
SD-Pose: Structural Discrepancy Aware Category-Level 6D Object Pose
Estimation

Guowei Li1,2, Dongchen Zhu1,2, Guanghui Zhang1, Wenjun Shi1, Tianyu Zhang1,2,Xiaolin Zhang1,2,3,4,5,
and Jiamao Li 1,2,3*

1Bionic Vision System Laboratory, State Key Laboratory of Transducer Technology, Shanghai Institute
of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China

2University of Chinese Academy of Sciences, Beijing 100049, China
3Xiongan Institute of Innovation, Xiongan, 071700, China

4University of Science and Technology of China, Hefei, Anhui, 230027, China
5ShanghaiTech University, Shanghai 201210, china

jmli@mail.sim.ac.cn

Abstract

Category-level 6D object pose estimation aims to pre-
dict the full pose and size information for previously unseen
instances from known categories, which is an essential por-
tion of robot grasping and augmented reality. However, the
core challenge of this task still is the enormous shape vari-
ation within each category. With regard to the challenge,
we propose a novel framework SD-Pose, which utilizes the
instance-category structural discrepancy and the potential
geometric-semantic association to enhance the exploration
of the intra-class shape information. Specifically, an infor-
mation exchange augmentation (IEA) module is introduced
to supplement the instance-category structural information
by their structural discrepancy, thus facilitating the en-
hanced geometric information to contain both the character
of instance shape and the commonality of category struc-
ture. For complementing the deficiencies of structural infor-
mation adaptively, a semantic dynamic fusion (SDF) mod-
ule is further designed to fuse semantic and geometric fea-
tures. Finally, the proposed SD-Pose framework equipped
with the IEA and SDF modules hierarchically supplements
instance-category structural information in a stacked man-
ner and achieves state-of-the-art performance on the CAM-
ERA25 and REAL275 datasets.

1. Introduction

Accurately estimating the 6D pose of an object is a quite
crucial task in computer vision, which is widely employed

Figure 1: Comparing pose estimation results between
the SPD [36] and our structural discrepancy supplement
method. The category prior and two camera instances have
different structural discrepancies. The red and green lines
are prediction results and ground truth, respectively.

in real-world applications such as 3D scene understand-
ing [35], robotic grasping [9], virtual reality [1], and aug-
mented reality [25, 34]. 6D object pose estimation includes
instance-level and category-level methods. So far, instance-
level 6D pose estimation works [19, 29, 22, 27, 38, 17, 16]
have made considerable progress. However, as an accurate
CAD model is usually required during the training and in-
ference, instance-level methods can only deal with a few ob-
jects or just a single instance, severely limiting their practi-
cal application in the real world. For breaking instance-level
constraints, category-level 6D pose estimation proposes to
predict the complete pose information for previously un-
seen objects from known classes [39]. In this paper, we
focus on the category-level 6D pose estimation task, which
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is a more general assignment due to does not rely on the
instance CAD model.

Currently, the critical challenge of the category-level
task is still the extreme shape variation within each class
[33, 31, 32]. To overcome the problem of intra-class vari-
ation, Wang et al. [39] introduce Normalized Object Coor-
dinate Space(NOCS)—a share canonical representation for
all possible object instances within a category. Some works
then [39, 2, 36, 20] learn the RGB-D features of each ob-
ject instance to reconstruct the CAD model of the object
instance with the same size and orientation in NOCS. How-
ever, such a reconstruction process lacks the implicit repre-
sentation of shape variations, limiting pose estimation per-
formance.

Concerning this problem, SPD [36] proposes generating
a category prior for each class and deforming it to recon-
struct the NOCS model of the object instance. Although the
SPD has achieved sound effects, such a fixed category prior
can only reflect the fuzzy structure information and can-
not capture local structure changes for each instance. Es-
pecially when the structural discrepancy between the cate-
gory prior and the instance is enormous, it becomes difficult
to reconstruct an accurate object model, severely affecting
the pose estimation performance. Fortunately, the category
prior can be supplemented by structural discrepancy derived
from the instance-category geometry relationship to better
match the instance model. As shown in Figure 1, each cam-
era instance and category prior have a distinct difference
in structure. Compared to SPD [36], our method performs
more acceptable by utilizing the structural discrepancy to
supplement the category prior. Particularly when the struc-
tural discrepancy is enormous, the improvement is more
prominent. Furthermore, since the structural discrepancies
of the category prior and corresponding diverse instances
are distinct, our method is able to accommodate previously
unseen instances of various shapes, dramatically increasing
the generalization of our method.

In this paper, we propose a novel category-level pose
estimation framework SD-Pose, which leverages the struc-
tural discrepancy between instance and category prior to en-
hancing the learning of intra-class shape information. Fur-
thermore, considering the inaccuracy NOCS model of re-
constructed instance caused by category prior ambiguity,
we recommend combining additional semantic information
following [13, 41, 11]. Specifically, we further design a
Semantic Dynamic Fusion (SDF) module to dynamically
adjust the semantic information through the geometry rela-
tionship and fuse it with enhanced category prior to adap-
tively supplementing the lack of structural information. In
summary, our main contributions are as follows:

• An Information Exchange Augmentation (IEA) mod-
ule is introduced to guide the category prior more
reasonable suit the instance geometry by utilizing

instance-category structural discrepancy to enhance
the respective geometric features.

• For complementing structural information deficiencies
adaptively, a Semantic Dynamic Fusion (SDF) module
is further designed to fuse category prior and instance
semantic features with a dynamic adjustment accord-
ing to the instance-category structural relationship.

• Based on stacking multiple IEA and SDF modules, a
novel category-level pose estimation framework SD-
Pose is proposed to learn intra-class shape variations
by exploiting the instance-category structural relation-
ship. Our SD-Pose achieves a state-of-the-art perfor-
mance on CAMERA25 and REAL275 datasets.

2. Related Works
2.1. Instance-Level 6D Object Pose Estimation

In instance-level tasks, the object CAD model is known
at the training and inference stages, which can be roughly
classified into three different approaches: template-based,
correspondence-based, and voting-based. Template-based
methods [18, 26, 30] need to find the template most similar
to the object image or point cloud from the template sets
labeled with the ground truth 6D pose, which is a part-to-
all coarse registration problem. The correspondence-based
method aims to find the correspondence between the ob-
served object and its complete CAD model. For the cor-
respondence between 2D and 3D [27, 29, 30], the pose is
obtained by solving a PnP problem [21]. As for the corre-
spondence between 3D and 3D [6, 7], the pose is calculated
by the least-squares method. The voting-based method can
be divided into direct voting and indirect voting. Directly
voting [38, 16] returns a 6D pose and confidence score at
each position and then selects the most reliable pose infor-
mation as the final result. Indirect voting [27, 17] first se-
lects key point positions through RANSAC [10] voting and
then calculates the 6D pose of the object according to the
correspondence between key points.

2.2. Category-Level 6D Object Pose Estimation

Category-level tasks aim to predict pose information for
the previously unseen object instance, which is formally in-
troduced in [39]. Wang et al. [39] use a normalized ob-
ject coordinate space (NOCS) to represent all objects in
the same class. Then they reconstruct the instance CAD
model in NOCS and adopt the Umeyama [37] algorithm
to calculate the pose with the NOCS model and observed
points. Due to the huge intra-class shape variation, some
later methods pay more attention to the geometric infor-
mation of the object. CASS [2] obtains a canonical shape
space by learning. DualPoseNet [24] utilizes a dual-stream
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Figure 2: An overview of our proposed SD-Pose framework. Firstly, taking image patch Io, observed point cloud Po, and
category prior Pc as inputs, instance semantic features So, instance geometry features Go, and category geometry features Gc

are obtained by features extracted module. Then Information Exchange Augmentation (IEA) module is utilized to supplement
geometry features Go and Gc. After that, a Semantic Dynamic Fusion (SDF) module is employed to fuse semantic and
geometry features. By stacking multiple IEA and SDF modules, the final instance features Finst and category features Fcate

are generated. Next, we reconstruct the instance NOCS model and establish the correspondence between the observed point
and the NOCS model. Finally, the 6D pose is recovered by estimating a similarity transformation. Here Go

n−1 and Gc
n−1 are

the output of IEA module of stage n− 1.

network to explicitly and implicitly encode pose informa-
tion and uses pose consistency to optimize the pose. FS-
Net [8] decodes orientation information through a decou-
pled rotation mechanism. Do-Net [23] exploits symmetry
for pose optimization. Although these methods improve
performance, they can not explicitly harness the structural
relationship between pose and point cloud. Other methods
instead utilize a category prior to reconstruct a 3D model of
the NOCS space. In exploring category priors, CR-Net [40]
explores the complex and informative relations among in-
stance RGB image, instance point cloud, and category prior
to advance representation learning. In addition, SGPA [5]
leverages instance-category structural similarity to dynam-
ically adapt the prior to the observed object, which is most
relevant work as ours. Different from it, in this work, we
explore the structural discrepancy between instance and cat-
egory prior to learn intra-class shape change, which reflects
the unique geometric appearance of each instance more di-
rectly and effectively. Compared to utilizing structural sim-
ilar, a more accurate instance NOCS model can be rebuilt
after the category prior is supplemented by the structural
discrepancy.

3. Methodology

Problem Formulation. Given an RGB-D image, our
task is to estimate 6D pose of and 3D size of the object

from its partially observed point cloud. We represent the 6D
object pose as a rigid transformation matrix [R|t] ∈ SE(3)
consisting of a rotation R ∈ SO(3) and a translation t ∈ R3

matrix. The 3D size of the object is described as s ∈ R3

Pre-processing Stage. Following SPD [36], we first em-
ploy an off-the-shelf object detection network(e.g. Mask-
RCNN [14]) to obtain RGB image patches of observed ob-
jects Io ∈ Rh×w×3, where (h,w) is the image block size.
The observed point cloud Po ∈ Rno×3 comes from depth
channel, where no is the number of instance point clouds.
Pc ∈ Rnc×3 is the category prior corresponding to the ob-
served object, where nc is the number of category point
clouds.

3.1. Overview

Here we give an overview of our SD-Pose, as in Fig-
ure 2. Taking Io, Po and Pc as inputs, we first use a fea-
ture extraction module to obtain instance semantic features
So, instance geometric features Go and category geometric
features Gc (Section 3.2). Leveraging the structural rela-
tionship matrix A ∈ Rno×nr of Gc

0 and Gc
0, the IEA mod-

ule supplements the original geometric features by implic-
itly encoding structural discrepancy features to acquire en-
hanced instance geometric features Go

1 and category geo-
metric features Gc

1 (Section 3.3). Afterwards, So, Go
1, G

c
1

and A will be fed into the SDF module to proceed seman-
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(a) IEA (b) SDF

Figure 3: The structure of IEA and SDF module in l-th stage. (a) IEA takes instance geometry features Go
l and category

geometry features Gc
l as inputs to learn geometry relation matrix A, thus calculating the structural discrepancy features

according to A and enhancing their original geometry features. (b) SDF takes instance semantic features So, enhanced
instance geometry features Go

l+1 , category geometry features Gc
l+1 and geometry relationship matrix Aco as inputs. For So

and Go
l+1, We adapt a pixel-wise dense fusion method [38] to obtain instance features Finstl+1

. Then, we fuse Gc
l+1 and S̃o

dynamically adjusted by structural relation Aco to obtain category feature Fcatel+1
.
⊗

denotes matrix multiply.

tic and geometric features fusion to obtain instance features
Finst1 and category features Fcat1 (Section 3.4). To ensure
sufficient interaction of instance and category structural in-
formation, the IEA and SDF are embedded into the frame-
work in a stacked manner. The features of each stage are
stitched to get the final instance features Finst and category
features Fcate. Later, following SPD [36], Later, following
SPD [36], a deformation network is utilized to reconstruct
the instance NOCS model by deforming the category prior
Pc. Moreover, a matching network is adopted to match the
reconstructed model with the observed point cloud Po. Fi-
nally, the correspondence-based algorithm [37] is applied to
estimate pose parameters (Section 3.5).

3.2. Feature Extraction

The feature extraction module is first employed to learn
semantic and geometric features. Specifically, the image
patch Io is processed by the PSPNet [42] with the back-
bone of ResNet-18 [15] to obtain semantic features So ∈
Rno×dc , which is a point-wise pixel features correspond-
ing to the observed point cloud encouraged by Densefusion
[38]. For point cloud Po and Pc, we employ the PointNet++
[28] to extract instance geometric features Go

0 ∈ Rno×dc

and category geometric features Gc
0 ∈ Rnc×dc respectively.

3.3. Information Exchange Augmentation

Our IEA module aims to learn the structural relationship
between instance point clouds and category prior, which can
assist in constructing their structural discrepancy informa-
tion at the feature level. It utilizes features of structural
discrepancy to supplement the original geometric features,
making the enhanced geometric features include the unique
individuality of instance structure and general commonality
of category prior. On the one hand, due to complement-
ing peculiarity of the instance structural, the enhanced cate-
gory geometry features can reconstruct a more accurate in-
stance NOCS model. On the other hand, instance geomet-
ric features add category shape commonality, thereby pro-
moting the rebuilt correspondence matrix better associate
the observed point cloud with the NOCS model. Moreover,
since the geometric discrepancy between category prior and
different instances under the same class are distinct, our
method is able to accommodate previously unseen instances
of various shapes, dramatically increasing the generaliza-
tion of our method.

The structure of the IEA module is shown in Figure 3a.
As Givens the instance geometric features Go

l and cate-
gory geometric features Gc

l of the l-th stage, we project
them to the feature subspace of the same dimension by a
Fully Connected layer and then adopt the matrix multipli-
cation operation to obtain the structural relationship matrix
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A ∈ Rno×nr :

A = FC(Go
l )× FC(Gc

l )
T (1)

Following the normalization method [12] designed
specifically for point cloud attention map, A further is nor-
malized in two different dimensions respectively to acquire
weight matrices Aoc and Aco:

aoij =
eAij∑no

k=1 e
Akj

, Aoc
ij =

aoij∑nr

k=1 aik

acij =
eAij∑nr

k=1 e
Aik

, Aco
ij =

acij∑no

k=1 a
c
kj

(2)

After that, the geometric projection features perform
weighted summation by the corresponding structural weight
matrices to gain structural discrepancy features G̃c

l and G̃o
l :

G̃c
l = (Aco)

T × FC(Go
l ), G̃

o
l = Aoc × FC(Gc

l ) (3)

Finally, We joint the original geometric features and
structural discrepancies features by exploiting the Multi-
layer Perceptron (MLP) function to obtain enhanced geo-
metric features Go

l+1 and Gc
l+1:

Go
l+1 = MLP (Concat(Go

l , G̃
o
l )

Gc
l+1 = MLP (Concat(Gc

l , G̃
c
l ))

(4)

3.4. Semantic Dynamic Fusion

As shown in Figure 4, the input observed point cloud,
which is obtained using Mask-RCNN [14] segmentation re-
sults rather than ground truth, probably contains some out-
liers. When the influence of these outliers is transmitted to
the category prior, it will theoretically have a negative im-
pact on the reconstruction accuracy of the NOCS model,
and lead to a deviation in the correspondence between the
observed point cloud and instance NOCS model. Fortu-
nately, the additional semantic information can help allevi-
ate these problems. Inspired by [11, 13, 41], we design the
SDF module, which seeks to reduce the influence of noise
points by fusion sufficiently the geometric and semantic in-
formation, improving the robustness of the network to noise
points.

Figure 3b illustrates the SDF module. For the fusion of
geometric features Go

l+1 and semantic features So of the in-
stance from different modalities, the key lies in how to inte-
grate cross-modal features [3, 4, 38] effectively. Inspired by
Densefusion [38], a point-wise fusion module is achieved
to explore the intrinsic mapping between data sources by
adopting a pixel-level correspondence strategy. The fused
features are output as Finstl+1

.
As for the fusion of category geometric features Gc

l+1

and instance semantic features So, the pixel-level fusion

Figure 4: Observed point clouds of different instances are
obtained by Mask-RCNN segmentation. Each instance con-
tains some noise points.

method cannot be used directly because they belong to dif-
ferent individuals, that is, there is no pixel-level correspon-
dence. Intuitively, following the general idea of feature fu-
sion, we only concatenate and fuse them through an MLP
function to obtain Fcatel+1

. We call it semantic immediate
fusion (SIF):

Fcatel+1
= MLP (concat(So, Gc

l+1)) (5)

Although the designed SIF can improve performance via
absorbing semantic information immediately, it is still ill-
considered for the cross-individual problem. Hence, we
further design a semantic dynamic fusion (SDF) module,
which dynamically adjusts instance semantic features So

according to the instance-category structural relationship
matrix Aco and combines with Gc

l+1 to obtain the category
features Fcatel+1

. It can be formulated as

S̃o = Aco × So

Fcatel+1
= MLP (Concat(Gc

l+1, S̃
o))

(6)

We prefer the latter method because Gc
l+1 and So be-

long to different individuals with a specific domain diver-
sity. Dynamically adjusting semantic information through
the structural relationship matrix Aco may be significantly
aware of individual differences and improve the generality
of the network to unseen object instances. The experimen-
tal results (Table 3) further demonstrate that the latter fusion
strategy can achieve better performance.

3.5. Pose Estimation

We separately joint output of each stage to obtain final
instance features Finst and category features Fcate:

Finst = Concat(Finst1 , · · · , Finstn)

Fcate = Concat(Fcate1 , · · · , Fcaten)
(7)

After obtaining Finst and Fcate, we estimate the pose
following SPD [36]. Specifically, a deformation network
first is utilized to regress a deformation field point by point
D ∈ RNr×3 and deform Pc to reconstruct the instance
NOCS standard model:

P̂N = Pc +D = Pc + Fd(Finst, Fcate) (8)
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Table 1: Comparisons with other methods on CAMERA25 and REAL275 datasets.

Method CAMERA25 REAL275
IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm

NOCS [39] 83.9 69.5 32.3 40.9 48.2 64.6 78.1 30.1 7.2 10.0 13.8 25.2
CASS [2] - - - - - - 77.7 - - 23.5 - 58.0
SPD [36] 93.2 83.1 54.3 59.0 73.3 81.5 77.3 53.2 19.3 21.4 43.2 54.1
Dual [24] 92.4 86.4 64.7 70.7 77.2 84.7 79.8 62.2 29.3 35.9 50.5 66.8
SGPA [5] 93.2 88.1 70.7 74.5 82.7 88.4 80.1 61.9 35.9 39.6 61.3 70.7

Ours 93.4 88.3 70.7 75.6 80.5 87.7 83.2 68.2 37.1 42.0 62.0 71.2

where Fd(·) refers to the deformation network, P̂N ∈
RNr×3 corresponds to the NOCS standard model of the re-
constructed instance object.

We then regress a corresponding matrix M ∈ RNo×Nr

through a matching network, which relates P̂N to Po:

P̂o = M × P̂N = Fm(Finst, Fcate)× P̂N (9)

where Fm(·) refers to the matching network, P̂o is the trans-
formed instance point cloud model and has a point-to-point
correspondence with Po. Given P̂o and Po, the correspond-
ing method is finally employed to estimate the 6D pose of
the target.

Overall, our SD-Pose has two outputs to calculate 6D
pose estimation: the point-wise deformation field D, and
the correspondence matrix M . In order to train SD-Pose,
we adopt the same strategy with SPD [36]. The reconstruc-
tion loss by calculating the Chamfer Distance(CD) between
P̂N and the ground truth NOCS model PN to penalize D:

Lcd =
∑
i∈PN

min
j∈P̂N

||i− j||22 +
∑
j∈P̂N

min
i∈PN

||i− j||22 (10)

Then, we constrain the distance between the predicted
NOCS coordinate value x and the ground-truth one xgt to
supervise M .Specific detail refer to SPD [36].

Lcor =
1

No

{
5 (x− xgt)

2 |x− xgt| ≤ 0.1
|x− xgt| − 0.05 otherwise

(11)

4. Experiments
4.1. Experiments Setup

Datasets. We conduct experiments on category-level
benchmarks of CAMERA25 and REAL275 datasets [39].
CAMERA25 is a synthetic dataset generated by a context-
aware mixed reality approach. REAL275 is a more chal-
lenging real dataset.
Evaluation Metrics. Following the widely adopted evalu-
ation scheme [39, 36, 2], we compute the average precision
of 3D Intersection Over Union (IoU) at the threshold of 50%
and 75% for 3D object detection. To directly evaluate errors

CAMERA25

REAL275

Figure 5: Average precision vs. error thresholds on CAM-
ERA25 and REAL275 datasets.

in rotation and translation, the average precision of moncm
is adopted.
Implementation Details. Similar to [36, 5], we decouple
the instance segmentation and the subsequent pose estima-
tion. Follow [36], we generate the instance segmentation re-
sults offline with an off-the-shelf object detector (e.g. Mask-
RCNN [14]). After that, The target object is cropped from
the RGB-D image based on the segmentation results and
recover the instance point clouds utilizing camera intrinsic
parameters. The image crop is resized 192×192. The num-
ber of points in the observed point cloud and category prior
is downsampled to 1024. For the feature extraction module
of SD-Pose, we use PSPNet [42] with backbone of ResNet-
18 [15] to extract semantic features. The geometric features
are acquired by a PointNet++ [28]. As for the number of
stacking IEA and SDF modules, the n is set to be 2. We use
an RTX 2080 Ti GPU to train SD-Pose for 50 epochs with a
batch size of 32. We initially set the learning rate as 0.0001
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CAMERA25

SPD [36] Ours

REAL275

SPD [36] Ours

Figure 6: Qualitative comparisons between ours and SPD [36] on CAMERA25 and REAL275 datasets. We visualize the
estimated 6D pose and size as the tight-oriented bounding box around the target instances. The red and green lines are
prediction results and ground truth, respectively.

Table 2: Quantitative comparison of the model reconstruc-
tion accuracy in CD metric (×10−3).

Method CAMERA25
bottle bowl camera can laptop mug mean

SPD [36] 1.72 1.55 4.28 0.96 1.99 1.36 1.78
Ours 1.29 1.01 2.70 0.91 1.12 1.15 1.36

REAL275
bottle bowl camera can laptop mug mean

SPD [36] 3.44 1.21 8.89 1.56 2.91 1.02 3.17
Ours 1.84 1.02 5.37 1.38 1.11 1.08 1.96

and halved it every 5 epochs.

4.2. Comparison with State-Of-The-Art Methods

In Table 1, we compare the proposed method with NOCS
[39], CASS [2], SPD [36], Dual [24], SGPA [5]. For
the synthetic CAMERA25 dataset, our method outperforms
the baseline SPD on all metrics by a large margin and
achieves optimal results over other methods under met-
rics IoU50, IoU75, and 5o5cm. Besides, the indicators
10o2cm and 10o5cm are comparable to the state-of-the-art
method SGPA. For the more challenging REAL275 dataset,
the superiority of our method is more obvious. The pro-

posed method significantly outperforms the current best
method SGPA on all metrics, with improvements of 3.1%,
7.7%, 1.2%, 2.4%, 0.7%, 0.5%, respectively. Notably, our
method realizes a more significant improvement on the real
REAL275 dataset, which contains more previously unseen
instances, than on the synthetic CAMERA25 dataset. It
shows that our method has a good generalization. We be-
lieve this may be mainly since our method fully consid-
ers the diversity of the structural discrepancies, thus being
able to accommodate previously unseen instances of vari-
ous shapes.

To thoroughly verify pose estimation performance, we
conduct an experimental evaluation from the perspective of
model reconstruction. The Chamfer Distance of the recon-
structed NOCS model with the ground truth NOCS model is
computed. Comparing our method with the baseline SPD,
as shown in Table 2, we can observe that the average re-
construction error of our method is lower than SPD in both
datasets. It proves again that our method can achieve better
pose estimation performance.

Furthermore, Figure 6 shows a qualitative comparison of
two datasets. We can observe that our method produces a
more accurate pose than SPD, especially on geometrically
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Table 3: Ablation studies of key components tested on CAMERA25 and REAL275. IEA means Information Exchange
Augmentation (Section 3.3). SIF means Semantic Immediate Fusion; SDF means Semantic Dynamic Fusion (Section 3.4).

ROW IEA SIF SDF CAMERA25 REAL275
IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm

1 - - - 93.1 85.1 55.1 59.7 74.4 82.1 79.9 59.5 19.2 21.2 45.9 56.6
2 ✓ - - 93.3 88.3 63.3 67.5 78.8 85.4 83.1 66.7 25.6 30.5 49.9 63.5
3 ✓ ✓ - 93.2 87.2 63.8 68.2 79.1 85.6 82.8 66.5 32.9 38.7 51.6 64.0
4 ✓ - ✓ 93.5 88.4 64.9 69.1 80.5 86.6 83.2 67.0 34.2 39.4 53.0 64.6

complex objects(e.g. camera category). This indicates our
SD-Pose can sufficiently learn the shape change by utiliz-
ing instance-category structural discrepancy to supplement
geometry information. In addition, we present a more de-
tailed error evaluation result on two datasets in Figure 5,
which further illustrates that our SD-Pose outperforms SPD
in terms of 3D IoU, rotation, and translation.

4.3. Ablation Studies

In order to verify the efficacy of the critical components
of our method, we conduct ablation studies for IEA and
SDF modules on the CAMERA25 and REAL275, as shown
in Table 3. For convenience, the n is set to be 1. The base-
line is SPD [36] corresponding to row 1.
Effectiveness of IEA. We first verify the significance of us-
ing the IEA module, which can be figured out by comparing
row 1 and row 2 in Table 3. Relative to results in row 1, the
performance of all metrics in row 2 has an overall boost.
On the one hand, the category geometry features comple-
ment the unique individuality of instance structure to recon-
struct a more accurate instance NOCS model. On the other
hand, instance geometric features add general commonal-
ity of category prior, thereby facilitating the reconstructed
correspondence matrix better associate the observed point
cloud with the reconstructed model.
SIF or SDF? We also explore the importance of fusing se-
mantic information and the impact of different fusion meth-
ods on performance. Comparing the results in row 2, row
3 and row 4, after adding semantic information, there is a
large improvement in the angle and translation evaluation,
but SIF (row 3) slightly decrease in 3D IoU. This may be
because semantic cues and category prior come from dif-
ferent individuals. Simple fusion (SIF) without the aware-
ness of individual discrepancy may bring feature confliction
to a certain degree. While dynamically adjusting semantic
information through instance-category structural relation-
ships can weaken this problem and achieve better results.

Since our network stacks multiple IEA and SDF mod-
ules, we also verify the impact of choosing the different
n, where n takes values from 1, 2, and 3. Comparing
the results in Table 4, we can conclude that n = 2 is the
best choice. In this case, the mutual complementation of
instance and category in structural information is optimal,
thus generating better performance on pose estimation.

Table 4: Evaluation of SD-Pose on CAMERA25 and
REAL275 benchmarks when n is set to be different values.

n
CAMERA25

IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm
1 93.5 88.4 64.9 69.1 80.5 86.6
2 93.4 88.3 70.7 75.6 80.5 87.7
3 93.2 87.6 70.2 75.0 80.3 87.7

REAL275
IoU50 IoU75 5o2cm 5o5cm 10o2cm 10o5cm

1 83.2 67.0 34.2 39.4 53.0 64.6
2 83.2 68.2 37.1 42.0 62.0 71.2
3 82.4 66.2 36.5 41.1 57.9 68.2

5. Conclusion

In this paper, we propose a novel category-level 6D ob-
ject pose estimation framework SD-Pose, which utilizes
instance-category structural discrepancy and geometric-
semantic potential association to enhance the learning of
intra-class shape variation. Specifically, the IEA module
is designed to supplement the instance-category geometry
information by their structural discrepancy, thus facilitat-
ing the enhanced geometry information to contain both the
character of instance shape and the commonality of cate-
gory prior. Furthermore, the SDF module is further pro-
posed to alleviate the influence of noise points by fusing cat-
egory prior and instance semantic features with a dynamic
adjustment. Our method achieves state-of-the-art perfor-
mance on CAMERA25 and REAL275 datasets. Although
we alleviate the problem of noise points by an implicit SDF
module, it may be further optimized in our future work
through an explicit manner (e.g. designing an appropriate
point cloud filter).
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