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Abstract

Contrastive learning is one of the fastest growing re-
search areas in machine learning due to its ability to learn
useful representations without labeled data. However, con-
trastive learning is susceptible to feature suppression – i.e.,
it may discard important information relevant to the task
of interest, and learn irrelevant features. Past work has ad-
dressed this limitation via handcrafted data augmentations
that eliminate irrelevant information. This approach how-
ever does not work across all datasets and tasks. Further,
data augmentations fail in addressing feature suppression
in multi-attribute classification when one attribute can sup-
press features relevant to other attributes. In this paper, we
analyze the objective function of contrastive learning and
formally prove that it is vulnerable to feature suppression.
We then present Predictive Contrastive Learning (PrCL), a
framework for learning unsupervised representations that
are robust to feature suppression. The key idea is to force
the learned representation to predict the input, and hence
prevent it from discarding important information. Extensive
experiments verify that PrCL is robust to feature suppres-
sion and outperforms state-of-the-art contrastive learning
methods on a variety of datasets and tasks.

1. Introduction

The area of unsupervised or self-supervised representa-
tion learning is growing rapidly [12, 50, 27, 2, 53, 18, 35, 22,
33, 16, 14, 13, 15, 48, 49, 28, 34, 51, 52]. It refers to learn-
ing data representations that capture potential labels of inter-
est, and doing so without human supervision. Contrastive
learning is increasingly considered as a standard and highly
competitive method for unsupervised representation learning.
Features learned with this method have been shown to gener-
alize well to downstream tasks, and in some cases surpass the
performance of supervised models [37, 3, 43, 5, 6, 17, 8, 31].

*Indicates equal contribution. This work was supported by the MIT-IBM
Watson Research Collaboration grant.

(a) Digit & Bkgd (b) Face Attribute

Figure 1. (a) In Colorful-Moving-MNIST [42], the input has two
types of information: digit and background object. But contrastive
learning methods focus on the background object and ignore the
digit. (b) Each image in FairFace [30] has multiple attributes such
as age, gender, ethnicity, etc. Existing contrastive learning methods
focus on ethnicity and partially ignore other attributes.

Contrastive learning learns representations by contrasting
positive samples against negative samples. During training, a
data sample is chosen as an anchor (e.g., an image); positive
samples are chosen as different augmented versions of the
anchor (e.g., randomly cropping and color distorting the
image), whereas negative samples come from other samples
in the dataset.

Yet contrastive learning is vulnerable to feature suppres-
sion [19, 40, 32] – i.e., if simple features are contrastive
enough to separate positive samples from negative samples,
contrastive learning might learn such simple (or simpler)
features even if irrelevant to the tasks of interest, and other
more relevant features are suppressed. For example, the
authors of [5] show that color distribution can be used to dis-
tinguish patches cropped from the same image, from patches
from different images; yet such feature is not useful for
object classification. Past work addresses this problem by
designing handcrafted data augmentations that eliminate the
irrelevant features, so that the network may learn the relevant
information [24, 5, 6, 8, 7].

However, in many scenarios it is hard to design augmen-
tations to solve the problem of feature suppression. For
example, the authors of [42] highlight the scenario in Fig-
ure 1 (a), where each image shows a digit (from MNIST) on
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a randomly chosen background object (from STL-10). They
show that features related to background objects can create
a shortcut that prevent contrastive learning from learning
features related to digits. In this case, one cannot simply
eliminate the background information since such a design,
though would help digit classification, would harm the back-
ground classification task. A similar problem exists in the
task of human face attribute classification, where each face
image can be used in multiple downstream tasks including
gender, age, and ethnicity classification (Figure 1 (b)), but
the features learned by contrastive learning can be biased
to only one of the attributes (e.g., ethnicity) and show poor
performance on other attributes (gender and age) as shown
in the experiments section. It is hard to come up with data
augmentations that eliminate the dominant attribute without
harming the corresponding classification task. Moreover,
as machine learning keeps expanding to new modalities it
becomes increasingly difficult to design handcrafted data
augmentations because many new modalities are hard to di-
rectly interpret by humans (e.g., acceleration from wearable
devices), or the interpretation requires domain experts (e.g.,
medical data).

In this paper, we first provide a theoretical analysis of
contrastive learning and prove it is vulnerable to feature
suppression. Our analysis shows that even with large feature
dimensions, contrastive learning has many local minima that
discard significant information about the input, and hence
cause feature suppression. Furthermore, the value of the loss
function at such local minima is very close to its value at the
global minimum, making it hard to propel the model out of
such local minima.

Second, we propose predictive contrastive learning
(PrCL) as a training scheme that prevents feature suppression.
PrCL learns representations using contrastive and predictive
learning simultaneously. We use the term predictive learn-
ing to refer to tasks that force the representation to predict
the input, such as inpainting, colorization, or autoencoding.
Such tasks counter the effect of feature suppression because
they force the learned features to retain the information in
the input. More formally, if the contrastive loss (i.e., the
InfoNCE loss) gets stuck in a local minimum that loses se-
mantic information, the predictive loss naturally becomes
very high, forcing the model to exit such local minima. An
interesting feature of PrCL is that the predictive task is used
only during training, and hence introduces no computation
overhead during testing.

We evaluate PrCL and compare it with state-of-the-art
contrastive learning baselines on four different datasets: Im-
ageNet, MPII [1], Colorful-Moving-MNIST [42], and Fair-
Face [30]. For all tasks, PrCL achieves superior performance
and outperforms the state-of-the-art baselines by large mar-
gins, demonstrating robustness against feature suppression.

The paper makes the following contributions:

• It provides a theoretical analysis of contrastive learning
that proves its vulnerability to feature suppression.

• It introduces PrCL, an unsupervised learning framework
that automatically avoids feature suppression and provides
a representation that learns all of the semantics in the input
and can support different downstream tasks and multi-
attribute classification.

• It empirically shows that SOTA contrastive learning base-
lines (e.g., SimCLR, MoCo, and BYOL) suffer from fea-
ture suppression, and that PrCL outperforms those base-
lines on several important tasks including object recogni-
tion, pose estimation, and face attribute classification.

2. Related Work
Early work on unsupervised representation learning has

focused on designing pretext tasks and training the network
to predict their pseudo labels. Such tasks include solving
jigsaw puzzles [36], restoring a missing patch in the input
[38], or predicting image rotation [20]. However, pretext
tasks have to be handcrafted, and the generality of their
representations is typically limited [5].

Hence, researchers have recently focused on contrastive
learning, which emerged as a competitive and systematic
method for learning effective representations without human
supervision. The learned features generalize well to down-
stream tasks, outperform representations learned through
pretext tasks, and even surpass the performance of super-
vised models on some tasks [5, 6, 8, 24]. Multiple successful
contrastive learning frameworks have been proposed, which
typically differ in the way they sample negative pairs. To
name a few, SimCLR [5] uses a large batch size, and samples
negative pairs within each batch. The momentum-contrastive
approach (MoCo) [24] leverages a moving-average encoder
and a queue to generate negative samples on the fly during
training. Contrastive-Multiview-Coding [41] maintains a
memory-bank to store features and generate negative sam-
ples. Some recent methods, like BYOL [21], do not rely on
negative pairs [9, 21]. Instead, they use two neural networks
that learn from each other to boost performance.

Past work has also reported problems with contrastive
learning. It can focus on irrelevant features such as color dis-
tribution, and suppress more relevant features [5]. Past work
addressed this problem by using color-distortion as a data
augmentation. Also, the authors of [42] noted that when the
data includes multiple types of semantics, contrastive learn-
ing may learn one type of semantics and fail to learn effective
features of the other semantics (as in Figure 1(b) where the
background object information can suppress features related
to digits). They proposed a solution that learns contrastive
views suitable for the desired downstream task. While they
share our goal of supporting different downstream tasks,
their method requires supervision since they learn their con-
trastive views from labeled data. In contrast, our approach is
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completely unsupervised.
Another related work is contrastive-predictive-coding

(CPC) [37, 25]. CPC has some similarities with PrCL in
that it has a predictive task that aims to reconstruct missing
information. However, CPC aims to reconstruct the features
of a future frame, while PrCL reconstructs the raw input
data. As a result, the representation learned by CPC is not
forced to contain necessary information to reconstruct the
input, making it susceptible to feature suppression, just like
other contrastive learning methods.

The family of auto-encoders provides a popular frame-
work for unsupervised representation learning using a recon-
structive loss [26, 39, 45]. It trains an encoder to generate
low-dimensional latent codes that could reconstruct the en-
tire high-dimensional inputs. There are many types of AEs,
such as denoising auto-encoders [45], which corrupt the in-
put and let the latent codes reconstruct it, and variational
auto-encoders [39], which force the latent codes to follow
a prior distribution. Recently, masked auto-encoders with
transformer-based network architectures have demonstrated
great performance on unsupervised representation learning
[23, 4]. However, these works use architectures such as
BERT and ViT, which requires much more computation re-
sources than convolutional neural networks. PrCL can be
viewed as a special variant of the denoising auto-encoder
that forces the latent codes to have a ‘contrastive’ property
regularized by a contrastive loss. As a result, the latent codes,
are good not only for reconstructing the input, but also for
downstream classification tasks.

Finally, several concurrent papers published on Arxiv
also used a combination contrastive and reconstructive loss
[11, 29]. However, none of them explore the potential of this
combination to solve the feature suppression problem, or
provides a theoretical analysis of feature suppression. This
paper is the first to demonstrate that the combination of
contrastive and predictive loss can be used to avoid feature
suppression and learn general representations that support
multiple downstream tasks.

3. Analysis of Feature Suppression
Before delving into formal proofs, we provide an informal

description of our analysis as follows:

1. At low feature dimensions, contrastive learning loss (In-
foNCE) global minimum loses semantic information. This
is because with small feature dimensions, it is impossible
to keep all information about the input.

2. InfoNCE global minima at low dimensions (which loses
information from (1.) above), are local minima at higher
dimensions [Corollary 2]. Thus, even for high dimen-
sion features, it will have many local minima that lose
information about the input (i.e., feature suppression).

3. The value of infoNCE at such local minima (from (2.)

above) can be very close to its global minimum [Lemma
1 and Figure 2], making it hard to escape from such local
minima.

4. The above three points mean that, even at high dimen-
sions, contrastive learning is likely to get stuck in a local
minimum that exhibits feature suppression. Adding a pre-
dictive loss allows the model to exit such local minimum
and avoid feature suppression. This is because suppressed
features lose information about the input causing the pre-
dictive loss to become large, and push the model out from
such local minimum and away from feature suppression.

3.1. Formal Proof.

Let X = {xi}ni=1 be the set of the data points. We use
λij to indicate whether a data pair xi and xj is positive or
negative. Specifically, λij = 1 indicates a positive pair while
λij = 0 indicates a negative pair. Let Z = {zi}ni=1, where
zi = f(xi) = (z1i , · · · , zdi ) ∈ Sd−1, denote the learned
features on the hypersphere, generated by the neural network
f . t ∈ R+ is a scalar temperature parameter. We consider the
following empirical asymptotics of the infoNCE objective
function introduced in [46].

Definition 1 (Empirical infoNCE asymptotics).

ElimNCE(Z;X, t, d) ≜

− 1

tn2

∑
ij

λijz
⊤
i zj +

1

n

∑
i

log

 1

n

∑
j

ez
⊤
i zj/t


We are going to connect the landscape of empirical in-

foNCE asymptotics in the low dimension to that in the high
dimension. We start by defining a lifting operator that maps
a low dimensional vector to a higher dimension.

Definition 2 (Lifting operator). A lifting operator Tσ param-
eterized by an indexing function σ maps a d1-dimensional
vector to dimension d2 (d2 > d1). Its parameter σ is a
permutation of length d2. Given a d1-dimensional vector
z, the lifting operator maps it to a d2-dimensional vector
z̃ = Tσ(z) by the following rules: z̃t = zσ(t) if σ(t) ≤ d1,
otherwise z̃t = 0.

With a slight abuse of notations, we allow the lifting operator
to map a set of low dimensional vectors to higher dimension,
i.e. Tσ({zi}) = {Tσ(zi)}. We further allow the lifting
operator to map a function f of lower dimension to higher
dimension, i.e., Tσ(f)(x) = Tσ(f(x)). Note that Tσ is a
linear operator. We highlight several useful properties of Tσ:

Lemma 1 (Value Invariance). The value of the empirical
infoNCE asymptotics is invariant under the lifting opera-
tion. Formally, consider any lifting operator Tσ from the
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dimension d1 to the dimension d2. We have

ElimNCE(Tσ(Z);X, t, d2) = ElimNCE(Z;X, t, d1)

Proof. Following the definition of Tσ, ∀zi, zj , z⊤i zj =
Tσ(zi)⊤Tσ(zj). Therefore, ElimNCE(Tσ(Z);X, t, d2) =
ElimNCE(Z;X, t, d1).

Lemma 2 (Gradient Equivariance). The gradient of the
empirical infoNCE asymptotics is equivariant under the
lifting operation. Formally, consider any lifting operator
Tσ from the dimension d1 to the dimension d2. We have

∇z̃kElimNCE(Tσ(Z);X, t, d2) = Tσ (∇zkElimNCE(Z;X, t, d1))

Proof. The proof is in the supplemental material.

Corollary 1. For any lifting operator Tσ, if Ẑ = {ẑi} is
a stationary point of ElimNCE(Z;X, t, d1), then Tσ(Ẑ) is a
stationary point of ElimNCE(Z;X, t, d2).

Proof. Ẑ is a stationary point of ElimNCE(Z;X, τ, d1)
implies ∇ziElimNCE(Ẑ;X, τ, d1) = 0. There-
fore, by Lemma 2, ∇z̃iElimNCE(Tσ(Ẑ);X, τ, d2) =

Tσ
(
∇ziElimNCE(Ẑ;X, τ, d1)

)
= 0.

Corollary 2. For any lifting operator Tσ, if Ẑ = {ẑi} is
a global minimum of ElimNCE(Z;X, t, d1) with a positive
definite Hessian matrix, then Tσ(Ẑ) is a saddle point or a
local minimum of ElimNCE(Z;X, t, d2).

Proof. From Corollary 1, Tσ(Ẑ) is a stationary point
of ElimNCE(Z;X, τ, d2). Since the Hessian matrix of
ElimNCE(Z;X, τ, d1) at Ẑ is positive definite, ∀r > 0,∃Z ′ ∈
Br(Ẑ) s.t. ElimNCE(Z ′;X, τ, d1) > ElimNCE(Z;X, τ, d2),
where Br(Z) = {Z ′ ∈ Sd−1| ||Z − Z ′||2 < r}
is the neighborhood of Z with radius r. There-
fore, ElimNCE(Tσ(Z ′);X, τ, d1) > ElimNCE(Tσ(Z);X, τ, d2)
(Lemma 1). Note that Z ′ ∈ Br(Ẑ) → Tσ(Z ′) ∈
Br(Tσ(Ẑ)). Therefore, ∀r > 0,∃Tσ(Z ′) ∈ Br(Tσ(Ẑ))
s.t. ElimNCE(Tσ(Z ′);X, τ, d1) > ElimNCE(Tσ(Z);X, τ, d2).
Therefore, Tσ(Ẑ) is not a local maximum, so it can only be a
local minimum or a saddle point of ElimNCE(Z;X, τ, d2).

With Corollary 2, we can explain why contrastive learning
can suffer from feature suppression. Suppose f is a network
that achieves the global minimum of ElimNCE(Z;X, t, d1).
When d1 is relatively small (e.g., <100 for images), f must
lose some information about the input, i.e., suppress fea-
ture. From Corollary 2, Tσ(f) is a saddle point or a local
minimum of ElimNCE(Z;X, t, d2) where d2 > d1 and Tσ(f)
carries no more information than f . Therefore, for any di-
mension d > 1, there exists saddle point/local minimum of
ElimNCE(Z;X, t, d) which suppresses features.

𝑡
𝑡
𝑡

Figure 2. Optimal infoNCE loss vs. different output feature dimen-
sion d and temperature t.

Furthermore, the value of the aforementioned saddle
point/local minimum of ElimNCE(Z;X, t, d) is quite close
to that of the global minimum. This is because the opti-
mal value of ElimNCE(Z;X, t, d) converges quickly as d in-
creases. Figure 2 shows the curve of log0 F1(; d;

1
4t2 ), which

is the optimal value of the infoNCE loss [47]. As shown in
the figure, the curve essentially converges when d > 200.
Therefore, Tσ(f) can be a saddle point/local minimum of
ElimNCE(Z;X, t, d2), and its value can also be quite close to
that of the global minimum, making it hard to escape from
such local minimum. So effectively one can achieve a value
pretty close to the global minimum by suppressing features,
and stay at that saddle point being unable to escape. This
motivates our solution, which adds a predictive loss to force
the model out from such local minima that suppress features.

4. Predictive Contrastive Learning (PrCL)
Predictive contrastive learning (PrCL) is a framework

for self-supervised representation learning. It aims to learn
representations that are robust to feature suppression, and
capable of supporting multiple diverse downstream tasks.

The idea underlying PrCL is as follows: feature suppres-
sion is harmful because the representation loses important
information that was available in the input. Thus, to counter
feature suppression, PrCL uses a prediction loss to ensure
that the representation can restore the input, i.e., the features
have the information available at the input. Yet, keeping all
information in the features is not enough; the input already
has all information. By adding a contrastive loss, PrCL re-
organizes the information in the feature space to make it
amenable to downstream classification, i.e., samples that
have similar attributes/objects are closer to each other than
samples that have different attributes/objects. Figure 3 shows
the PrCL framework which has two branches: a contrastive
branch and a predictive branch.

(a) Contrastive Branch: The contrastive branch is illus-
trated in the orange box in Figure 3. Here, we use SimCLR
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Figure 3. Illustration of the PrCL framework. PrCL has two branches: 1) a predictive branch, illustrated in the blue box, which ensures that
the representation has enough information to restore missing patches in the input, and 2) a contrastive branch, illustrated in the orange box,
which ensures that the representation keeps positive samples close to each other and away from negative samples.

as an example to demonstrate the basic idea. However, this
contrastive branch can be easily adapted to any contrastive
learning method such as CPC, MoCo, and BYOL. For each
image, we first generate a pair of positive samples by using
two random augmentations τ1 and τ2, then we forward the
two augmented inputs separately to the encoder E, parame-
terized by θ and a multi-layer nonlinear projection head H
parameterized by h to get the latent representations z1 and
z2 for these two positive samples. We use the commonly
used InfoNCE loss [5] as the contrastive loss Lc. Namely,
for a batch of N different input images xi, i = 1, ..., N ,

Lc = −
N∑
i=1

log
∑ exp

(
sim(z2i, z2i+1)/t

)∑2N
k=1 1k ̸=2i exp

(
sim(z2i, zk)/t

) ,
where sim(u, v) = uT v/(∥u∥2∥v∥2) denotes the dot prod-
uct between the normalized u and v (i.e., cosine similar-
ity), and z2i, z2i+1 are the encoded features of positive
pairs generated from xi, i.e., z2i = Hh(Eθ(τ1(xi))) and
z2i+1 = Hh(Eθ(τ2(xi))).

(b) Predictive Branch: To choose a proper predictive
task, we need to consider two aspects: its ability to summa-
rize and abstract the input, and its applicability to different
datasets and tasks. In fact, many self-supervised learning
tasks, such as Auto-encoder, Colorization and Inpainting,
are predictive since they all aim to restore the input. But,
those tasks do not have the same ability to both retain and
abstract information. For example, inpainting is a stronger
predictive task than autoencoding in terms of its ability to
both abstract and retain information. Thus, although both
of them would help in strengthening contrastive learning
against feature suppression, inpainting is likely to provide

more gains.
Another issue to consider is the applicability of the cho-

sen task to various datasets. For example, colorization is
applicable only to colorful RGB datasets, but not to grey-
scale datasets such as MNIST or medical image datasets. In
contrast, a task like inpainting is easier to translate across
different datasets.

Given the above considerations, we adopt inpainting as
the default predictive task. In the supplemental material, we
compare various tasks and show that while they all improve
performance, inpainting delivers higher gains.

Figure 3 shows how PrCL uses the inpainting task, where
given an input image x, we first randomly mask several
patches to get the masked input M(x). Then the masked
input is passed through an encoder network E with parameter
θ, and a decoder network D, with parameter δ, to obtain the
reconstruction result Dδ(Eθ(M(x))). The prediction loss
Lp is defined as the reconstruction error between the original
input x and the reconstructed one Dδ(Eθ(M(x))):

Lp = ||Dδ(Eθ(M(x)))− x||2.

(c) Training Procedure: We have empirically found that
it is better to train the model in two phases. In the first phase,
only the predictive branch is trained. In the second phase,
both branches are trained together. In this latter case, the
overall training loss is the combination of the prediction loss
and the contrastive loss, i.e., L = Lc+λ ·Lp. We set λ = 10
for all experiments. We also include results with different λ
in the supplemental material.

(d) PrCL Avoids Feature Suppression: With a combina-
tion of the prediction loss and the contrastive loss, PrCL is ca-
pable of escaping the aforementioned local minimum/saddle
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points of infoNCE loss where only partial semantics are
learned. This is because learning only part of the semantics
can result in very high prediction loss. For example, if the
network learns only semantics related to the background
object but ignores the digit (Figure 3), all pixels related to
the digit are likely to be predicted incorrectly, introducing
large gradients that force the model out of the saddle point.

5. Experiments
Baselines. We use state-of-the-art contrastive learning meth-
ods as baselines, including SimCLR [5], MoCo [8], CPC
[25] and BYOL [21]. The same network structure, batch size,
and training epochs are used for all baselines and PrCL’s
contrastive branch. For the contrastive branch of PrCL, we
apply the same training scheme as MoCo. PrCL uses the
predictive branch only for training. During inference it uses
only the encoder, which is shared with the contrastive branch.
Thus, the evaluation of PrCL uses exactly the same number
of parameters as the baselines.
Datasets. We experiment with the following datasets:

• ImageNet: ImageNet[10] (CC BY 2.0) is a widely used
image classification benchmark which contains 1.28M
images in 1000 different categories. It is a standard
benchmark to evaluate self-supervised learning methods
[8, 5, 21].

• MPII: MPII [1] (the Simplified BSD License) is one of
the most common datasets for the task of human pose esti-
mation. It contains images of everyday human activities.

• FairFace: FairFace [30] (CC BY 4.0.) is a face attribute
classification dataset, where each image contains multiple
semantics including gender, age, and ethnicity.

• Colorful-Moving-MNIST: This is a synthetic dataset
used by [42] to highlight the feature suppression problem.
It is constructed by assigning each digit from MNIST a
background object image selected randomly from STL-10.
It supports two downstream tasks: digit and background
classification.

Setups. On ImageNet, as common in the literature, we
evaluate the representations with the encoder fixed and only
the linear classifier is trained. On all other datasets, we
evaluate the representations under two different settings:
fixed feature encoder setting and fine-tuning setting. In the
fixed feature encoder setting, the ResNet encoder is fixed
and only the classifier (FairFace, Colorful-Moving-MNIST)
or the 4-layer decoder network (MPII) is trained; In the fine-
tuning setting, the encoder is initialized with the pre-trained
model and fine-tuned during training. Please refer to the
Appendix for architectural details and hyper-parameters.

5.1. Results

We report the main results for all datasets. The experi-
ment setup, training details and hyper-parameter settings are

provided in the supplemental material along with additional
results.

ImageNet. Table 1 compares PrCL with the contrastive
learning baselines on the task of object classification un-
der different data augmentations. Here, we compare PrCL
with SimCLR and MoCo since they use the same set of
data augmentations. The results show that with fewer data
augmentations, the accuracy of the contrastive learning base-
lines drops quickly due to feature suppression. For example,
removing the color distortion augmentation significantly de-
grades the performance of the baseline approaches, as color
distribution is known to be able to suppress other features in
contrastive learning. In contrast, PrCL is significantly more
robust. For example, with only random cropping, PrCL’s
Top-1 accuracy drops by only 6.9 whereas the Top-1 accu-
racy of SimCLR drops by 27.6 and the Top-1 accuracy of
MoCo drops by 12.1. We also compare PrCL with a pre-
dictive baseline [38]. For the predictive baseline, though
the model is not sensitive to different augmentations, the
best performance is not comparable to contrastive learning,
indicating predictive learning alone is not enough to learn
fine-grained representations from images.

MPII. We use PrCL and the contrastive learning baselines
to learn representations from MPII, and evaluate them on the
task of pose estimation. Table 2 shows that PrCL improves
the average PCKh (the standard metric for pose estimation)
over the strongest contrastive baseline by 3.7 and achieves
even higher gains on important keypoints such as Head and
Wrist. This is because contrastive learning is likely to focus
on features irrelevant to the downstream task, such as clothes
and appearances.

FairFace. Table 3 compares the contrastive learning
baselines to PrCL on the task of face-attribute classification.
The results show how contrastive learning struggles with
multi-attribute classification. Specifically, the performance
of the contrastive learning baselines on ethnicity classifica-
tion is close to supervised learning of that attribute (62%
vs. 69%). However, their results on age and gender classifi-
cations are significantly worse than supervised learning of
those attributes (44% and 78% vs. 54% and 91%). This indi-
cates that ethnicity suppresses other features in contrastive
learning. This feature is partial since there are dependencies
in how ethnicity manifests itself across age and gender. In
contrast, PrCL is much more robust to such feature suppres-
sion problem, and its performance results on age and gender
classifications are much closer to those of fully-supervised
classification of those attributes.

Colorful-Moving-MNIST. We use this dataset to fur-
ther investigate how contrastive learning performs on multi-
attribute classification. Recall that each image in this dataset
contains a digit from MNIST on a randomly selected back-
ground object from the STL-10. We investigate whether the
learned representation supports both digit and background
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Table 1. Performance on ImageNet with progressive removal of data augmentations for different self-supervised learning techniques. The
baseline corresponds to the original set of augmentations used in SimCLR and MoCo: random flip, random resized crop, color distortion,
and random Gaussian blur.

(a) ImageNet TOP-1 accuracy and its DROP w.r.t. inclusion of all augmentations.

Method Inpainting SimCLR MoCo PrCL(ours) IMPROVE
METRIC TOP-1 DROP TOP-1 DROP TOP-1 DROP TOP-1 DROP

Baseline 43.7 / 67.9 / 71.1 / 71.0 / -0.1

Remove flip 43.4 -0.3 67.3 -0.6 70.6 -0.5 70.8 -0.2 +0.2
Remove blur 43.6 -0.1 65.2 -2.7 69.7 -1.4 70.6 -0.4 +0.9
Crop color only 43.2 -0.5 64.2 -3.7 69.5 -1.6 70.1 -0.9 +0.6
Remove color distort 43.5 -0.2 45.7 -22.2 60.4 -10.7 65.9 -5.1 +5.5
Crop blur only 42.8 -0.9 41.7 -26.2 59.8 -11.3 65.1 -5.9 +5.3
Crop flip only 43.3 -0.4 40.2 -27.7 59.4 -11.7 64.6 -6.4 +5.2
Crop only 42.7 -1.0 40.3 -27.6 59.0 -12.1 64.1 -6.9 +5.1

(b) ImageNet TOP-5 accuracy and its DROP w.r.t. inclusion of all augmentations.

Method Inpainting SimCLR MoCo PrCL(ours) IMPROVE
METRIC TOP-5 DROP TOP-5 DROP TOP-5 DROP TOP-5 DROP

Baseline 68.3 / 88.5 / 90.1 / 90.0 / -0.1

Remove flip 67.9 -0.4 88.2 -0.3 89.9 -0.2 89.9 -0.1 +0.0
Remove blur 68.1 -0.2 86.6 -1.9 89.7 -0.4 89.8 -0.2 +0.1
Crop color only 67.8 -0.5 86.2 -2.3 89.6 -0.5 89.7 -0.3 +0.1
Remove color distort 68.0 -0.3 70.6 -17.9 84.2 -5.9 88.3 -1.7 +4.1
Crop blur only 67.4 -0.9 66.4 -22.1 83.1 -7.0 88.0 -2.0 +4.9
Crop flip only 67.7 -0.6 64.8 -23.7 82.0 -8.1 87.7 -2.3 +5.7
Crop only 67.4 -0.9 64.8 -23.7 81.6 -8.5 87.6 -2.4 +6.0

Table 2. Performance on MPII for the downstream task of human pose estimation. ↑ indicates the larger the value, the better the performance.

METRIC Head↑ Shoulder↑ Elbow↑ Wrist↑ Hip↑ Knee↑ Ankle↑ PCKh↑

FIXED
FEATURE

EXTRACTOR

SimCLR 78.4 74.6 56.7 45.2 61.8 51.3 47.1 60.8
MoCo 79.2 75.1 57.4 45.9 62.4 52.0 47.6 61.4
CPC 78.0 74.3 56.0 44.8 61.2 51.4 46.5 60.3

BYOL 79.1 75.0 57.1 46.0 62.4 52.2 47.7 61.4

PrCL (ours) 85.7 78.8 61.7 51.3 64.4 55.6 49.2 65.1
IMPROVEMENTS +6.5 +3.7 +4.3 +5.3 +2.0 +3.4 +1.5 +3.7

FINE-
TUNING

SimCLR 96.2 94.7 87.3 81.2 87.5 81.0 77.2 87.1
MoCo 95.9 94.7 87.5 81.6 87.4 81.7 76.9 87.2
CPC 96.0 94.5 87.0 81.1 87.3 80.8 77.0 87.0

BYOL 96.2 94.8 87.5 81.4 87.6 81.5 77.0 87.2

PrCL (ours) 96.3 94.9 88.1 82.3 87.9 82.8 77.8 87.8
IMPROVEMENTS +0.1 +0.1 +0.6 +0.7 +0.3 +1.1 +0.6 +0.6

SUPERVISED 96.3 95.1 87.9 82.2 87.8 82.7 77.8 87.7

(a) SimCLR (Background) (b) PrCL (Background) (c) SimCLR (Digit) (d) PrCL (Digit)

Figure 4. Visualization of latent features learned using different approaches on Colorful-Moving-MNIST dataset. The color of the left two
figures corresponds to background object labels, and the color of the right two figures corresponds to the digit label.

classifications. Table 4 shows that the contrastive learning
baselines learn only the task of background classification,

and fail to learn a representation relevant to digit classifica-
tion. This shows that information related to the background
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Table 3. Performance on FairFace with different unsupervised learning
methods. The models are evaluated on downstream tasks of age, gender
and ethnicity classification.

METRIC
AGE CLS
ACC. (%)

GENDER CLS
ACC. (%)

ETHN. CLS
ACC. (%)

FIXED
FEATURE

EXTRACTOR

SimCLR 43.9 78.1 61.7
MoCo 44.5 78.6 61.9
CPC 43.5 76.2 61.0

BYOL 44.3 78.6 62.3

PrCL (ours) 50.0 87.2 61.2
IMPROVEMENT +5.7 +8.6 -1.1

FINE-
TUNING

SimCLR 54.3 91.1 69.1
MoCo 54.7 91.3 69.2
CPC 54.2 91.0 68.8

BYOL 54.6 91.5 69.3

PrCL (ours) 55.3 92.3 69.0
IMPROVEMENT +0.6 +0.8 -0.3

SUPERVISED on AGE 55.5 78.8 45.1
SUPERVISED on GENDER 43.3 92.5 45.4
SUPERVISED on ETHN. 42.1 76.8 69.4
SUPERVISED on ALL 54.8 91.9 68.8

Table 4. Performance on Colorful-Moving-MNIST under dif-
ferent unsupervised methods. The models are evaluated on
the downstream tasks of digit classification and background
object classification.

METRIC
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

FIXED
FEATURE

EXTRACTOR

SimCLR 14.9 47.3
MoCo 15.7 48.5
CPC 15.8 35.2

BYOL 15.5 49.0

PrCL (ours) 88.3 46.5
IMPROVEMENT +72.5 -2.5

FINE-
TUNING

SimCLR 92.4 54.8
MoCo 92.7 54.9
CPC 92.3 54.7

BYOL 92.7 54.9

PrCL (ours) 93.3 54.7
IMPROVEMENT +0.6 -0.2

SUPERVISED on DIGIT 96.1 11.4
SUPERVISED on BKGD 12.9 56.7

SUPERVISED on DIGIT & BKGD 93.0 54.5

prevents contrastive learning from capturing digit-relevant
features. Note that the performance gap on digit classifica-
tion between contrastive learning and supervised learning
is very large (the accuracy is 15% vs. 93%). This is much
larger than the gap we saw on FairFace because the informa-
tion related to digit and background are totally independent,
whereas features related to ethnicity, age, and gender have
a significant overlap. In contrast, the representation learned
by PrCL achieves very good accuracy on both background
and digit classifications.

Figure 4 provides a t-SNE visualization [44] of the
learned features for SimCLR and PrCL. For a clear visual-
ization, when generating t-SNE for background, we choose
samples from the same digit class, and when generating
t-SNE for digits we choose samples from the same back-
ground class. This is done for both SimCLR and our method.
The figure shows how predictive learning complement con-
trastive learning. Comparing Figures 4(c) and 4(d) reveals
that PrCL’s predictive branch allows it to capture information
about digits that is lost in SimCLR.

Finally, we run SimCLR and PrCL on Colorful-Moving-
MNIST with different feature dimensions of 512 and 1024,
as shown in Table 5. These results show that the performance
of SimCLR does not change with larger dimensions. In fact,
the same result can be seen from our theoretical analysis,
which proves that when increasing the feature dimensions,
contrastive learning experiences many local minima that cor-
respond to all of the global minima of the lower dimensions,
which tend to suppress features, while PrCL can escape from
those local minima.

Table 5. Performance on Colorful-Moving-MNIST with different
feature dimensions under different unsupervised methods.

METHOD
FEATURE

DIMENSION
DIGIT CLS
ACC. (%)

BKGD CLS
ACC. (%)

SimCLR 512 16.0 48.4
1024 15.8 48.6

PrCL 512 88.1 46.3
1024 88.2 46.5

6. Conclusion & Limitations
In this paper, we introduce predictive contrastive learn-

ing (PrCL), a novel framework for making unsupervised
contrastive learning more robust and allow it to preserve
useful information in the presence of feature suppression.
We theoretically analyze the reason why contrastive learn-
ing is vulnerable to feature suppression, and show that the
predictive loss can help avoid feature suppression and pre-
serve useful information. Extensive empirical results on a
variety of datasets and tasks show that PrCL is effective at
addressing the feature suppression problem.

The problem of feature suppression is complex; and,
while PrCL provides an important improvement over the
current SOTA, it has some limitations. First, PrCL sees
some performance drop with fewer augmentations. The drop
however is much better than the contrastive baselines. Sec-
ond, PrCL tries to abstract and preserve the information in
the input, but some of this information may be unnecessary
or irrelevant to the downstream tasks of interest. Yet, despite
these limitations, we believe that PrCL provides an important
step forward toward making self-supervised learning more
robust and providing richer self-supervised representations
that support multi-attribute classifications and generalize
well across diverse tasks.

1418



References
[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2d human pose estimation: New benchmark
and state of the art analysis. In Proceedings of the IEEE Con-
ference on computer Vision and Pattern Recognition, pages
3686–3693, 2014.

[2] Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. arXiv preprint arXiv:1906.00910, 2019.

[3] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal,
Piotr Bojanowski, and Armand Joulin. Unsupervised learning
of visual features by contrasting cluster assignments. arXiv
preprint arXiv:2006.09882, 2020.

[4] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T
Freeman. Maskgit: Masked generative image transformer.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11315–11325, 2022.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020.

[6] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised models
are strong semi-supervised learners. Advances in Neural
Information Processing Systems, 33, 2020.

[7] Ting Chen and Lala Li. Intriguing properties of contrastive
losses. arXiv preprint arXiv:2011.02803, 2020.

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Im-
proved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

[9] Xinlei Chen and Kaiming He. Exploring simple siamese
representation learning. arXiv preprint arXiv:2011.10566,
2020.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[11] Jonas Dippel, Steffen Vogler, and Johannes Höhne. Towards
fine-grained visual representations by combining contrastive
learning with image reconstruction and attention-weighted
pooling. arXiv preprint arXiv:2104.04323, 2021.

[12] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsu-
pervised visual representation learning by context prediction.
In Proceedings of the IEEE international conference on com-
puter vision, pages 1422–1430, 2015.

[13] Lijie Fan, Wenbing Huang, Chuang Gan, Stefano Ermon,
Boqing Gong, and Junzhou Huang. End-to-end learning of
motion representation for video understanding. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6016–6025, 2018.

[14] Lijie Fan, Wenbing Huang, Chuang Gan, Junzhou Huang,
and Boqing Gong. Controllable image-to-video translation:
A case study on facial expression generation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33,
pages 3510–3517, 2019.

[15] Lijie Fan, Tianhong Li, Rongyao Fang, Rumen Hristov, Yuan
Yuan, and Dina Katabi. Learning longterm representations for

person re-identification using radio signals. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10699–10709, 2020.

[16] Lijie Fan, Tianhong Li, Yuan Yuan, and Dina Katabi. In-
home daily-life captioning using radio signals. arXiv preprint
arXiv:2008.10966, 2020.

[17] Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and
Chuang Gan. When does contrastive learning preserve adver-
sarial robustness from pretraining to finetuning? Advances
in Neural Information Processing Systems, 34:21480–21492,
2021.

[18] Lijie Fan, Shengjia Zhao, and Stefano Ermon. Adversarial
localization network. In Learning with limited labeled data:
weak supervision and beyond, NIPS Workshop, volume 2,
2017.

[19] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis,
Richard Zemel, Wieland Brendel, Matthias Bethge, and Fe-
lix A Wichmann. Shortcut learning in deep neural networks.
Nature Machine Intelligence, 2(11):665–673, 2020.

[20] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsu-
pervised representation learning by predicting image rotations.
arXiv preprint arXiv:1803.07728, 2018.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-
ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, et al. Bootstrap your own latent: A
new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020.

[22] Tengda Han, Weidi Xie, and Andrew Zisserman. Memory-
augmented dense predictive coding for video representation
learning. arXiv preprint arXiv:2008.01065, 2020.

[23] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16000–
16009, 2022.

[24] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9729–9738, 2020.

[25] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali
Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord.
Data-efficient image recognition with contrastive predictive
coding. arXiv preprint arXiv:1905.09272, 2019.

[26] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. science,
313(5786):504–507, 2006.

[27] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,
Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua
Bengio. Learning deep representations by mutual in-
formation estimation and maximization. arXiv preprint
arXiv:1808.06670, 2018.

[28] Wenbing Huang, Lijie Fan, Mehrtash Harandi, Lin Ma, Huap-
ing Liu, Wei Liu, and Chuang Gan. Toward efficient ac-
tion recognition: Principal backpropagation for training two-
stream networks. IEEE Transactions on Image Processing,
28(4):1773–1782, 2018.

1419



[29] Dongwei Jiang, Wubo Li, Miao Cao, Ruixiong Zhang,
Wei Zou, Kun Han, and Xiangang Li. Speech simclr:
Combining contrastive and reconstruction objective for self-
supervised speech representation learning. arXiv preprint
arXiv:2010.13991, 2020.

[30] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face at-
tribute dataset for balanced race, gender, and age. arXiv
preprint arXiv:1908.04913, 2019.

[31] Tianhong Li, Peng Cao, Yuan Yuan, Lijie Fan, Yuzhe Yang,
Rogerio S Feris, Piotr Indyk, and Dina Katabi. Targeted
supervised contrastive learning for long-tailed recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6918–6928, 2022.

[32] Tianhong Li, Lijie Fan, Yuan Yuan, and Dina Katabi. Unsu-
pervised learning for human sensing using radio signals. In
Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), pages 3288–3297, January
2022.

[33] Tianhong Li, Lijie Fan, Mingmin Zhao, Yingcheng Liu, and
Dina Katabi. Making the invisible visible: Action recognition
through walls and occlusions. In Proceedings of the IEEE
International Conference on Computer Vision, pages 872–
881, 2019.

[34] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang.
Few sample knowledge distillation for efficient network com-
pression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14639–
14647, 2020.

[35] Ishan Misra and Laurens van der Maaten. Self-supervised
learning of pretext-invariant representations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6707–6717, 2020.

[36] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In European
Conference on Computer Vision, pages 69–84. Springer, 2016.

[37] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[38] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature learn-
ing by inpainting. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2536–2544,
2016.

[39] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan
Li, Andrew Stevens, and Lawrence Carin. Variational autoen-
coder for deep learning of images, labels and captions. arXiv
preprint arXiv:1609.08976, 2016.

[40] Joshua Robinson, Li Sun, Ke Yu, Kayhan Batmanghelich,
Stefanie Jegelka, and Suvrit Sra. Can contrastive learning
avoid shortcut solutions? Advances in neural information
processing systems, 34:4974–4986, 2021.

[41] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive
multiview coding. arXiv preprint arXiv:1906.05849, 2019.

[42] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for
good views for contrastive learning. arXiv preprint
arXiv:2005.10243, 2020.

[43] Michael Tschannen, Josip Djolonga, Paul K Rubenstein,
Sylvain Gelly, and Mario Lucic. On mutual information
maximization for representation learning. arXiv preprint
arXiv:1907.13625, 2019.

[44] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9(11),
2008.

[45] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages 1096–
1103, 2008.

[46] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929–9939. PMLR, 2020.

[47] Xudong Wang, Ziwei Liu, and Stella X Yu. Unsupervised fea-
ture learning by cross-level discrimination between instances
and groups. arXiv preprint arXiv:2008.03813, 2020.

[48] Yangtao Wang, Xi Shen, Shell Xu Hu, Yuan Yuan, James L
Crowley, and Dominique Vaufreydaz. Self-supervised trans-
formers for unsupervised object discovery using normalized
cut. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14543–14553,
2022.

[49] Yangtao Wang, Xi Shen, Yuan Yuan, Yuming Du, Maomao Li,
Shell Xu Hu, James L Crowley, and Dominique Vaufreydaz.
Tokencut: Segmenting objects in images and videos with self-
supervised transformer and normalized cut. arXiv preprint
arXiv:2209.00383, 2022.

[50] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang.
Unsupervised embedding learning via invariant and spreading
instance feature. In Proceedings of the IEEE Conference on
computer vision and pattern recognition, pages 6210–6219,
2019.

[51] Yuan Yuan, Xiaodan Liang, Xiaolong Wang, Dit-Yan Yeung,
and Abhinav Gupta. Temporal dynamic graph lstm for action-
driven video object detection. In ICCV, 2017.

[52] Yuan Yuan, Yueming Lyu, Xi Shen, Ivor W Tsang, and Dit-
Yan Yeung. Marginalized average attentional network for
weakly-supervised learning. In International Conference on
Learning Representations (ICLR), 2019.

[53] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local
aggregation for unsupervised learning of visual embeddings.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6002–6012, 2019.

1420


