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Abstract

Most object detection methods for autonomous driving
usually assume a consistent feature distribution between
training and testing data, which is not always the case when
weathers differ significantly. The object detection model
trained under clear weather might be not effective enough
on the foggy weather because of the domain gap. This paper
proposes a novel domain adaptive object detection frame-
work for autonomous driving under foggy weather. Our
method leverages both image-level and object-level adap-
tation to diminish the domain discrepancy in image style
and object appearance. To further enhance the model’s
capabilities under challenging samples, we also come up
with a new adversarial gradient reversal layer to perform
adversarial mining for the hard examples together with do-
main adaptation. Moreover, we propose to generate an
auxiliary domain by data augmentation to enforce a new
domain-level metric regularization. Experimental results
on public benchmarks show the effectiveness and accu-
racy of the proposed method. The code is available at
https://github.com/jinlongl7/DA-Detect.

1. Introduction

Autonomous driving has wide applications for intelli-
gent transportation systems, such as improving the efficiency
in the automatic 24/7 working manner, reducing the labor
costs, enhancing the comfortableness of customers, and so
on [23,49]. With the computer vision and artificial intel-
ligence techniques, object detection plays a critical role in
autonomous driving to understand the surrounding driving
scenarios [51,56]. In some cases, the autonomous vehicle
might work in the complex residential and industry areas.
The diverse weather conditions might make the object de-
tection in these environments more difficult. For example,
the usages of heating, gas, coal, and vehicle emissions in
residential and industry areas might be possible to generate
more frequent foggy or hazy weather, leading to a signifi-
cant challenge to the object detection system installed on the
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autonomous vehicle.

Many deep learning models such as Faster R-CNN [37],
YOLO [36] have demonstrated great success in autonomous
driving. However, most of these well-known methods as-
sume that the feature distributions of training and testing data
are homogeneous. Such an assumption may fail when taking
the real-world diverse weather conditions into account [40].
For example, as shown in Fig. 1, the Faster R-CNN model
trained on the clear-weather data (source domain) is capable
of detecting objects accurately under good weather, but its
performance drops significantly when it comes to the foggy
weather (target domain). This degradation is caused by the
feature domain gap between divergent weather conditions,
as the model is unfamiliar with the feature distribution on
the target domain, while the detection performance could be
improved under the foggy weather with domain adaptation.

Domain adaptation, as a technique of transfer learning, is
to reduce the domain shift between various weathers. This
paper proposes a novel domain adaptation framework to
achieve robust object detection performance in autonomous
driving under foggy weather. As manually annotating im-
ages under adverse weathers is usually time-consuming,
our design follows an unsupervised fashion same as that
in [5,26,43], where clear-weather images (source domain)
are well labeled and foggy weather images (target domain)
have no annotations. Inspired by [5, 15], our method lever-
ages both image-level and object-level adaptation to diminish
the domain discrepancy in image style and object appear-
ance jointly, which is realized by involving image-level and
object-level domain classifiers to enable our convolutional
neural networks generating domain-invariant latent feature
representations. Specifically, the domain classifiers aim to
maximize the probability of distinguishing the features pro-
duced by different domains, whereas the detection model
expects to generate the domain-invariant features to confuse
the classifiers.

This paper also addresses two critical insights that are
ignored by previous domain adaptation methods [5,9, 15,
26,58]: 1) Different training samples might have different
challenging levels to be fully harnessed during the transfer
learning, while existing works usually omit such diversity;



2) Previous domain adaptation methods only consider the
source domain and target domain for transfer learning, while
the domain-level feature metric distance to the third related
domain might be neglected. However, embedding the min-
ing for hard examples and involving an extra related domain
might potentially further enhance the model’s robust learning
capabilities, which has not been carefully explored before.
To emphasize these two insights, we propose a new Ad-
versarial Gradient Reversal Layer (AdvGRL) and generate
an auxiliary domain by data augmentation. The AdvGRL
performs adversarial mining for the hard examples to en-
hance the model learning on the challenging scenarios, and
the auxiliary domain enforces a new domain-level metric
regularization during the transfer learning. Experimental
results on the public benchmarks Cityscapes [7] and Foggy
Cityscapes [40] show the effectiveness of each proposed
component and the superior object detection performance
over the baseline and comparison methods. Overall, the
contributions of this paper are summarized as follows:

* We propose a novel deep transfer learning based domain
adaptive object detection framework for autonomous
driving under foggy weather, including the image-level
and object-level adaptations, which is trained with la-
beled clear-weather data and unlabeled foggy-weather
data to enhance the generalization ability of the deep
learning based object detection model.

* We propose a new Adversarial Gradient Reversal Layer
(AdvGRL) to perform adversarial mining for the hard
examples together with the domain adaptation to further
enhance the model’s transfer learning capabilities under
challenging samples.

e We propose a new domain-level metric regularization
during the transfer learning. By generating an auxiliary
domain with data augmentation, the domain-level met-
ric constraint between source domain, auxiliary domain,
and target domain is ensured as regularization during
the transfer learning.

(b)
Figure 1: Illustration of the domain adaptive object detection for autonomous driving: (a) Faster R-CNN [37] detection under
clear weather, (b) Faster R-CNN detection under foggy weather without domain adaptation, (c) Faster R-CNN detection under
foggy weather with the proposed domain adaptation.
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2. Related Work
2.1. Object detection for autonomous driving

Recent advancement in deep learning has brought out-
standing progress in autonomous driving [6,25,33,50], and
object detection has been one of the most active topic under
this field [8,41, 56]. Regarding the network architecture,
current object detection algorithms can be roughly split into
two categories: two-stage methods and single-stage methods.
Two-stage object detection algorithms typically compose
of two processes: 1) region proposal, 2) object classifica-
tion and localization refinement. R-CNN [14] is the first
work for this kind of methods, it applies selective search for
regional proposals and independent CNNs for each object
prediction. Fast R-CNN [13] improves R-CNN by obtaining
object features from the shared feature map learned by one
CNN. Faster R-CNN [37] further enhances the framework
by proposing Region Proposal Network (RPN) to replace
the selective search stage. Single-stage object detection
algorithms predict object bounding boxes and classes si-
multaneously in one same stage. These methods usually
leverage pre-defined anchors to classify objects and regress
bounding boxes, they are less time-consuming but less ac-
curate compared to two-stage algorithms. Milestones for
this category include SSD-series [29], YOLO-series [36]
and RetinaNet [28]. Despite their success in clear-weather
visual scenes, these object detection methods might not be
employed in autonomous driving directly due to the complex
real-world weather conditions.

2.2. Object detection for autonomous driving under
different weather

In order to address the diverse weather conditions en-
countered in autonomous driving, many datasets have been
generated [31,32,34,40] and many methods have been pro-
posed [2,17,18,22,35,42] in recent years. For example,
Foggy Cityscape [40] is a synthetic dataset that applies fog
simulation to Cityscape for scene understanding in foggy
weather. TJU-DHD [32] is a diverse dataset for object de-
tection in real-world scenarios which contains variances in
terms of illumination, scene, weather and season. In this



paper, we focus on the object detection problem in foggy
weather. Huang et al. [22] propose a DSNet (Dual-Subnet
Network) that involves a detection subnet and a restoration
subnet. This network can be trained with multi-task learning
by combining visibility enhancement task and object detec-
tion task, thus outperforms pure object detectors. Hahner
et al. [17] develop a fog simulation approach to enhance
existing real lidar dataset, and show this approach can be
leveraged to improve current object detection methods in
foggy weather. Qian et al. [35] propose a MVDNet (Multi-
modal Vehicle Detection Network) that takes advantage of
lidar and radar signals to obtain proposals. Then the region-
wise features from these two sensors are fused together to
get final detection results. Bijelic et al. [2] develop a network
that takes the data from four sensors as input: lidar, RGB
camera, gated camera, and radar. This architecture uses
entropy-steered adaptive deep fusion to get fused feature
maps for prediction. These methods typically rely on input
data from other sensors rather than RGB camera itself, which
is not the general case for many autonomous driving cars.
Thus we aim to develop an object detection architecture that
only takes RGB camera data as input in this work.

2.3. Domain adaptation for object detection

Domain adaptation reduces the discrepancy between dif-
ferent domains, thus allows the model trained on source
domain to be applicable on unlabeled target domain. Pre-
vious domain adaptation works mainly focus on the task
of image classification [44—46, 53], while more and more
methods have been proposed to solve domain adaptation for
object detection in recent years [5,15,24,39,47,48,52,55,57].
Domain adaptive detectors could be obtained if the features
from different domains are aligned [5, 15, 18,39,47]. From
this perspective, Chen et al. [5] introduce a Domain Adaptive
Faster R-CNN framework to reduce domain gap from image
level and instance level, and the image-and-instance consis-
tency is subsequently employed to improve cross-domain
robustness. He et al. [18] propose a MAF (multi-adversarial
Faster R-CNN) framework to minimize the domain distri-
bution disparity by aligning domain features and proposal
features hierarchically. On the other hand, some works try
to solve domain adaptation through image style transfer
methods [21,24,41]. Shan et al. [41] first convert images
from source domain to target domain with image transla-
tion module, then train the object detector with adversarial
training on target domain. Hsu et al. [21] choose to translate
images progressively, and add a weighted task loss during
adversarial training stage for tackling the problem of image
quality difference. Many previous methods [4,27, 38, 59]
design complex architectures. [59] used multi-scale back-
bone Feature Pyramid Networks and considered pixel-level
and category-level adaptation. [27] used the complex Graph
Convolution Network and graph matching algorithms. [38]
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used the similarity-based clustering and grouping. [4] uses
the uncertainty-guided self-training mechanism (Probabilis-
tic Teacher and Focal Loss) to capture the uncertainty of
unlabeled target data from a gradually evolving teacher and
guides student learning. Differently, our method does not
bring extra learnable parameters to original Faster R-CNN
model because our AdvGRL is based on adversarial training
(gradient reversal) and Domain-level Metric Regularization
is based on triplet loss. Previous domain adaptation meth-
ods usually treat training samples at the same challenging
level, while we employ advGRL for adversarial hard ex-
ample mining to improve transfer learning. Moreover, we
generate an auxiliary domain and apply domain-level metric
regularization to avoid overfitting.

3. Proposed Method

In this section, we will first introduce the overall network
architecture, then describe the image-level and object-level
adaptation method, and finally, reveal the details of AdvGRL
and domain-level metric regularization.

3.1. Network Architecture

As illustrated in Fig. 2, our proposed model adopts the
pipeline in Faster R-CNN for object detection. The Con-
volutional Neural Network (CNN) backbone extracts the
image-level features from the RGB images and send them to
Region Proposal Network (RPN) to generate object propos-
als. Afterwards, the ROI pooling accepts both image-level
features and object proposals as the input to retrieve the
object-level features. Eventually, a detection head is applied
on the object-level features to produce the final predictions.
Based on the Faster R-CNN framework, we integrate two
more components: image-level domain adaptation module,
and object-level domain adaptation module. For both mod-
ules, we deploy a new Adversarial Gradient Reversal Layer
(AdvGRL) together with the domain classifier to extract
domain-invariant features and perform adversarial hard ex-
ample mining. Moreover, we involve an auxiliary domain to
impose a new domain-level metric regularization to enforce
the feature metric distance between different domains. All
three domains, i.e., source, target, and auxiliary domains,
will be employed simultaneously during the training.

3.2. Image-level Adaptation

The image-level domain representation is obtained from
the backbone feature extraction and contains rich global
information such as style, scale and illumination, which can
potentially pose significant impacts on the detection task [5].
Therefore, a domain classifier is introduced to classify the
domains of the upcoming image-level features to enhance
the image-level global alignment. The domain classifier is
just a simple CNN with two convolutional layers and it will
output a prediction to identify the feature domain. We use
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Figure 2: The architecture of proposed domain adaptive object detection for autonomous driving under foggy weather. Based
on the traditional Faster R-CNN architecture [37], the image-level and object-level domain adaptations with adversarial
gradient reversal layer (AdvGRL) and domain-level metric regularization are designed in the proposed framework. This figure
is best viewed in color.

the binary cross entropy loss for the domain classifier as
follows:

N
Limg = — Y _[GilogP; + (1 — G;)log(1 — P,)],

i=1

(1)

where i € {1,..., N} represents the N training images,
G; € {1,0} is the ground truth of the domain label in the
i-th training image (1 and 0 stand for source and target do-
mains respectively), and P; is the prediction of the domain
classifier.

3.3. Object-level Adaptation

Besides the image-level global difference in different
domains, the objects in different domains might be also
dissimilar in the appearance, size, color, efc. In this paper,
we define each region proposal after the ROI Pooling layer in
Faster R-CNN as a potential object. Similar with image-level
adaptation module, after retrieving the object-level domain
representation by ROI pooling, we implement a object-level
domain classifier to identify the feature derivation from local
information. A well-trained object-level classifier, a neural
network with 3 fully-connected layers, will help align the
object-level feature distribution. We also use the binary cross
entropy loss for this domain classifier:
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2
where j € {1,..., M} is the j-th detected object (region
proposal) in the i-th image, P; ; is the prediction of the
object-level domain classifier for the j-th region proposal in
the ¢-th image, and G ; is the corresponding binary ground-
truth label for source and target domains respectively.

3.4. Adversarial Gradient Reversal Layer

00 o1 02 03 04 o0 6 07 08 09 10

5 Lc 0.
Figure 3: Illustration of the adversarial mining for hard
training examples by the proposed AdvGRL. In this example,
we set \g = 1, = 30. Harder training examples with lower

domain classifier loss L. will have larger response.

In this section, we first review the original Gradient Rever-
sal Layer (GRL) [10], then we make a detailed description
of the proposed Adversarial Gradient Reversal Layer (Adv-
GRL) for our domain adaptive object detection framework.
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Figure 4: The example of generating auxiliary domain using
Cityscapes dataset: (a) an original image, (b) a rain map by
RainMix [16], (c) a synthetic rainy Cityscapes image for the
auxiliary domain.

(a) (b)

The original GRL is used for unsupervised domain adap-
tation of the image classification task [10]. Specifically, it
leaves the input unchanged during forward propagation and
reverses the gradient by multiplying it by a negative scalar
when back-propagating to the base network ahead during
training. A domain classifier is trained to maximize the
probability of identifying the domain while the base network
ahead is optimized to confuse the domain classifier. In this
way, the domain-invariant features are obtained to realize
the domain adaptation. The forward propagation of GRL is
defined as:

Ry(v) =, 3)

where v is an input feature vector, and R, denotes the
forwarding function that GRL performs, and the back-
propagation of GRL is defined as:

dR)

dv
where I is an identity matrix and —\ is a negative scalar.

The original GRL sets either a constant or a changing

—\ based on the training iterations [10]. However, this
setting ignores an insight that different training samples
might have different challenging levels during the transfer
learning. Therefore, this paper proposes a novel AdvGRL to
perform adversarial mining for the hard examples together
with the domain adaptation to further enhance the model’s
transfer learning capabilities under challenging examples.
This can be done by simply replacing A by a new Aqqy
in Eq. (4) of GRL, which forms the proposed AdvGRL.
Particularly, A\,q4, is calculated as:

=L “)

_ min(%76): Lc <«

— C

>\07

where L.. is the loss of the domain classifier, «v is a hardness
threshold to judge whether the training sample is challenging,
S is the overflow threshold to avoid generating excessive
gradients in the back-propagation, and \y = 1 is set as a
fixed parameter in our experiment. In other words, if the
domain classifier’s loss L. is smaller, the domain of the
training sample can be more easily identified, whose feature
is not the desired domain-invariant feature, so this kind of

&)

)\H,dv
otherwise,

616

training sample is a harder example for domain adaptation.
The relation of A\,4, and L. is shown in Fig. 3.

On summary, the proposed AdvGRL has two effects:
1) AdvGRL could use negative gradients during back-
propagation to confuse the domain classifier so as to generate
domain-invariant features; 2) AdvGRL could perform ad-
versarial mining for the hard examples to further enhance
the model generalization under challenging examples. The
proposed AdvGRL is applied to both image-level and object-
level domain adaptation in our domain adaptive object de-
tection framework, as shown in Fig. 2.

3.5. Domain-level Metric Regularization

Previous existing domain adaptation methods mainly fo-
cus on the transfer learning from source domain S' to target
domain 7", which neglects the potential benefits of the third
related domain can bring. To address this and thus addition-
ally involve the feature metric constraint between different
domains, we introduce an auxiliary domain for a domain-
level metric regularization during the transfer learning.

Based on the source domain .S, we can apply some ad-
vanced data augmentation methods to generate an auxiliary
domain A. For the autonomous driving scenario, the training
data in different weather conditions can be synthesized from
the clear-weather data, then the three input images of our ar-
chitecture (as shown in Fig. 2) could be aligned images. For
example, we generate an auxiliary domain with the advanced
data augmentation method RainMix [16,20]. Specifically,
we randomly sample a rain map from the public dataset of
real rain streaks [11], then perform random transformations
using the RainMix technique on the rain map, where these
random transformations (i.e., rotate, zoom, translate, shear)
are sampled and combined. Finally, these transformed rain
maps can be blended with the source domain images, which
can simulate the diverse rain patterns in the real world. The
example of generating auxiliary domain is shown in Fig. 4.
Different with other methods including data augmentation to
the source/target domain, by generating an auxiliary domain
with data augmentation, the domain-level metric constraint
between source, auxiliary, and target domains is ensured.

Let us define the ¢-th training image’s global image-level
features of S, A and 7" as F,L»S , F iA, and F iT respectively. We
expect to ensure the feature metric distance between the F°
and F' closer than the feature metric distance between F;°
and F/' after reducing the domain gap between S and 7,
which is defined as:

(6)

where d(, ) denotes the metric distance of the corresponding
features. This constraint can be implemented by a triplet
structure, where the F°, F/', F can be treated as anchor,
positive and negative in the triplet structure. Therefore, as
the domain-level metric regularization on image features,

d(Fisa F'LT) < d(FL'Sv FiA)v



the above image-level constraint in Eq. (6) is equivalent to
minimize the following image-level triplet loss:

LE

img

= max(d(F®, F') = d(F, F{') +6,0), ()
where the parameter J is used as a margin constraint and we
set 9 = 1.0 in our experiments.

Similarly, let us define the i-th training image’s j-th
object-level features of S, A and T as ffj, ZAJ and lT]
respectively. As the domain-level metric regularization on
object features, we will also minimize the following object-

level triplet loss:

S A
g0 )i

LR

R =max(d(f;, ) — d( )+6,0). (8

3.6. Loss Function

The final training loss of the proposed network is a sum-
mation of each individual part, which can be written as:

+L%

L= Lcls+Lreg +w * (Limg+Lobj 1mg+Lfbj)7 (9)
where L., and L,..4 are the loss of classification and the
loss of regression in the original Faster R-CNN respectively,
and w is a weight to balance the Faster R-CNN loss and
the domain adaptation loss for training. We set w = 0.1
in our experiments. In the training, the proposed domain
adaptive object detection framework can be trained in an
end-to-end manner using a standard Stochastic Gradient
Descent algorithm. During the testing, the original Faster R-
CNN architecture with trained adapted weights can be used
for object detection, after removing the domain adaptation

components.

3.7. General Domain Adaptive Object Detection

Our model has the capability to be adapted to general
domain adaptive object detection. For the scenarios that
the images from target domain are synthesized from the
source domain with pixel-to-pixel correspondence (e.g.,
Cityscapes—Foggy Cityscapes), our method can be di-
rectly applied without modification. For the scenarios where
target and source domains do not have strict correspondence
(e.g., Cityscapes—KITTI), our method can be applied by
simply removing the L2 ; loss to eliminate the dependence
on the object alignment in the model training.

4. Experiments

4.1. Benchmark

Our experiments are based on the public object detection
benchmarks Cityscapes [7] and Foggy Cityscapes [40] for
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autonomous driving. Cityscapes [7] is a widely used au-
tonomous driving dataset, which is a collection of images
with city street scenarios in clear weather conditions from
27 cities. In Cityscapes dataset, there are 2,975 training im-
ages and 500 validation images with instance segmentation
annotations which can be transformed into bounding-box an-
notations with 8 categories. All images are 3-channel RGB
images and captured by a car-mounted video camera with
the same resolution of 1024 x 2048. Foggy Cityscapes [40]
is established by simulating the fog of different intensity lev-
els on the Cityscapes images, which generates the simulated
three levels of fog based on the depth map and a physical
model [40]. Its image number, resolution, training/validation
split, and annotations are same as those of Cityscapes. Fol-
lowing the previous methods [35, 15,47], the images with the
fog of highest intensity level are utilized as the target domain
for transfer learning in our experiments.

4.2. Experimental Setting

Dataset setting: We set the labeled training set of
Cityscapes [7] as source domain and the unlabeled train-
ing set of Foggy Cityscapes [40] as target domain during the
training. Then, the trained model is tested on the validation
set of Foggy Cityscapes to report the evaluation result. We
denote this setting as the Cityscapes—Foggy Cityscapes
experiment in this paper.

Training and parameter setting: In the experiments, we
adopt ResNet-50 as the backbone for the Faster R-CNN [37]
detection network, which is pre-trained on ImageNet. During
training, following setting in [5, 37], the back-propagation
and stochastic gradient descent (SGD) are used to optimize
all the networks. The whole network is trained with an
initial learning rate 0.01 for 50k iterations and then reduced
to 0.001 for another 20k iterations. For all experiments, a
weight decay of 0.0005 and a momentum of 0.9 are used,
and each batch includes an image of source domain, an
image of target domain and an image of auxiliary domain.
For comparison, the A in the original GRL (Eq. (4)) is set
as 1. The hardness threshold « in the AdvGRL (Eq. (5)) is
set as 0.63 by averaging the values of Eq. (1) when P; =
0.7,G; = land P; = 0.3, G; = 0. Our code is implemented
with PyTorch and Mask R-CNN Benchmark Toolbox [30],
and all models are trained using a GeForce RTX3090 GPU
card with 24GB memory.

Evaluation metrics and comparison methods: We set the
Intersection over Union (IoU) threshold as 0.5 to compute
the Average Precision (AP) of each category and mean Av-
erage Precision (mAP) of all categories. Then we compare
our proposed method with some recent domain adaptation
comparison methods in our experiments, such as SCDA [61],
DM [24], MAF [18], MCAR [57], SWDA [39], PDA [21],
RPN-PR [55], MTOR [3], DA-Faster [5], GPA [47], and
UaDAN [15].



Table 1: AP for each class and overall mAP with comparison methods on the Cityscapes—Foggy Cityscapes experiment (%)
as clear to foggy adaptation. Note that the best performance is bold and the second best is underlined.

Methods bus  bicycle car mcycle person rider train truck | mAP
SCDA-CVPR’19 [61] 39.0 33.6 48.5 28.0 335 38.0 233 265 | 338
DM-CVPR’19 [24] 38.4 322 443 28.4 30.8 40.5 345 272 | 346
MAF-ICCV’19 [18] 39.9 339 43.9 29.2 28.2 39.5 333 238 | 340
MCAR-ECCV’20 [57] 44.1 36.6 43.9 374 320 421 434 313 | 388
SWDA-CVPR’19 [39] 36.2 353 435 30.0 29.9 423 32,6 245 | 343
PDA-WACV’20 [21] 44.1 359 544 29.1 36.0 455 258 243 | 369
MTOR-CVPR-19 [3] 38.6 35.6 44.0 28.3 30.6 414 406 219 | 351
DA-Faster-CVPR’18 [5] 49.8  39.0 53.0 28.9 35.7 452 454 309 | 41.0
GPA-CVPR’20 [47] 45.7 38.7 54.1 324 329 46.7 41.1 247 | 395
RPN-PR-CVPR’21 [55] 43.6 36.8 50.5 29.7 333 456 420 304 | 39.0
UaDAN-TMM’21 [15] 49.4 389 53.6 323 36.5 46.1 427 289 | 41.1
Ours w/o Auxiliary Domain | 48.4 36.7 535 26.1 36.1 459 39.1 293 | 40.2
Ours 51.2 39.1 54.3 31.6 36.5 46.7 48.7 303 | 423

Oracle 49.9 45.8 65.2 39.6 46.5 513 342 32,6 | 456

4.3. Clear to Foggy Adaptation

The results of weather adaptation from clear weather to
foggy weather are represented in Table 1. Compared with
other domain adaptation methods, we can see that our pro-
posed method achieves the best detection performance with a
mAP of 42.3%, which is higher than the second best method
UaDAN [15] with a mAP improvement of 1.2%. For each
category, we can see that the proposed method is able to al-
leviate the domain gap over most of the categories in Foggy
Cityscapes, e.g., bus got 51.2%, bicycle got 39.1%, person
got 36.5%, rider got 46.7%, and train got 48.7% as the best
performance in AP, which is highlight in Table 1. The pro-
posed method can reach the 48.7% AP for the train detection
in Foggy Cityscapes, compared to the 45.4% AP by the sec-
ond best method DA-Faster, where the proposed method is
3.3% better than DA-Faster. While PDA got 54.4% in car,
GPA got 32.4% in motorcycle, DA-faster got 30.9% in truck
as the best performance in some categories, the proposed
method is comparable across these three categories with a
minor difference. Obviously, compared to these recent do-
main adaptation methods, the proposed method achieves the
best performance in overall mAP performance and more
than half categories of Foggy Cityscapes.

Table 2: Ablation study for mAP on the
Cityscapes—Foggy Cityscapes experiment.

img obj AdvGRL Reg | mAP
Source only 23.41
img+GRL v 38.10
obj+GRL v 38.02
img+obj+GRL (Baseline) v v 38.43
img+obj+AdvGRL vV v 4023
img+obj+GRL+Reg v v v 41.97
img+obj+AdvGRL+Reg v v v v 42.34
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4.4. Cross-Camera Adaptation

To fully evaluate the proposed method, we conduct an
experiment to perform the cross-camera adaptation between
real-world autonomous driving datasets with different cam-
era settings. To apply our method to the unaligned datasets
in the real-world, we simply remove Lfb ; (Eq. 8) to apply
our method from Cityscapes (source) to KITTI [12] (target)
datasets for cross-camera adaptation. Same as [5], we use
KITTI training set (7,481 images of resolution 1250 x 375)
as target domain in both adaptation and evaluation, and AP
of Car on target domain is evaluated. The result is in Table 3,
where the proposed method achieved outstanding perfor-
mance compared with recent SOTA methods.

4.5. Ablation Study on Components

The effect of each individual proposed component for
the domain adaptation detection method is investigated
in this section. All experiments are conducted with the
same RestNet-50 backbone on the Cityscapes—Foggy
Cityscapes experiment. The results are presented in Ta-
ble 2. In the first row, ‘img’ and ‘obj’ stand for the image-
level adaptation module and object-level adaptation module
respectively, while ‘AdvGRL’ and ‘Reg’ denote the pro-
posed Adversarial Gradient Reversal Layer and domain-
level metric Regularization respectively. ‘img+obj+GRL’
stands for the baseline model in our experiment. We denote
that ‘img+obj+AdvGRL’ (Ours w/o Auxiliary Domain) and
‘img+obj +AdvGRL+Reg’ use the AdvGRL to replace the
original GRL. The ‘Source only’ indicates the Faster R-CNN
model without domain adaptation trained only with labeled
source domain images. The ablation study in Table 2 clearly
justifies the positive effect of each proposed component of
the domain adaptive object detection.



Table 3: AP of Car on the Cityscapes—KITTI experiment as cross-camera adaptation.

MAF-ICCV’19 [18]  ATF-ECCV’20 [19]

ART-CVPR’20 [58]

GPA-CVPR’20 [47] SGA-TMM’21 [54] UIT-ESwA'22 [1]  Ours

AP 72.10 73.50 73.60

65.36 72.02 73.70 74.38

g wrmr AL H

Figure 5: Hard examples (bigger \,q,) mined by AdvGRL.
Left to right: two mined hard examples, an easy example.

4.6. Ablation Study on Parameters

The study on different hyper-parameters of Eq. 9 and
Eq. 5 are conducted. We use the Cityscapes—Foggy
Cityscapes as the study case. First, the loss balance weight
w in Eq. 9 is set as 0.1, 0.01, 0.001 separately for train-
ing, and the corresponding detection mAP(s) are 42.34,
41.30, 41.19, respectively. Second, in the AdvGRL (Eq. 5),
the overflow threshold 8 and hardness threshold « are set
as (1) 8 = 30, = 0.63, 2) = 10, = 0.63, (3)
B = 30,a = 0.54, and (4) 8 = 10, = 0.54, where
a = 0.54 is computed by averaging the values of Eq. 1
when P, = 0.9,G; = 1and P, = 0.1,G; = 0. The detec-
tion mAP(s) of these settings are (1) 42.34, (2) 38.83, (3)
39.38, (4) 40.47, respectively.

4.7. Discussion on Visualized Hard Examples

Using Ay g4y of the proposed AdvGRL, we could find some
hard examples, as shown in Fig. 5. We compute the L;
distance of features F° and F after the CNN backbone
of Fig. 2 as the approximated hardness ah, where smaller
ah means harder for transfer learning. Intuitively, if the fog
covers more objects as shown in bounding-box regions of
Fig. 5, it will be more difficult.

4.8. Discussion on Domain Randomization, Pre-
trained Models, and Qualitative Results

Domain Randomization: Domain randomization might be
used to reduce the domain shift between source domain and
target domain. We use two ways as the domain randomiza-
tion in the Cityscapes—Foggy Cityscapes experiment, i.e.,
regular data argumentation and CycleGAN [60] based image
style transfer. 1) We construct the auxiliary domain by regu-
lar data argumentation (color change + blur + salt & pepper
noises), where our method’s detection mAP is 38.7, com-
pared to our 42.3 by the auxiliary domain with rain synthesis.
2) We train a CycleGAN to transfer the image style between
the training sets of Cityscapes and Foggy Cityscapes. Using
the generated fake foggy-style image of Cityscapes by the
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trained CycleGAN model to train a Faster R-CNN model, it
achieves detection mAP as 32.8. These experiments show
that commonly used domain randomization could not well
solve the domain adaptation problem.

Pre-trained Models: We use the pre-trained Faster R-CNN
model in [5] to initialize our method, then our method
gets the detection mAP as 41.3 in the Cityscapes—+Foggy
Cityscapes experiment, compared to 42.3 by our method
without pre-trained detection model.

Qualitative Results: We visualize some detection results on
the Foggy Cityscapes dataset in Fig. 6, which shows that the
proposed domain adaptive method improves the detection
performance in foggy weather significantly.

(a)
Figure 6: Qualitative visualization results on validation set
of Foggy Cityscapes: (a) Original Faster R-CNN without
domain adaptation, (b) Faster R-CNN with image-level and
object-level adaptations using GRL (Baseline), (c) Proposed
Method. Note: different colors represent different categories.

(b) (©)

5. Conclusions

In this paper, we propose a novel domain adaptive object
detection framework for autonomous driving. The image-
level and object-level adaptations are designed to reduce
the domain shift on the global image style and local ob-
ject appearance. A new adversarial gradient reversal layer
is proposed to perform adversarial mining for hard exam-
ples together with domain adaptation. Considering the fea-
ture metric distance between source domain, target domain
and auxiliary domain by data augmentation, we propose a
new domain-level metric regularization. Furthermore, our
method could be applied to solve the general domain adap-
tive object detection problem. We conduct the transfer learn-
ing experiments from Cityscapes to Foggy Cityscapes and
from Cityscapes to KITTI, and experimental results show
that the proposed method is quite effective.
Acknowledgement: This work was supported by NSF
2215388.
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