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Abstract

In this paper, we propose Discrete Cosin TransFormer
(DCFormer) that directly learn semantics from DCT-based
frequency domain representation.  We first show that
transformer-based networks are able to learn semantics di-
rectly from frequency domain representation based on dis-
crete cosine transform (DCT) without compromising the
performance. To achieve the desired efficiency-effectiveness
trade-off, we then leverage an input information compres-
sion on its frequency domain representation, which high-
lights the visually significant signals inspired by JPEG com-
pression. We explore different frequency domain down-
sampling strategies and show that it is possible to preserve
the semantic meaningful information by strategically drop-
ping the high-frequency components. The proposed DC-
Former is tested on various downstream tasks including im-
age classification, object detection and instance segmenta-
tion, and achieves state-of-the-art comparable performance
with less FLOPs, and outperforms the commonly used back-
bone (e.g. SWIN) at similar FLOPs. Our ablation results
also show that the proposed method generalizes well on dif-
ferent transformer backbones.

1. Introduction

Different types of image representations are often used
for different types of downstream tasks. The RGB-based
representation carries rich semantic information, and thus
becomes the mainstream solution for visual content under-
standing and associated computer vision tasks, e.g. image
classification [ 1], object detection [3 1], etc. The frequency
domain representation better separates the information from
different frequency bands, which is commonly used for im-
age compression and image quality assessment [15, 16].
In this paper, we explore image modeling directly on fre-
quency representation unlike the conventional RGB-based
image modeling, and furthermore, efficient image model-
ing by dropping the non-visually significant information di-
rectly from the frequency representations. Performing effi-
cient image modeling directly on frequency domain is often
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Figure 1: Image classification on ImageNet-1K. DCFormer
(red lines) is able to achieve better efficiency/effectiveness
balance: DCFormer achieves similar performance at lower
FLOPs, and better accuracy at similar FLOPs. DCFormer-
SW and -NA denotes DCFormer with SWIN [33] and
NAT [19] as backbones, respectively. Details in section 4.

overlooked, because in the downstream tasks that focus on
semantics and content understanding, RGB-based modeling
approaches generally yield better performance. There are
two major challenges for efficient image modeling directly
on frequency domain: (1). how to model the frequency rep-
resentations as the adjacent pixels lack direct spatial asso-
ciations; and (2). how to compress the non-visually signifi-
cant information without compromising the performance.
For frequency representations modeling, we find that the
inverse-DCT transformation shares a similar mathematical
representation to a transformer (self-attention based net-
works), indicating that it is possible for transformer-based
encoders to simulate the inverse-DCT process (details in
Section 3). Therefore, we propose Discrete Cosin Trans-
Former (DCFormer) using frequency domain representa-
tions for image modeling. To ensure the frequency repre-
sentation generally works with conventional transformers
(e.g. ViT [12], SWIN transformer [33], etc.), we propose
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a frequency embedding in addition to the positional em-
bedding to maintain both spatial and frequency band in-
formation. We further empirically demonstrate that our
DCFormer is able to capture the semantics directly from
frequency representation without any performance compro-
mise compared with RGB-based approaches.

As for the second challenge, strategically dropping the
information from the input is non-trivial and it is chal-
lenging for the RGB-based representation, as previous re-
search show that any types of pooling on the input will harm
the performance [9]. Inspired by image compression ap-
proaches, we propose to strategically drop more high fre-
quency components and less low-frequency components to
better maintain the semantic information. We also introduce
an reconstruction aux loss to help the training process.

We tested our model on image classification tasks with
Imagenet-1K dataset, and object detection and instance seg-
mentation tasks with MS-COCO [31]. The proposed DC-
Former generalizes well to different transformer backbones
without performance compromises, including SWIN [33],
ViT [12], and NAT [19]. With the help of the proposed fre-
quency down-sampling strategy, the DCFormer is capable
of taking input images at different resolutions for better ef-
ficiency vs. effectiveness trade-off (Figure 1). We further
show that the DCFormer is able to achieve performances
comparable to commonly used RGB-based models at lower
computational costs, demonstrating the frequency modeling
is a promising direction for building efficient model. Our
contributions are summarized as follows:

1. DCFormer, the transformer directly performs image
modeling for various downstream tasks on DCT-based
frequency representation. The DCFormer learns se-
mantics directly from DCT based frequency represen-
tation without performance compromise.

2. Study different input down-sampling methods, and
propose zigzag based hard-selection for DCT-based in-
put compression. With the proposed input compres-
sion strategy, DCFormer is able to achieve even better
efficiency-effectiveness trade-off.

3. Detailed experimental results and ablations, which can
be used for future reference.

2. Related Work
2.1. Image Modeling

As the foundation of many computer vision tasks, the
image classification has been studied for decades, from
heavily rely on manually-crafted features [59, 28, 38] to
the deep neural network [30] era, the deep learning dom-
inates the image modeling since 2012 [29]. For the past
decade, the networks go deeper, wider and more com-
plex [44, 47, 21, 56] to fit into various tasks including clas-
sification [21], detection [40, 32], segmentation [20, 8],

pose estimation [45] and more. Besides the network ar-
chitectures, the convolution layers also evolve from the ba-
sic convolution to the depth-wise convolution [57], non-
local convolution [53] and deformable convolution [10]. In
parallel with convolution networks, the recent researches
show that the attention based architecture, previously com-
monly used for NLP tasks [51], transfers to image mod-
eling well. The pioneer work ViT [12] and the following
works DEIT [50], SWIN [33], CoaT [58], and more re-
cent Mixer [49] all achieve comparable or superior perfor-
mances compared with convolution networks. The major-
ity of works on image modeling focus on the performance
while in this paper, we focus on both efficiency and effec-
tiveness trade-off.

2.2. Frequency-domain Learning

Frequency domain learning gains much less attention
compared with RGB domain modeling in past decades.
Only a few works propose to make use of JPEG encoding
for faster image classification [17, 14]. Although efficient,
these works are less effective than the SOTA image classi-
fication models at their times. Some recent works try to in-
corporate the frequency components from DCT transforma-
tion to the channel for better modeling [2, 1], however, the
effectiveness gap still exists. Besides, the frequency domain
representation has also been used in compression [55, 35],
pruning [35] and convnet compression [54, 13]. Although
works, the frequency domain modeling generally suffers
from the low accuracy and low efficiency, which make them
less favored by many image downstream tasks. Our pro-
posed DCFormer with image compression achieves parallel
performance compared with SOTA RGB networks at much
low computational costs, which stands out from previous
frequency domain modeling works. The recent work Wave-
ViT [60] achieves strong performance with discrete wavelet
transformation based representation. We share the similar
scope on frequency representation based modeling, but in-
stead leverage DCT-based representation because of its flex-
ibility to support strategical down-sampling that improves
efficiency without performance compromise.

2.3. Efficient Image Modeling

There are several attempts for efficient image modeling.
The convolution kernel or network compression [18, 22]
is a straight-forward way to reduce model FLOPs but of-
ten leads to noticeable performance drop. Later the care-
fully designed compact networks with very small mem-
ory footage are proposed to work on edge devices in-
cluding squeezeNet [24], MobileNets [23, 42], and Shuf-
fleNets [61, 36]. More recently, the neural architecture
search is widely used as a tool for searching the efficient
and accurate network architectures e.g. Proxylessnas [5]
and EfficientNet [48]. Different from these approaches that
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try to build a smaller network, we propose to reduce com-
putation based on frequency domain image compression.

3. Methodology
3.1. Frequency Domain Modeling

In this paper, we adopt DCT based frequency domain
representation because it is commonly used for image com-
pression [41], image encoding [43], and various computer
vision tasks.

3.1.1 Domain Converting Preliminaries

For an RGB image Irgp € R3*W*H  we first convert
the image color space from RGB to yCrCb color space
(Iycrcb) and patchfy the image as:

P = [Po, Pl, e ,B] = patchfy(Iy(;er) (D)

where P € ROX 55 X35 Xpsxp9) g sequence of patches, ps
denotes the side length of each patch. DCT [4] is applied on
each patch to generate the frequency domain representation:

D; = DCT(F)) 2

where the DCT map of each patch D; € R3*P5*Ps has the
same dimension as the original patch P;.

The patchfy operation preserves the relative spatial infor-
mation, while each point in a patch D; carries certain fre-
quency information. Patch size selection involves a trade-
off. Smaller patches lead to higher spatial resolution but
less fine-grained frequency information and opposite for the
larger patch size. We empirically select 8 x 8 as patch size
for the best efficiency-effectiveness trade-off, the same as
JPEG’s encoding process. Such design potentially allows
us to directly obtain the DCT components from raw JPEG
images for faster training and inference.

3.1.2 Frequency Domain Encoder

For a compressed frequency map S, the pixels no longer
hold spatial relationships inside each patch. Different from
previous works that try to shift frequency components to
channels for the convolution based modeling [, 2], we pro-
pose to build a network that directly works on the frequency
map. The 2D Inverse-DCT (IDCT) transformation for each
frequency patch can be mathematically formulated as:

IDCT(S;) = AT(S;)A 3)

where A denotes the DCT transform matrix. The above
equation can be further illustrated as below and is consis-
tent with the transformer layer’s formulation:

IDCT(S;) = AT(S)A = (W,AWD) (W, S)(W)  (4)

where W, W,, W, denotes the learnable linear projection
for key, query and value. W denotes the learnable weights
for linear layers after attention. Although it is not guar-
anteed that W is strictly the transpose of (W ,AW]T), it is
possible for transformers to learn the approximation of the
IDCT. The observation in Equation 4 makes the transformer
architecture a good fit for our compressed image modeling.
Note that, it is possible for convolution networks to simulate
IDCT through carefully designed kernel size and strides, but
it will be less effective compared with transformer networks
(ablations in Table 4d). The commonly used transformers,
including sequence transformer (e.g. ViT[!2]) and hierar-
chical vision transformer (e.g. SWIN[33], NAT [19]) work
directly in the frequency domain with minor changes to the
patch size and embedding.

Frequency Embedding: Each frequency point S; j on S;
carries the relative positional information as well as certain
frequency band information. To maintain the frequency in-
formation, we propose frequency embedding (F'E) in addi-
tion to the commonly used positional embedding as:

FE(j a1y = sin(j/10000%/4™)

®)
FE(j (2k+1)) = sin(j/10000F+1)/dm)

where j € [0,ps?] denotes the position in the down-
sampled frequency patch S;. %k denotes the k-th dimension
of total dm feature dimensions. We apply the frequency
embedding by adding it to the frequency map S.

Classification: We unpatchfy the compressed patches
based on their relative locations as:

S = unpatchfy(S) (6)

where the unpatchfy operation reorganize a sequence of
compressed DCT map S to S € R?* 7% based on their
relative spatial location. The DCFormer encoder extras
feature embedding from the compressed frequency domain
representations as:

XE = ¢(8) )

where X stands for the DCFormer encoder feature map.
The classification can be done by adding a [CLS]-token [12]
or use a linear layer [33].

3.2. Efficient Frequency Domain Modeling
3.2.1 Frequency Domain Compression

The famous JPEG compression infers that compression can
be achieved by discarding the non-visually significant val-
ues via quantization [52]. Following similar intuition, we
aim maintain only the informative frequency components
from each DCT map D; for efficient image modeling. We
explored three types of compression strategies as follows:
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Figure 2: An overview of our model, DCFormer. The model first takes RGB image as input, converting it to DCT-based
frequency representation, follows by an optional frequency compression module. The compression module (when 7>1)
offers significant efficiency boost, with slight performance trade-off. The frequency based representation is then augmented
with positional and frequency embedding and feed into a set of DCFormer blocks. The frequency attention is compatible
with various transformer attentions (e.g. SWIN attention, neighbour attention). An linear projection with CE loss is used for
classification, and a MSE reconstruction loss can be used as aux loss when frequency compression is applied.

Averaging: An average pooling with 7 x 7 kernel over the
DCT map D; as:
ik

22

)
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where j and k are the coordinates of D;. .S; denotes the
compressed DCT map D; and 7 is the compression ratio.
Soft-selection: A cross-attention based soft-selection
method on D; as:

S; = MHCA(Conv2D(D;), Gems) )

where MHCA d2en0tes the multi-head cross-attention mod-

s
Tz XCy

ule, gemp € R% is the query embedding, Conv2D is an
1 x 1 2D convolution that expands the channel of D?, e.g.
¢ = 128, to support multi-head attentions.

Hard-selection: A hard-selection follows zigzag pattern
that focus on low frequency components as:

ps’
Si = (Do) k € [1, 25 (10
where v is the zigzag encoding used in [37], ¥(D;) €
R *% stands for the sequence of frequency components
after zigzag encoding, which are then sorted by their fre-
quency band from low to high. To maintain visually signif-
icant information, we hard select the first T% elements from
¥ (D;), which covers the DC component and most of low-
frequency and part of middle frequency information.

We empirically choose zigzag-baed hard-selection for
compression as it works best without introducing additional
computation. The cross-attention based soft-selection is
deprecated since it is computationally heavy. Averaging
based approaches perform the worst since averaging fre-
quency responses over different bands does not make sense.

3.2.2 Reconstruction Aux Loss

Because frequency compression causes information lose,
we further introduce a reconstruction decoder adopting aux-

iliary loss during training which encourages the DCFormer
encoder to generate comprehensive and semantic-related
feature embeddings. The decoder is not used in the in-
ference and hence does not introduce additional inference
computations. It is worth mentioning that the decoder has
to be lightweight with limited capacities, so that the decoder
utilizes the encoded features as much as possible instead of
learning the new semantics features by itself. We propose
a simple eight-layer convolution neural network with 3 x 3
kernels as the decoder. Because convolution is less effec-
tive on frequency-to-RGB domain converting, the decoder
has to rely on semantic information generated by DCFormer
encoder to reconstruct the RGB image. The reconstruction
process thus enforces the encoder to generate more com-
prehensive representation during training. The decoder has
four up-sampling stages, each stage has two convolution
layers and a spatial up-sampling layer defined as:

XD:{

where U denotes the 4 x bilinear interpolation up-sampling.
The X7 denotes the feature from i-th decoder stage.

XE

conv2D(conv2D(U(X21))) (an

7 =
1€ [2,4]

3.2.3 Losses

We apply the categorical cross-entropy to the DCFormer
encoder output as classification loss (L.;s). For the recon-
structed images, we calculate the MSE loss as a measure of
reconstruction quality (Lssg). We also adopt the percep-
tual 10ss (Lperceptual), Which is commonly used in image
super-resolution [25] tasks, to encourage the DCFormer en-
coder to generate semantic related representations. The fi-
nal loss is thus defined as:

L= £cls + OKL‘/MSE + Bﬁperceptual (12)

We empirically determined the & = 0.1 and 8 = 0.01.
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Model Size FLOPs(G) # Param. Topl (%)
DCT-64T[2] 256 - - 77.2
FcaNet-TS-50[1] 256 4.13 28M 78.6
FcaNet-LF-152[1] 256 11.6 61M 80.1
WaveViT-S[60] 256 43 20M 82.7
WaveViT-B*[60] 256 72 33M 84.8
SWIN-T[33] 256 4.5 28M 81.2
DCFormer-SW-T (7 = 1) 256 4.5 28M 81.2
DCFormer-SW-T (1 = 2)  256/384/512 1.3/3.2/4.5 28M 79.2/81.2/82.1
SWIN-S[33] 256 8.7 50M 83.0
DCFormer-SW-S (1 = 1) 256 8.7 50M 82.8
DCFormer-SW-S (1 = 2) 256/384/512 2.7/6.318.7 50M 80.9/82.1/82.9
SWIN-B[33] 256 154 88M 83.5
DCFormer-SW-B (7 = 1) 256 15.4 88M 83.1
DCFormer-SW-B (7 = 2)  256/384/512  4.8/10.9/15.4 88M 81.4/82.9/83.5
NAT-T[19] 256 43 28M 83.1
DCFormer-NA-T (7 = 1) 256 43 28M 83.2
DCFormer-NA-T (1 = 2) 384 3.8 28M 82.6
NAT-B[19] 256 13.7 90M 84.3
DCFormer-NA-B (1 = 1) 256 13.7 90M 84.3

Table 1: Frequency modeling results on ImageNet-1K val-
idation set. 7 = 1 and 7 = 2 denotes frequency input
without and with 4X compression. * denotes WaveViT [60]
trained on additional data. DCFormer-SW and DCFormer-
NA denotes DCFormer with SWIN [33] and NAT [19]
backbones, respectively.

4. Experiments

We conduct image classification on ImageNet-1K
dataset [11]; object detection and instance segmentation
tasks on COCO object detection dataset [31]. We will first
compare the proposed DCFormer with other frequency do-
main modeling approaches on each task, and then further
establish comparison with SOTA RGB-based models. Fi-
nally we present the ablation analysis on the design choices
and generalizability of DCFormer. We use 7 = 1 for DC-
Former without frequency compression and 7 = 2 for DC-
Former with 4 x frequency compression.

4.1. Frequency Domain Modeling Results
4.1.1 Classification on ImageNet

Setting: We follow [33] for ImageNet training with minor
changes. We adopt the AdamW [27] optimizer and use a
cosine learning rate scheduler. The training process starts
with 30 epochs of linear warm-up, followed by 270 train-
ing epochs. A batch size of 1024, an initial learning rate of
0.001, and a weight decay of 0.05 are used similar to [33],
the learning rate scales according to the batch size for dif-
ferent experiments. We follow the augmentation and regu-
larization strategies of [50] in training, including color and
size jittering, mixup and label smoothing, etc.

Results: We first demonstrate that the transformer is able
to learn the semantics directly from frequency representa-
tion. We compare the image classification accuracy with
SWIN[33] that takes RGB image as input and our DC-
Former that takes frequency-based representation as input.
The results (Table 1, 7 = 1) show that DCFormer is able to

achieve similar performance comparing with different RGB
backbones. This proves the validness of our intuition, that
transformer can learn semantics from frequency representa-
tions directly without performance compromise.

We further study the performance of proposed frequency
input compression on DCFormer (Table 1, 7 = 2) and com-
paring with previous frequency modeling works [ 1, 2]. Un-
der the same input resolution, the DCFormer with SWIN
transformer backbone outperforms most recent frequency
domain modeling approach [!], with less FLOPs. The
reduced FLOPs and better performance demonstrate our
zigzag compression better maintains salient information
than the commonly used channel-wise convolution based
frequency domain compression methods [2]. DCFormer-
NAT-T also slightly outperforms the mot recent image fre-
quency modeling work using wavelet transformation [60].
It is worth mentioning that WaveVit-B achieves strong per-
formance with additional data, and is not a direct compar-
ison to other results. We notice by increasing the input
resolution, while performing the proposed input compres-
sion, we see performance increase (Table 1, 7 = 2). The
DCFormer with 7 = 2 and 4Xx input resolution runs at
same FLOPs comparing to DCFormer take input without
compression, but with comparable or slightly better perfor-
mance (e.g., on DCFormer-SW-T vs. SWIN-T).

4.1.2 Object Detection on COCO

Setting: We finetune the DCFormer-SWIN with Mask R-
CNN [20] pipeline on the COCO 2017 dataset [31]. Dur-
ing fine-tuning, we use the multi-scale training [46, 7],
AdamW optimizer[27], with weight decay of 0.05, and the
same learning decay schedule as [0, 34]. The pipeline fol-
lows [33]. Because our image compression leads to smaller
feature maps at the final stage, we decrease the spatial scale
factor of the RolAlign and FPN layers to match the scale of
the feature maps, e.g. scale = 2 for 7 = 2.

Results: The proposed DCFormer outperforms other fre-
quency domain modeling works [I, 2, 60] by a signifi-
cant margin (Table 2). Under Mask R-CNN setup, the
DCFormer-T outperforms [2] by 3.5% with half of FLOPs
and DCFormer-S outperforms [1] by 3.8% with only 60%
of its FLOPs. The DCFormer stands out in detection tasks
among other frequency domain based methods because: (1)
instead of squeezing the frequency band into the channels,
the DCFormer is able to maintain the feature map used for
ROIalign at a reasonable size, which is critical for detec-
tion tasks; (2) the transformer better models the frequency-
domain representation compared with stacked convolutions.

4.1.3 Instance Segmentation on COCO

Setting: We also evaluate the instance segmentation per-
formance on the COCO dataset, and our training follows
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Object Detection Instance Segmentation

Backbone Input size FLOPs Tr(flsy APPOX AP};?SX Apgf;xs Apbox AP}}}’S" AP}}%"S
ResNet-50-FPN | 800 x 1333 , 373 59.0 402 342 54.9 36.2
SWIN-T[33] 800 x 1333 267G 23.1 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T[34] | 800 x 1333 262G 25.6 46.2 67.9 50.8 417 65.0 44.9
DCT-64S[7] 1600 x 2666 ; - 38.1 59.6 41.1 35.0 56.5 37.4
FeaNet-LF[ 1] 800 x 1333 262G . 403 61.9 439 363 58.3 38.6
FcaNet-TS[ 1] 800 x 1333 262G . 403 62.0 44.1 36.2 58.6 38.1
FcaNet-NAS[1] | 800 x 1333 262G . 403 61.9 439 363 583 38.6
WaveVIT-S[60] | 800 x 1333 ; . 424 65.5 458 ; ; ;
WaveViT-B[60] | 800 x 1333 . . 43.0 66.4 46.0

DCFormer-SW-T | 800 x 1333 116G 393 41.6 632 44.8 37.9 59.3 403
DCFormer-SW-S | 800 x 1333 139G 342 44.1 65.4 48.1 39.2 61.7 422
DCFormer-SW-T | 1200 x 2000 183G 28.6 44.4 66.2 474 40.0 62.8 433
DCFormer-SW-S | 1200 x 2000 235G 259 46.4 67.7 49.8 427 64.6 44.1

Table 2: Comparison on COCO Object detection and instance segmentation on 5k validation set, with 800 x 1333 input
images. DCFormer-SW and DCFormer-NA denots DCFormer with SWIN [33] and NAT [19] as backbones, respectively.

Model Size FLOPs #Param. Topl (%) Object Detection with Cascade Mask R-CNN setup
ResNet-50[21] 256 3.8G 26M 79.3 Backbone FLOPs Apmask AP{)ngsk AP{)“%‘E"
ResNet-101[21] 256 7.6G 45M 80.1 - -
RegNetY-4G[39] 256 4.0G 21M 80.0 SWIN-T[33] 745G 50.3 69.1 54.3
RegNetY-8G[29] 256 8.0G 39M 81.7 ConvNeXt-T[34] 741G 50.4 69.2 54.7
RegNetY-16G[39] 256 160G 84M 82.9 SWIN-S[ 4] 838G 519 707 263
EffiNet-B3[4£] 300 1.8G oM 816 ConvNeXt-S[34] 827G 51.9 70.8 56.5
EffiNet-B4[48] 380 4.2G 19M 82.9 DCFormer-T 595G 435 62.6 474
EffiNet-B5[48] 456 9.9G 30M 83.6 DCFormer-S 618G 46.6 64.9 50.4
SWIN-T[33] 256 4.5G 28M 81.2 DCFormer-T (1.5x%) 661G 48.4 67.6 52.6
SWIN-S[33] 256 8.7G 50M 83.0 DCFormer-S (1.5x) 714G 50.1 68.8 54.1
SWIN-B[33] 256 15.4G 88M 83.5
ConvNeXt-T[34] 256 4.5G 20M 82.1 Instance Segmentation with Cascade Mask R-CNN setup
ConvNeXt-S[34] 256 8.7G 50M 83.1 Backbone FLOPs APmask APmask APmask
ConvNeXt-B[34] 256 154G 89M 83.8 9.5 LY
NAT-T[34] 256 43G 20M 83.2 SWIN-T[33] 745G 437 66.6 47.3
NAT—S[ ] 256 7.8G 50M 83.5 COHVNCXt—T[ ] 741G 437 66.5 47.3
NAT-B[34] 256 137G 89M 84.3 SWIN-S[ 3] 838G 450 68.2 48.8
ConvNeXt-S[34] 827G 45.0 68.4 49.1
DCFormer-SW-S (1 =2) 256 2.7G 28M 80.9 DCFormer-T 505G 380 593 207
DCFormer-SW-T (7 = 2) 512 4.5G 28M 82.1
DCFormer-NA-T ( = 2) 384  38G  28M 82.6 DCFormer-§ 018G 405 62.2 43.7
¥ : DCFormer-T (1.5%) 661G 42.1 65.7 46.5
DCFormer-NA-B (1 =1) 256 13.7G 90M 84.1

(b) Comparison on COCO 5K validation set. DCFormer with SWIN backbone

(a) Comparing with SOTA RGB-based model on ImageNet classification tasks. and 7 = 2 is used.

Table 3: Comparing with RGB-based works on image classification, object detection and instance segmentation. Detection
and instance segmentation tasks run on 800 x 1333 input images, 1.5 denotes 1.5 times larger input images. DCFormer-
SW/NA denotes DCFormer with SWIN [33] and NAT [19] as backbones, respectively.

the same protocol used in the detection experiments.
Results: DCFormer achieves consistent performance im-
provements on instance segmentation (Table 2) compared
with other frequency domain modeling approaches [, 2].

4.2. Comparing with RGB-based SOTA

Classification Table 3 (a) shows our results on ImageNet-
1K validation set compared with the previous works based
on convolution [21, 34], transformer [33, 50]. All the mod-
els listed are only trained on ImageNet-1K from scratch.

We find that the proposed DCFormer is able to operate
at lower computational budget to maintain similar per-
formance comparing with commonly used RGB models.
For example, DCFormer-SWIN-S (= 2) achieves 80.9%
topl accuracy with only 2.7G FLOPs, significantly more
efficient than SWIN-T [33]. The DCFormer-NA-T also
achieves slightly better performance at lower FLOPs com-
paring with recent works ConvNeXT-T [34] and SWIN-
T [33]. Furthermore, the DCFormer is able to achieve per-
formance comparable to RGB SOTA at same computational
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Input size DCT Patch Topl
Module FLOPs Topl T #selected  FLOPs  Topl

256 x 256 42 70.70
SWIN-T(1122 RGB) 131G 78.54 4 4 0.39G 733 2

- 256 x 256 8 78.88

+Frequency selection 131G 78.88 2 16 1.31G 79.2 256 x 256 162 78.93
+Frequency embedding 131G 79.19 1.3 36 3.05G 80.4 512 x 512 g2 81A15
+reconstruction decoder 131G 79.35 1 64 4.50G 81.2 x 5 :

512 x 512 16 82.03

(a) Building components. Each proposed components
helps with performance, the frequency selector and recon-

(b) Compression ratio. Lower compres-
sion ratio gives higher accuracy but also

(c) DCT patch size. Larger DCT patch
size on larger input images lead to better

struction decoder helps most. higher FLOPs.
performance.
Backbone FLOPs  Topl  RGB Topl Selector FLOPs Topl Input Size  FLOPs Topl
ResNet-50[21] 1.0G 75.7 79.3 no sampling 4.1G 81.1 RGB 256 4.1G 81.2
ResNet-101[21] 2.1G 71.5 80.1 average pooling 1.3G 579 RGB 112 1.3G 78.5
ViT-B[12] 14.9G 75.2 717.9 cross-attention 3.8G 77.8 Reconstructed. RGB 112 1.3G 79.0
SWIN-T[33] 1.3G 79.2 81.2 zigzag 1.3G 79.2 DCT 112 1.3G 79.2

(d) Generalization. Transformer based backbone
generally works better as encoder.

(e) Compression methods. The zigzag
works better than others.

(f) Effectiveness. The propose compression is
more effective than spatial down-sampling.

Table 4: Ablation studies on ImageNet-1K. All the experiments use DCFormer-SW-T and images of 256 x 256 as backbone

without the reconstruction decoder, unless specified.

budget. For example, the DCFormer-SWIN-T (7 = 2)
with 512 x 512 input resolution slightly outperforms SWIN-
T [33] at same FLOPs. The DCFormer-NA-B also achieves
performance comparable to SOTA NAT-B [19] with same
input resolution and same FLOPs. The results demonstrate
the outstanding efficiency and effectiveness of the proposed
approach.

Object Detection To compare with SOTA RGB models,
we trained DCFormer with SWIN backbone on cascade
mask RCNN pipeline. The proposed DCFormer is able to
reduce the FLOPs and latency on object detection tasks (Ta-
ble 3 (b)). Giving the same input image resolution, the
DCFormer-SWIN-S achieves slightly worse performance
compared with the SOTA SWIN-T and ConvNeXt-T mod-
els but with 15% less FLOPs. Similar to image classifica-
tion, the performance gap can be compensated by higher
input resolution without significant FLOPS increase. By
scaling up the input image by 1.5x (1200 x 1666), the
DCFormer-SWIN-S is able to achieve comparable perfor-
mance with 11% less FLOPs.

Instance Segmentation The DCFormer with large in-
put resolution achieves similar performance compared with
SOTA SWIN [33] and ConvNeXT [34] based approaches
(Table 3 (c)). We notice that the DCFormer maintains
good efficiency due to the proposed frequency compres-
sion. However, the DCFormer performs slightly worse on
instance segmentation tasks. This is probably due to the re-
duced feature map size and lack of high-frequency (texture)
information. There are researches showing that texture in-
formation helps with instance segmentation [26]. To better
preserve these textures during the compression as well as
maintaining the low computation will be our future work.

4.3. Ablation Study

We justify the important design choices, effectiveness
and generalization of proposed model on ImageNet-1K im-
age classification task. All the experiments are performed
on DCFormer-SWIN-T. The images are 256 x 256 resolu-
tion and have 8 x 8 frequency patch size, with 7 = 2 are
used, unless specified.

Building components breakdown. Table 4a analyzes the
contribution of each proposed components, by adding them
one at a time, to a standard SWIN transformer. We use
a SWIN transformer on an RGB image down-sampled to
112 x 112 as the baseline (same FLOPs). By performing
hard-selection on the frequency components, we boost the
performance by 0.34% without introducing additional com-
putation. This also verifies our intuition that the frequency
domain down-sampling better preserves information that is
visually significant. The proposed frequency embedding
slightly enhance the performance by 0.2%. Additionally,
the reconstruction decoder achieves a slight improvement
by 0.16% which shows that our decoder works as expected.
Note that the decoder only introduces additional FLOPs in
training but it is not used during inference.

Compression ratio. Table 4b compares the classification
performance under different frequency compression ratios.
The larger compression ratio, e.g. 7 = 4, leads to lower
FLOPs but lower accuracy since more information was
dropped; same for the opposite. Based on the ablation, we
choose 7 = 0.5 for the best efficiency and effectiveness
trade-off. It is also interesting to see that the DCFormer with
no frequency down-sampling (7 = 1) achieves the same ac-
curacy and FLOPs as SWIN-T with RGB image input. This
indicates the frequency domain representation is as effective
as the RGB representation, as we argue that transformer is
a good fit for frequency domain modeling.
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DCT Patch Size. Table 4c studies the impact of using dif-
ferent DCT patch sizes on images of different resolutions.
In general, smaller DCT patch size, e.g. 82 works better
on smaller images (e.g. 2562, 3842). Further increasing
the input resolution with same DCT patch size does not
consistently enhance the performance, because small DCT
patches with limited DCT bases only contain limited infor-
mation. Larger DCT patches convey more frequency infor-
mation and yield better performance on inputs with high-
resolution. Dynamically adjusting DCT patch size will be
our future research.

Generalization. Table 4d explores the generalization of
proposed image compression with different backbones.
Our approach generalizes to different backbones. The
transformer-based encoders generally yield less perfor-
mance drop by using frequency domain inputs, which
proves our illustration that the attention can simulate
inverse-DCT operation more effectively. It is also worth
mentioning that the ViT-B has high FLOPs due to its lack
of multi-scale feature hierarchy.

Compression method. Table 4¢ compares different fre-
quency compression methods. We first notice that average
pooling which is commonly used in spatial down-sampling
causes significant performance drop when applied to the
frequency domain. This is because averaging data points
that belong to different frequency bands does not make
sense as they do not have direct spatial associations. We
then try to use the cross-attention to learn the weighted aver-
age based compression. However, cross-attention requires
applying extra convolution layers on input DCT map, which
introduces additional computation and makes the compres-
sion less efficient and contradict to our motivations. The
zigzag selection works best at no additional computations
in our case. Similar approach was used in JPEG compres-
sion and similar patterns were observed [2].

Effectiveness. Table 4f compares and analyzes several
alternatives to the proposed image modeling at similar
FLOPs, including: directly down-sample the input image
by 2x; and after proposed frequency domain compression,
reconstruct the RGB image with IDCT and feed it into the
standard SWIN transformer. For better comparison, the
SWIN-T with RGB input of 256 x 256 is used as the base-
line. The results indicate that the proposed method is more
effective than the alternative, as the reconstruction may suf-
fer from noises introduced during padding and converting.

5. Visualization

To qualititively show the proposed frequency domain
modeling learns the semantics, we visualize the activation
of DCFormer-SWIN wtih attention rollout [3].

Figure 3 visualizes and compares the features learned by
SWIN transformer and our DCFormer-SWIN-T (7 = 2).
The activation maps are extracted from the last stage of

DCFormer-SWIN

Original Image  SWIN

Figure 3: Activation from SWIN-T [33] and DCFormer-
SWIN. Most cases share similar activation for both models
(top); for some cases SWIN covers larger regions (bottom).

backbone and overlayed to the input image. For most cases,
the attentions from SWIN transformer and our DCFormer
fall onto the same regions, which indicates the DCFormer
learns the same semantic representations as RGB domain
modeling (Figure 3, top). We notice that in a few cases,
the activation map from SWIN transformer covers broader
regions (Figure 3, bottom), this is probably because the
SWIN transformer generates 4 x larger feature maps than
DCFormer giving the same input image.

6. Conclusion

In this paper, we introduce DCFormer that enables
transformer to learn semantics directly from DCT-based
frequency domain representation. Based on DCFormer,
we further introduce an frequency input down-sampling
method. DCFormer achieves the performance comparable
to commonly used transformer backbones with no perfor-
mance compromise. With proposed frequency input com-
pression, the DCFormer is able to achieve better efficiency-
effectiveness trade-off comparing with previous frequency
modeling approaches. We hope that these promising results
reported will encourage the research on efficient modeling
from another perspective and the implementation of pro-
posed approach to many downstream tasks. Exploring the
transformer based frequency domain modeling approach
with other frequency representation, e.g. discrete wavelet
transformation, and refining the frequency compression for
better performance will be our future work.
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