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Abstract

A single-shot multispectral camera equipped with an op-
timized color filter array (CFA) has the potential to deliver a
fast and low-cost hyperspectral (HS) imaging system. Pre-
vious solutions are largely restricted to designing demosaic-
ing algorithms for fixed CFAs – be it the Bayer color pat-
tern or evenly-spaced spectral multiplexing patterns. Since
sampling and reconstruction are tightly-coupled, the ability
to search for an optimal solution is severely constrained by
using predefined CFAs. In this work, we simultaneously ad-
dress the problem of spectral band selection, CFA design,
image demosaicing, and spectral image recovery in a joint
learning framework for single-shot HS imaging. We pro-
pose a reinforcement learning (RL) based method for spec-
tral band selection and a novel neural network for CFA gen-
eration, image demosaicing, and HS image recovery. The
final spectral reconstruction accuracy is used to supervise
the training of the main network to maximize the synergies
between those tightly-related tasks. The RL method regards
the main network as an agent to collect reward. Our final
method delivers a simple setup – as simple as an RGB cam-
era – for HS imaging. Experimental results show that our
method outperforms competing methods by a large margin.

1. Introduction

Hyperspectral (HS) imaging acquires images across
many small intervals of the electromagnetic spectrum. It of-
fers great advantages over standard RGB imaging for study-
ing the spectral signatures of a large range of interesting tar-
get objects [40, 19, 18, 49, 68], such as body tissues, crops,
fruits, seeds, and drugs. Given this advantage, one can eas-
ily predict that a marriage of HS images with modern deep
neural networks can fully unleash the potential of HS im-
ages for many applications [58]. However, this has not hap-
pened and probably will not happen soon. The main obsta-
cle in the way is the difficulty of obtaining HS images – ac-

quiring HS images is still much harder than obtaining RGB
images. There is still no camera that can record HS images
of high spatial resolution at a high frame rate. Cameras for
a compromised setting – high spectral but low spatial reso-
lution – are getting common. Still they are expensive.

There are many attempts in the literature to address this
issue, including using optimized illumination [53, 12], de-
veloping hybrid camera systems [41, 61], exploring digital
light processing (DLP) projectors [22], and using random
printed masks [67]. These approaches, however, all require
additional devices. The mostly relevant works to ours are
1) recovering HS images from RGB images [50, 16, 52, 4]
and 2) estimating high-resolution (HR) HS images from the
low-resolution (LR) HS images [27, 34, 33]. While most of
the research attention for HS image estimation in the com-
puter vision field is paid now to these two streams of re-
search, we find that their settings are sub-optimal and can
be improved significantly. For RGB image based methods,
the color filters and color filter array (CFA) are both pre-
defined, and more importantly they were not designed for
the purpose of HS image recovery. The LR HS image based
methods also assume a predefined CFA pattern – the filters
of all the narrow spectral bands are evenly distributed over
the sensor units on the 2D image plane. We argue that fil-
ter band selection, CFA design, demosaicing and HS im-
age recovery should be jointly learned. Those tasks are
tightly-coupled and thus treating them separately severely
constrains the capability of reaching the optimal solution.

In this work, we propose a novel approach to jointly learn
all these relevant tasks. Specifically, we look back to image
sampling and band optimization and optimize them together
with HS image recovery. First, instead of using three fixed
wide band filters or a fixed set of narrow band filters, our
method learns to select filters from a large set of wide band
filters. This setting has two advantages: 1) using the right
filters and using the right number of them can let us find the
optimal balance between spatial and spectral resolution in
order to maximize the performance of HS image recovery;
2) compared to narrow band filters, wide band filters have
higher light transmittance efficiency, meaning less imaging
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noise and higher frame rate (less exposure time). We design
a reinforcement learning (RL) method for this task.

Second, we develop a novel network that learns to opti-
mize the CFA pattern together with image demosaicing and
HS image recovery. There are three sub-networks, one for
each task, and they are trained together in an end-to-end
fashion. The CFA pattern generation network generates a
CFA by taking as inputs the positional encoding of the CFA
grid and the results of band selection by our RL method.
The CFA is then used to obtain image measurements. Since
our CFA is the result of an optimization method, the mea-
surements of different bands can have different densities
and different distribution patterns. This raises great chal-
lenges for image demosaiscing. We propose a novel solu-
tion to this by leveraging the power of sparse convolutions
and local implicit image functions. This novel image de-
mosaicing network offers a high level of flexibility – it can
handle many bands, different measurement densities across
bands, and different measurement patterns (even and un-
even) across bands. To our best knowledge, this is the first
demosaicing method that offers this level of flexibility.

Finally, we use a spatial-spectral prior network to convert
the demosaiced multi-spectral (MS) images to the final HS
images and use the image recovery loss to guide the training
of these three (sub-)networks.

Given a set of filters and the CFA dimensions, our ap-
proach automatically finds the useful filters, determines
their appearance frequency in the CFA, optimizes the CFA
pattern, and minimizes the HS-reconstruction error with
the corresponding image measurements. Our method pro-
duces high-quality HS reconstructions, outperforming pre-
vious methods by a large margin.

2. Related Work
Band Selection. Multispectral filter arrays (MSFA) has
aroused great interests in academia and industry in past
years, due to the simpler design, lower cost, higher porta-
bility and higher accuracy. As a result, there have been
quite some research about its design [25] [38] [31] [23]
[55] [45] [43][44]. There have been works that select
spectral bands to increase performance of the final task
[30, 21, 54, 57, 3, 17]. The selection can be done by us-
ing techniques such as mutual information between bands
[21] or by visually checking the results [26]. Considering
that deep learning is now a powerful method and has shown
potential for spectral band selection [48, 46, 17], we decide
to employ it to tackle our band selection problem.
CFA Design. Following the work of Bayer, a variety of new
CFA design strategies have been proposed over the years
[25, 39, 9]. The closest work to ours is the method pro-
posed by Chakrabarti [8] which uses a CNN architecture to
design a CFA from four predefined colors while training a
demosaicing method jointly. While the spirit is similar, our

work differs significantly. First, we consider a large number
of bands. This increases the difficulty of CFA optimization
and demosaicing. Therefore, novel algorithms have to be
designed. Second, we address the task of HS image recov-
ery with sparse MS measurements, which is harder.

The advance in CFA design for RGB cameras sparks
great interests in the CFA design for MS cameras [55, 45,
43, 44, 1, 24, 38, 47, 15, 6, 63, 56]. An early work by Ra-
manath et al. presented a CFA pattern which is composed
of seven bands and they are arranged hexagonally [55]. The
first generic method for CFA design was developed by Miao
et al. in which a binary tree and a checkerboard pattern
were employed to arrange band filters [45][44]. This work
extensively discussed the requirements for MSFA designs
and carefully addressed them in their approach. However,
they have not considered band selection and joint training
of MSFA design and image demosaicing.

Many previous works manually determine the number
of bands and arrange the filters in a very straightforward
manner. For example, [7] presented a MSFA with 6 bands
in 400-700 nm range arranged in 3×2 moxels. [1] evaluated
4 possible patterns for a 4-band filter array. [38] proposed
a MSFA with 16 bandpass filters arranged in 4 × 4 moxels
of which 15 are for visible and 1 for near-infrared. We refer
the readers to this excellent paper by Lapray et al. [31] for
a more comprehensive survey.
Hyperspectral Image Super-resolution (SR). There are
three settings for HSI SR: 1) HS image SR from only RGBs
[50, 16, 52, 4]; 2) HS image SR from LR HS images
[28, 34, 33]; 3) HS image SR from LR HS images and HR
RGB images [64, 27]. While these groups of methods con-
stantly use the most recent learning methods, they largely
ignore the image sampling problem. In other words, band
selection and the spatial resolution of those bands have not
been studied or optimized, even though they can play a sig-
nificant role in HS image SR. HS image SR from RGB im-
ages offers the simplest setup. However, since commercial
RGB cameras are tuned to mimic human trichromatic per-
ception, their spectral response functions are not optimal for
HS image reconstruction. As such, Nie et al. has verified
the advantage of deeply learned filters over RGB cameras
for HS imaging [51]. Sun et al. [59] has learned a IR-Cut
Filter to be placed in front of the lens of RGB cameras to
better capture spectral signals. HS image SR from LR HS
images or fusion-based methods using both HR RGB im-
ages and LR HS images have gained quite a lot of research
attention with notable works such as 3D convolutional net-
work [42][34], grouped convolutions with shared parame-
ters [36][27][33] and fusion net [64].
Demosaicing. Demosaicing has been a well-established
field with many great works proposed [23, 29, 35, 47, 15,
6, 5]. The general idea is to use the measured signals at
sparse locations to fill up the missing values in neighboring
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locations. This can also be done by leveraging the depen-
dencies across spectral bands. The measured signals are
usually assumed to be evenly distributed on a 2D grid. Our
novel demosaicing method can handle a large number of
bands, arbitrary distribution patterns, and different densities
of measurements across different bands.

3. Method
Although there is considerable literature in the devel-

opment of demosaicing and super-resolution algorithms, to
the best of our knowledge, significantly less [43] has been
done for spectral (color) band selection and for CFA de-
sign/optimization. Moreover, almost all of the discussions
are for the sake of HS image reconstruction. In this work,
we jointly learn the spatial pattern for multiple color filters
– that requires making a hard decision to use one of a dis-
crete set of color filters at each pixel – along with a neural
network that performs demosaicing and spectral recovery.
Together, these enable the recovery of high-quality HS im-
ages. The pipeline of our main network is shown in Fig. 1.

3.1. Problem Definition

We formulate this task as that of reconstructing an HS
image Y, Y(n) ∈ RK from a measured sensor image X,
X(n) ∈ R, where n = (u, v) ∈ Z2 indexes pixel location
and K is the total number of spectral bands. Along with
this HS reconstruction task, we also need to learn a pat-
tern for spectral color filters which determines the spectral
color channel that each X(n) corresponds to. The spectral
color channel is implemented by putting a color filter over
the pixel sensor. For each pixel, its filter is selected out
of a fixed set of C filters. In this work, we choose to use
popular wide band filters such as red, yellow and cyan, in-
stead of narrow band filters (10 nm - 40 nm wide usually).
This choice is made because 1) wide band filters can be
physically created easily at low cost and they are already
widely available; and 2) wide filters have better light trans-
mittance efficiency, which means less imaging noise and
higher frame rate.

We use I, I(n) in RC to denote the intensity measure-
ments corresponding to each of these color channels, and a
binary selection map M, M(n) ∈ {0, 1}C with |M(n)| =
1 to encode the color (spectral) filter array (CFA) patterns.
The corresponding sensor measurements are then given by
X(n) = M(n)T I(n). In order to make the filter array de-
sign intuitive and feasible, we follow existing literature (e.g.
the Bayer pattern) and assume that M repeats periodically
every m pixels, and therefore M̄ ∈ {0, 1}m×m×C . As an
example, Bayer pattern has m = 2 and C = 3 for RGB
image recovery.

Given a training set consisting of C-channel input MS
images I and the corresponding K-channel output HS im-
ages Y, the goal is to learn the CFA pattern M jointly

with a reconstruction algorithm that maps the correspond-
ing measurements X to the full HS image Y. First, we pro-
pose a reinforcement learning based method Gb for band
selection, i.e. to learn the number of appearance h(c),
c ∈ {1, ..., C} for each of the C color filters in M̄, where
h(c) ∈ {0, 1, ...,m2} and |h| = m2. Furthermore, we de-
velop a network Gs to generate M̄, which uses h as guid-
ance. Once having M̄, we then map the input I to measure-
ments X. The learnable parameters of Gs encode the learned
CFA pattern M̄. Third, we design a novel demosaicing net-
work Gd that outputs demosaiced images for all measured
MS channels. Those demosaiced MS images are then feed
into a spectral recovery network Gr to recover the full HS
images Y. Please refer to Fig.1 for the visual representa-
tion of those elements. We train Gs, Gd, and Gr all together,
with respective to an HS reconstruction loss and a loss im-
posed on M to respect the band selection result h. The band
selection network Gb is trained by treating the other three
networks as its agent to compute reward (the HS image re-
covery accuracy) in order to take actions (modifications to
h).

3.2. CFA Pattern Generation

The CFA pattern generation network Gs is a small con-
volutional neural network (CNN) that takes as input the spa-
tial information of each pixel in a window of size m × m
pixels. The output of the network is the zero-one selec-
tion mask M̄. The spatial information is obtained by using
the 2D positional embedding method that has been used in
vision transformers [14]. Specifically, two sets of embed-
dings are learned, each for one of the axes. This leads to X-
embedding and Y-embedding. We concatenate the two em-
beddings to get the final positional embedding for a pixel.

The key challenge lies in generating the optimal CFA
pattern mask M̄ as it requires to learn a hard non-
differentiable decision between Cm2

possibilities. To ad-
dress this, we adopt the method proposed by Chakrabarti [8]
that adds a temperature parameter τ to the soft-max func-
tion:

M̄(n) = Soft-max [τtf(n)], (1)

where t is the training iteration and f is the feature input
to the soft-max function. The temperature parameter τ in-
creases with the training iteration. Therefore, the distribu-
tion of M̄(n) can be effectively pushed to zeros and ones be-
cause of the increasing τt. This special design makes sure
that the CFA pattern can be updated via SGD while also
shifting towards making a hard choice. We use the quadratic
schedule proposed in [8] to increase τt.

Periodic padding is used here as M̄ is used periodically
to generate M. The network Gs is trained with two losses -
one based on the spectral reconstruction quality through Gr

(Sec. 3.3) and the other is derived from the total number of
appearance for each band in M̄ as indicated by h(c) (Sec.
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Figure 1: The overview of our method: left is optical measurement of the monochromatic image mosaic X by a learned CFA
M, right shows reconstruction by a MS demosacing network Gd and a spectral recovery network Gr.

3.4). For the band selection loss, we have two requirements:
1) the frequency of selected bands by mask M̄ should be
consistent with the required band frequency h; 2) repeating
M̄ over the whole image should lead to a sampling strategy
that all bands are sampled as evenly as possible over the
entire image. The second constraint is known as Spatial
Uniformity in the literature [21].

We therefore define the CFA pattern loss on the overall
mask M instead of the pattern mask M̄. Specifically, we
densely sample patches of size m×m (the same size as M̄)
at a stride of ⌊m/2⌋. This will leads to a total number of P
patches M̈. The CFA pattern loss is then defined as

Ls =
1

P

P∑
p=1

∥
m2∑
n=1

M̈(n)− h∥2. (2)

Since the patches M̈ are densely sampled at a stride smaller
than m, so some of patches reside over multiple neighboring
CFA masks but we anyway still force them to be consistent
with h, such that this single loss fulfills the two require-
ments at the same time.

During training, we generate the corresponding X(n)
vectors using Eq. 1 above, and the layer then outputs sen-
sor measurements based on the C-channel input I(n) as
X(n) = M(n)T I(n). Once the training is complete, we
replace M(n) with its zero-one version as M(n)c = 1 for
c = argmaxcf

c(n), and 0 otherwise.

3.3. Demosaicing and Spectral Recovery

Given the sensor measurement image, i.e. the monochro-
matic image mosaic X, we need to performs two tasks: de-
mosaicing to fill in the missing values for each of the C
wide color channels and to convert the densified C-channel
MS image to the desired K-channel HS image. Therefore,
we decompose the task into a spatial reconstruction sub-
task and a spectral reconstruction sub-task, and design cor-
responding networks for them.

3.3.1 Sparse Implicit Demosaicing

Recent deep learning based methods apply CNNs to the im-
age mosaics [23] to recover the dense images. These ex-
isting methods have two problems: the image mosaics are
sparse, which makes standard convolutions a sub-optimal
choice as spatial dependencies will include spurious infor-
mation from these uninformative areas, and computational
power is wasted on uninformative areas. This issue is es-
pecially severe when there are many color bands in the
monochromatic image mosaic – the submosaic for each
band is sparse. Another problem is that the shared filters
in standard convolutions have a fixed size. This is problem-
atic when different submosaics have very different sparsity
levels. This is actually the case when the number of input
bands is large and when the mosaic pattern is generated by
an optimization algorithm as it is in our case – some bands
are less important and thus having sparser appearance.

To address all these issues, we propose a novel Sparse
Implicit Demosaicing network built on top of sparse con-
volutions, implicit image function, and grouped networks.
Specifically, we use the highly efficient Minkowski convo-
lutions [13] and an extension of the implicit image function
developed for image super-resolution task [11]. Below we
first present our method for a single channel and then its
extension for multiple input channels.

Sparse feature encoding. In order to process the
monochromatic image mosaic X, we first need to lift it into
C sub-mosaics Xc:

Xc(n) =

{
X(n) if Mc(n) = 1,

0 otherwise.
(3)

For sparse convolutions, a sparse tensor T is represented as
a coordinate matrix N and a feature matrix Z:

N =

u1 v1
...

...
uJ vJ

 , Z =

z1...
zJ

 , (4)
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where nj = (uj , vj) are pixel coordinates, and zj ∈ RQ

is the corresponding feature vector. Note that we use n and
(u, v) interchangeably for pixel coordinates. As input, the
sub-mosaic Xc of size U × V × 1 is sparsified by gathering
the positions of its valid pixels as coordinates and the inten-
sity values as features. Once the input sub-mosaic image
Xc is sparsified, its information is encoded through a series
of Sparse Residual Blocks (SRB). Following the design by
Guizilini et al. [20], each SRB is composed of three parallel
branches, each with a different number of sparse convolu-
tional blocks. However, we remove the max pooling layers
to keep the same resolution at all feature levels. The outputs
of the three branches are added together to form the input
for the next SRB. We use four SRBs in total. The output
features of the last SRB are mapped back to the 2D image
plane:

Zc(u, v) =

{
z(u, v) if Mc(u, v) = 1,

0 otherwise.
(5)

Dense image decoding. We then use a local image im-
plicit function to decode the feature map Zc to obtain a
dense image X̄c. Following [11], we parameterize the de-
coding function fθ as an MLP that takes the form:

X̄c(n) = fθ(z
c(n′), n− n′), (6)

where zc(n′) is the nearest latent code from n in Zc.
The idea is that a continuous image is represented as a

2D feature map Zc ∈ RU×V×D, where D is the feature di-
mension. This can be viewed as

∑
u,v M

c(u, v) latent codes
‘sparsely’ spread in the 2D domain, as indicated by the lo-
cation of ones in Mc. This function fθ is shared by all the
images.

As pointed out by [11], a direct use of Eq.6 can lead
to discontinuous predictions for the ‘border’ pixels where
the selection of the nearest latent code zc(n′) switches. We
follow the general idea of [11] and address this by using a
local ensemble so that Eq.6 is extended to

X̄c(n) =

∑
t=1,2,3,4

1
∥n−n′

t∥2 .fθ(z
c(n′

t), n− n′
t)∑

t=1,2,3,4
1

∥n−n′
t∥2

, (7)

where zc(n′
t) (t ∈ {1, 2, 3, 4}) are the 4 nearest latent codes

for query location n.
Grouped demosaicing. By now, we have a demosaicing

method for a single image channel. Another challenge fac-
ing us before delivering a flexible demosaicing algorithms is
to handle a large number of color bands. To address this, we
use the idea of grouped convolutions with group size 1, i.e.
each band is a single group. This means that we share the
same sparse feature encoding network and the same dense
image decoding network across all bands. We generate the
densified images X̄c, c = [0, 1, ..., C] for all bands, and then

concatenate them to form the final C-channel demosaiced
image X̄ ∈ RU×V×C . We now have our complete demo-
saicing method for our MS image measurements.

Remarks. Thanks to the great properties of our sparse en-
coding and dense image decoding via implicit image func-
tion, our method is able to handle a large number of color
channels even when the density of their measurements is
different, the mosaic patterns of different bands are differ-
ent, and the measurements are not evenly spaced on the
2D image domain. To our best knowledge, this is the first
deep network approach that can offer this level of flexibil-
ity. Note that the local implicit function work for RGB
image super-resolution [11] assumes that the measurements
are evenly spaced. Consequently, the method can use stan-
dard CNNs directly for feature extraction. Furthermore, it
only handle RGB images which have much fewer bands.
Therefore, while our work is built on this excellent work,
our contributions are significant.

3.3.2 Spectral Recovery

Given the demosaic results X̄ ∈ RU×V×C , the goal in this
section is to convert this C-band MS image to the desired
K-band HS image Y. For this, we employ the spatial-
spectral prior network [28]. We use this network to learn
the spectral transformation as X̄ and Y have the same spa-
tial resolution.

In order to capture both spatial and spectral correlation
of the recovered HS images, we follow [28] and combine
the L1 loss and the spatial-spectral total variation (SSTV)
loss [2]. SSTV is used to encourage smooth results in both
spatial domain and spectral domain and it is defined as:

LSSTV =
1

N

N∑
n=1

(||▽hŶ
n||1+||▽wŶ

n||1+||▽cŶ
n||1), (8)

where ▽h, ▽w, and ▽c compute gradient along the horizon-
tal, vertical and spectral directions, resp. The reconstruction
loss is:

Lr = L1 + LSSTV. (9)

Note that all the described sub-networks including CFA
pattern generation, grouped demosaicing and spectral re-
covery are parts of the same network and they can be trained
together in an end-to-end manner. Therefore, after includ-
ing the CFA pattern loss in Eq. 2, the overall loss is

L = Lr + λLs. (10)

We use λ = 10 as Ls is generally much smaller than Lr.

3.4. RL-based Band Selection

As discussed in Sec. 3.1, we need to determine the num-
ber of pixels that each of the C pre-defined bands should
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have for the CFA of size m2. This appearance histogram is
indicated by h. In this section, we propose a reinforcement
learning (RL) based method Gb for this task.

Solution Space. h is a valid proposal if it satisfies this
constraint: h(c) ∈ {0, 1, ...,m2} and |h| = m2.

Action. We define actions as modifications to h:
ht+1(c) = ht(c) + ḣ(c), where ḣ(c) is a number randomly
sampled from {−1, 0, 1} and t indicates the optimization
step of the RL method. We truncate ht+1(c) to [0,m2] after
having the modification. If the total number of filters is not
m2, we need to remove or add filters until reaching m2. If
having less, we add one by one a randomly selected band.
Otherwise, we remove one by one a randomly-selected filter
that have non-zero filters.

Value Function. The final spectral reconstruction perfor-
mance ρ by the network, i.e. the combination of Gs, Gd and
Gr, is the reward that our RL method maximizes. We train a
small neural network Gv to approximate this value function
by training on all collected training pairs (h, ρ) collected
over time.

Epsilon-Greedy Algorithm. We use a simple Epsilon-
Greedy Algorithm for the search. Epsilon-Greedy is a
simple method to balance exploration and exploitation by
choosing between exploration and exploitation randomly.
With a small probability ϵ, we propose a completely random
ht+1. Otherwise, we use the ht+1 produced by performing
the action that is considered the best by our value function
Gt
v at each step t. Note that the total number of valid ac-

tions is very large, so we use the value function to select
the best action out of 30 proposed actions in each iteration.
Every time a neural network is trained with a new ht+1 and
gets evaluated, we have one more training sample for Gv ,
which is then retrained with the new training set for better
value function approximation. We train our RL method for
a sequence of length T .

The network architectures and spectral sensitivity curves
of the filters are shown in the supplementary material.

4. Experiments

4.1. Experimental Setup

Datasets. Two public datasets, CAVE dataset[65] and
Harvard dataset[10], are used to evaluate our method. The
CAVE dataset includes 32 images of 512 × 512 pixels.
Those images have 31 bands ranging from 400 to 700 nm at
a step of 10 nm. They are splitted into two parts: 20 images
for training and 12 for testing. As for the Harvard dataset,
there are 50 images of 1392 × 1040 pixels in total. The
images contain 31 bands but range from 420 nm to 720 nm.
We use 40 images for training and 10 for testing. For both
datasets, the training patch size is set to 128 × 128 pixels at
a stride of 64 pixels. For CAVE, we divide the data values
by 65536 to map them to [0, 1]. For Harvard, we multiple all

data values by 20 to roughly map them to the same range.
Evaluation Metrics Six standard metrics are employed

to evaluate the performance of all methods. They are cross
correlation (CC)[37], spectral sample mapper (SAM)[66],
root mean square error (RMSE), erreur relative globale adi-
mensionnelle de synthese (ERGAS)[60], peak signal-to-
noise ratio (PSNR), and structure similarity (SSIM)[62].

Parameters. The number of MS input bands C is set to
12. We used 12 commonly used wide band filters: Near IR
(N), Dark Red (DR), Light Red (LR), Orange (O), Green
(G), Photopic (P), Light Green (LG), Cyan (C), Green-Blue
(GB), Absorptive Visible (AV), Blue (B), and Indigo (I). The
response functions of the filters are downloaded from the
midopt database1. We will provide the detailed data in suppl
material. Note that these 12 filters are by no means the best.
We use them as they are common, diverse, and their re-
sponse functions are available. Since the two HS datasets
both offer 31 HS bands, we set K = 31 for our method.
The size of our CFA is 8 × 8, i.e. m = 8. The sequence
length of training for RL is set as T = 200. For the RL
method, ϵ = 0.05 and PSNR is used for ρ in Sec.3.4. We
train the network for 20 epoches. For all our networks, we
use the Adam optimizer and the initial learning rate is set to
0.0001. The batch size is set to 8. The training is done on
one GTX TITAN X GPU.

4.2. Comparison to other methods

We compare to two state-of-the-art (SOTA) HS SR meth-
ods based on LR HS images: SSPSR [28] and MCNet [34],
one SOTA HS SR method based on RGB images: AWAN
Network [32], one SOTA RGB image super-resolution
method LIIF [11], for which we change their input and out-
put dimensions from 3 to 31 to perform HS image SR, and
one SOTA RGB CFA-Demosaicing method [23] for which
we changed the output channel from 3 to 31.

Since some methods cannot be directly used for our task,
we calculate the scaling rate for them so that they will use
the same amount of input pixels as our method uses. Specif-
ically, for our method, the number of input pixels is 1/31
that of the output pixels. Since the outputs of all methods
are the same, i.e. the K-channel HS images Y, we use the
ratio 1/31 to calculate the size of the input for other meth-
ods. Therefore, for SSPSR, MCNet and LIIF, their input LR
HS images are 5.6 (310.5 = 5.6) times smaller in each of
the 2D spatial dimensions than the output HS images. Since
SSPSR and MCNet cannot handle arbitrary scale, we report
their performance for scaling factor ×4. Note that this gives
a clear advantage to these two methods.

We report the main results in Table 1. It can be found that
our method significantly outperforms all other comparison
methods, even when a large advantage is given to SSPSR
and MCNet. They solve a simpler super-resolution task

1midopt: https://midopt.com/filters/bandpass/
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Method RMSE ↓ CC↑ MPSNR↑ MSSIM↑ ERGAS↓ SAM ↓

C
AV

E

SSPSR [28] 0.01245 0.99317 42.13787 0.96457 3.55146 3.83398
MCNet [34] 0.01245 0.99283 42.25978 0.96465 3.56246 3.84976
AWAN [32] 0.02814 0.93421 37.5632. 0.92312 3.84321 3.98342
LIIF [11] 0.01884 0.92957 38.62866 0.94675 3.63215 3.75236
CFA-Demosaicing [23] 0.01433 0.99109 42.11352 0.96345 3.53781 3.76934
Ours 0.01146 0.99746 43.70456 1.02484 3.43840 3.45786

H
ar

va
rd

SSPSR [28] 0.01352 0.96059 40.81499 0.92806 3.05007 3.24930
MCNet [34] 0.01405 0.96009 40.59229 0.92658 3.10529 2.59147
AWAN [32] 0.02437 0.92285 36.45873 0.91432 4.74317 7.97364
LIIF [11] 0.02139 0.93542 37.58447 0.93996 4.63137 8.24718
CFA-Demosaicing [23] 0.01467 0.99092 42.02315 0.95849 3.55324 3.12792
Ours 0.01219 0.99233 43.01718 0.98299 2.90819 2.81355

Table 1: Results on the CAVE and the Harvard dataset. Note that SSPSR and MCNet solve a simpler task, i.e. solving a ×4
SR task instead of a ×5.6 one.

(a) Bilinear Interpolation (b) Demosaicing [23] (c) Ours (d) Ground Truth

Figure 2: Visual Results. Spectral band 5, 15, and 25 are used as the R, G, and B channel of a color image for this visualiza-
tion. Better to see on screen.

instead of a ×5.6 one. The latter one roughly has the same
level of difficulty as our task. The superiority of our method
is due to its flexibility to find a balance between spatial res-
olution and spectral resolution. The search of this balance
is driven by the performance of the final spectral image re-
covery. Our method optimizes all these relevant sub-tasks
jointly while others only focus on part of the game and
mostly ignore the image sampling part. This limits their ca-
pability of finding the optimal solution. Compared to [23],
our method is able to learn with a much larger set of filters
(12 vs. 3) and is able to handle more irregular and sparse
CFA patterns. These all contribute to its good performance.
The visual results in Fig. 2 further show that our method can
recover both spectral bands and spatial structures more ac-
curately than other methods. More visual results are shown
in the supplementary material.

4.3. Ablation Studies

We further study the contribution of these components of
our method: the filter set, filter appearance frequency pre-
diction, CFA learning, and the demosaicing method. The

spectral recovery network is an existing, top-performing HS
SR network, so we will not compare it with other alterna-
tive network in this work. All the results of our ablation
study on the CAVE dataset are shown in Table 2. There are
a few insights can be drawn from the table. First, one can
see that a very basic baseline method using a large set of
filters (row 3) can outperform methods using RGB filters
and the Bayer pattern (row 1 and row 2). This highlights
the fact that RGB images are not optimal for recovering HS
images. Second, the table (row 3 vs. row 6, row 4 vs. row
7, and row 5 vs. row 8) shows that using the right number
of filters for each spectral band (band frequency) is very im-
portant. Therefore, our dedicated RL-based band selection
method is useful and crucial. Third, it can also be found
from the table (row 3 vs. row 4, and row 6 vs. row 7) that
our CFA method is effective, showing that better arrange-
ment of color filters is important as well. Finally, the table
shows that when all the components are combined (row 9),
our method yields the best performance, showing that all
the proposed components are important and the end-to-end
learning synergizes them well.
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Figure 3: The bands and the CFAs determined: C for CAVE and H for Harvard.

Table 2: Component ablation of our method.

Filter Set Band Frequency CFA Demosaicing HS Recovery RMSE ↓
1 {R,G,B} {0.25,0.5,0.25} Bayer Bilinear Interpolation LIIF [11] 0.01884
2 {R,G,B} Ours Ours Ours Ours 0.01693
3 Ours {1/12, 1/12, ..., 1/12} Random Bilinear Interpolation Ours 0.01735
4 Ours {1/12, 1/12, ..., 1/12} Ours Bilinear Interpolation Ours 0.01677
5 Ours {1/12, 1/12, ..., 1/12} Ours Ours Ours 0.01623
6 Ours Ours Random Bilinear Interpolation Ours 0.01478
7 Ours Ours Ours Bilinear Interpolation Ours 0.01322
8 Ours Ours Random Ours Ours 0.01379
9 Ours Ours Ours Ours Ours 0.01146

4.4. Selected Bands and CFAs

In Fig. 3, we show the appearance times of the 12 fil-
ters identified by our method, and the corresponding CFAs
determined by our method. The results are in line with intu-
ition that some filters are indeed more important than others.
Filters that are selected the most are: Dark Red, Orange,
Photopic, Cyan, and Absorptive Visible. They span over
the whole spectral range that our target HS images lie in;
they are also evenly spaced so that for every spectral region
there is a high-resolution image. It seems that the algorithm
‘sacrifices’ some spectral bands in exchange for high spatial
resolution of some other bands. It strikes a balance between
spatial resolution and spectral resolution. The least selected
filter is Near IR. This also makes sense as most parts of
its response function lie outside of the considered spectral
range. The learned CFA shows that the filters of all bands
are quite uniformly distributed. This is beneficial for the
demosaicing algorithm. Note that the result in Fig. 3c (a)
and (b) are not exactly consistent. This is normal as (b) is
an optimization result guided by (a) so there can be slight
inconsistency.

One can also find from the figure that the spectral bands
and their frequencies identified by our method are highly
consistent over the two datasets, though they are not identi-

cal. The CFAs look quite different. We further investigate
whether the bands and the CFAs identified are transferable
to a different dataset. That is, the two CFAs identified gen-
erate similar performance on both datasets. For this experi-
ment, we take the bands and CFA identified on one dataset
and apply them to the other dataset where we only re-train
the demosaicing and spectral recovery networks. Our ex-
periments show that we get on par performance (for CAVE
to Harvard, the RMSE changes from 0.01219 to 0.01224,
and for Harvard to CAVE, the RMSE changes from 0.01146
to 0.01157). That means the bands and CFA found on one
dataset can be transferred to other datasets.

5. Conclusions

In this work, we have developed a method for a fast and
low-cost hyperspectral (HS) imaging system. The method
has achieved state-of-the-art performance by jointly learn-
ing multiple related tasks: spectral band selection, CFA op-
timization, image demosaicing for irregular measurements,
and spectral recovery. We have developed specialised neu-
ral networks for all these tasks and they can trained jointly
to avoid sub-optimal solutions. Experiments show that our
method outperforms other methods significantly. Designing
hardware prototypes for this method is our future work.
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