating Relative Average Precision

The RAP of di to dc(t), at,i, can be expressed using an
offline accuracy ratio between the two detectors, αt,i, and
an accuracy degradation ratio between the two detectors,
γt,i, as follows:

at,i = AP t,i/AP t,c(t) = αt,i × γt,i, (17)

where

αt,i = APt,i(fs(t))/APt,c(t)(fs(t)) ≈ lt,i/l̃t,c(t) (18)

and

γt,i = (Σ
bt,i−1
j=0 βs(t)+j/bt,i)/(Σ

bt,c(t)−1

j=0 βs(t)+j/bt,c(t)).
(19)

ROMA chooses one of dis that has the index i of the maxi-
mum at,i.

3.6. Implementation of ROMA

This section exemplifies the implementation of ROMA
(i.e., Eq. (17)) in terms of the initialization process and run-
ning process.

3.6.1 Initialization

At initialization time, multiple detectors are uploaded to
DRAM. An FPS constraint, FPS, is found based on a video
file. The initial frame block size bi,0 uses the prior latency
information of the detector di on a compute platform. The
histogram matrix P is found using a video dataset unseen
from the evaluation dataset. The default detector is cho-
sen as the slowest detector. The maximum frame block size
is set to 30, and the all βs(0)+js are initialized to ‘1’ for
0 ≤ j ≤ 29.

3.6.2 Running Process

For the updates of αt,i in Eq (18), the lt,is are estimated
using Eq. (6). To prevent the division by zero in Eq. (18),
we add 0.1 to the divisor. The rt,i is found using Eq. (5)
and the p̃t,c(t) in Eq. (6) is found using the detected bound-
ing boxes information at the frame fs(t) using dc(t). Each

frame block size bt,i is updated based on Eq. (12). Depend-
ing on whether dc(t) is changed between fs(t−1) and fs(t),
each Lt,i is estimated using Eq. (9) for c(t) = c(t − 1) or
Eq. (10) and Eq. (11) for c(t) ̸= c(t − 1). The number of
objects satisfying an IoU threshold is computed based on
Algorithm 1 and the number of missing objects per frame
ut is computed using Eq. (14). Each βs(t)+j is computed
based on Eq. (15) and Eq. (16). The detector with the index
i that has the maximum value of at,i in Eq. (17) is selected
to be run at the frame fs(t+1).

If bt,c(t) < bt,i, no run-time information is available for
the βs(t)+j updates where j ≥ bt,c(t). In this case, we lever-
age the ratio of βs(t−1)+j/βs(t−1)+j−1 for the βs(t)+j up-
dates as follows:

βs(t)+j = βs(t)+j−1 × βs(t−1)+j/βs(t−1)+j−1. (20)

Eq. (20) can update βs(t)+j up to the maximum frame block
size depending on the detectors dis. We address another
special case in which the accuracy of βs(t)+j can suffer
from noise of bounding boxes severely when bt,c(t) is low.
To mitigate its effect, we set up a minimum frame block
size threshold to update βs(t)+j : bth = 3. E.g., if a frame
block size of a current detector is larger than or equal to
bth, we update βs(t)+j . Otherwise, we utilize βs(t−1)+js
for βs(t)+js.

4. Experimental Evaluation
The experimental setting is as follows:

- Computing Platform: An NVIDIA Jetson Nano Board
(MAX power mode).
- Object Detectors: YOLOv4-Tiny-288 (YT288),
YOLOv4-Tiny-416 (YT416), YOLOv4-Full-288 (YF288),
and YOLOv4-Full-416 (YF416) optimized by TensorRT
with an FP16 (i.e., half precision) option. The confidence
score thresholds are set to 0.3 for all YOLOs. The IoU
threshold in Algorithm 1 is set to 0.5.
- Evaluation Datasets: MOT17Det and MOT20Det [1].
- Prior Histogram Matrix P: P with H = 3, gener-
ated using four MOT15 datasets named ETH-Bahnhof,
ETH-Sunnyday, TUD-Campus, and TUD-Stadtmitte, each
having 640× 480 resolutions [11].

P =


1921 3550 2748
4603 3872 2488
8502 3506 2982
9526 3603 2993

 (21)

We chose H = 3, each for small object size region rs,
medium object size region rm, and large object size region
rl. We set up the object size boundaries for s1 = 2500
(pixel2) between rs and rm, and s2 = 7500 between rm
and rl with respect to a 640×480 resolution video frame so
that each region can contain at least 20% of detected objects
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out of total detected objects across the three regions.
- Comparison with State-Of-The-Art Techniques: YT288,
YT416, YF288, YF416, TOD [13], and LAD [14]. Notice
that LAD in our paper utilizes the four YOLOv4 models in-
stead of the detectors generated from [4]. It downgrades a
detector to the next lighter detector (e.g., YT416 to YT288)
when the latency violates an FPS constraint and upgrades a
detector to the next heavier detector (e.g., YT288 to YT416)
when the inference latency is lower than 30% of the latency
constraint.
- Accuracy Evaluation Tool: MATLAB interface MOT eval-
uation tool kit provided by [1] (i.e., an 11-point interpola-
tion assessment using an IoU threshold of 0.5). If the pre-
cision is reported as ‘0’ at the recall point ‘0’ based on the
evaluation tool, we take a precision at the recall point as:
p(r) = max

r′
p(r′), where p(r) is the precision value at a

recall point r and r′ ≥ r [15].
- Real-Time AP: We measure the real-time object detection
accuracy as used in [13, 9]; the bounding box information
detected from the previous frame was used for the AP as-
sessment for the subsequent dropped frames.

4.1. Real-Time AP Measurements

We evaluate real-time APs for TOD, LAD, the four dif-
ferent YOLOv4s, and ROMA on MOT17/20Det datasets
while imposing four different workloads as shown in Ta-
ble 1: case (a) for no background workload, case (b) for
background workload with running a YT288, case (c) for
background workload with running a YT416, and case (d)
for background workload with running a YF416.

Using MOT17Det, ROMA outperforms all single detec-
tors and other run-time techniques in terms of the average
APs for each case of (a) to (d) as shown with bold marks in
Table 1. Table 1 shows that deploying one single resource-
efficient detector limits the real-time accuracy for dynami-
cally varying video contents and compute resources using
MOT17Det (e.g., motivation of run-time techniques such as
[9, 14, 13]). E.g., deploying YF416 can be a good choice
for case (a), but can be the worst choice for case (d). No-
tice that state-of-the-art detectors, posted on the MOT web-
site [1], are very slow therefore very low real-time AP on
embedded devices like the Jetson Nano.

Fig. 3 shows the average APs of all detectors across cases
(a) to (d) using MOT17Det and MOT20Det, respectively.
This scenario mimics a dynamically varying compute re-
sources and video content scenario in which each of the
four different compute resources (i.e., (a) to (d)) is avail-
able for 1/4 of the entire execution time and each video
dataset is included in proportion to the number of frames
of the dataset. The ROMA shows the accuracy improve-
ments of 1.23, 1.03, 1.05, 1.10, 1.28, and 1.06 × compared
to YT288, YT416, YF288, YF416, LAD, and TOD, respec-
tively using MOT17Det, even though there are effectively
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0.3
0.4
0.5
0.6
0.7
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Average APs (case (a) to (d)) MOT17Det
MOT20Det

Figure 3. Average APs (MOT17Det and MOT20Det)

Figure 4. MOT17-04 (Left) and MOT20-05 (Right) [1]

fewer valuable YOLOs to choose from. Therefore, the AP
difference between ROMA and any individual YOLO can
be limited. This implies that ROMA is suitable for dynam-
ically varying compute resources for each different video
content case.

For MOT20Det, ROMA is the second best detector, fol-
lowing YF416, since MOT20Det contains more people than
MOT17Det. E.g., Fig. 4 shows MOT17-04 and MOT20-05,
respectively. The time overhead of ROMA quadratically in-
creases in proportion to the number of detected objects as
shown in Algorithm 1. E.g., the time overhead of ROMA
on an NVIDIA Jetson Nano is measured as 6ms for case
(a) on MOT17-04 and 12ms on MOT20-05. Notice that the
time overhead does not depend on the number of objects
on a video frame but on the number of detected objects
using a detector. YF416 is chosen by ROMA with 100%
for both MOT17-04 and MOT20-05 as shown in Fig. 7.
Considering the detection latency of YF416 (225ms), the
time overhead of ROMA did not affect the real-time accu-
racy on MOT17-04, but on MOT20-05 across case (a) to
(d) based on Table 1. However, ROMA has equivalent per-
formance to YF416 on the other MOT20Det datasets. Even
though TOD and LAD have lower time overhead on average
than ROMA (e.g., 0.5ms for TOD and 0.01ms for LAD for
MOT17Det), the decision of ROMA is more accurate than
TOD and LAD, resulting in higher real-time accuracy.

Finally, we consider another scenario containing both
MOT17Det and MOT20Det to compute the average AP of
each detector across the four cases. In this scenario, Fig. 5
shows that ROMA is the best performing detector, showing
1.37, 1.04, 1.09, 1.06, 1.37, and 1.06× performance im-
provement, compared to YT288, YT416, YF288, YF416,
LAD, and TOD, respectively.
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Table 1. Real-Time APs on MOT17/20Det with Background Workloads
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4.2. Decisions by ROMA

Fig. 6 shows the decisions made by ROMA with d1 =
Y T288, d2 = Y T416, d3 = Y F288, and d4 = Y F416 for
case (a) and (d) on MOT17-13.ROMA downgrades the de-
tectors used for case (a) to lighter detectors for case (d). A
bus moves straight in the direction aligned with the cam-
era in early frames and turns right later, increasing rela-
tive object speeds. ROMA switches a current detector to
a lighter detector when objects move faster. With a low dy-
namic range of object sizes and the object moving speeds,
the decision of ROMA was biased in early frames.

Fig. 7 shows the deployment frequency of each detec-
tor by ROMA on MOT17/20Dets. ROMA selects YF416
solely for MOT17-04, MOT20-01, 03, and 05 (e.g., video
frames captured by static cameras), while selects multiple
detectors dynamically for MOT17-05, 09, 11, and 13 (e.g.,

0%

20%

40%

60%

80%

100%

17-02 17-04 17-05 17-09 17-10 17-11 17-13 20-01 20-02 20-03 20-05
Datasets (MOT17Det and MOT20Det)

Deployment Frequency of ROMA 
- case (a) - YT288 YT416 YF288 YF416

Figure 7. Deployment Frequency by ROMA

video frames captured by moving cameras). ROMA selects
multiple detectors in MOT17-02 (static camera), since peo-
ple walk in early frames and later kids riding bicycles ap-
pear, increasing relative object speeds.

5. Conclusion

Deploying a single object detector limits real-time ac-
curacy on dynamically varying video contents and com-
pute resources due to the fixed structure of the detector,
which is the motivation of our paper. ROMA is designed
to switch between multiple detectors without label infor-
mation according to both dynamically varying video con-
tents and available compute resources. This paper claims
that the run-time information including the object size his-
tograms, the IoUs approximation, and the detection latency
is sufficient to estimate relative APs accurately for all de-
tector candidates according to dynamically varying video
contents and compute resources. ROMA demonstrates the
best real-time accuracy, compared to individual detectors
and two state-of-the-art run-time techniques.
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