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Abstract

Temporally consistent depth estimation is crucial for on-
line applications such as augmented reality. While stereo
depth estimation has received substantial attention as a
promising way to generate 3D information, there is rela-
tively little work focused on maintaining temporal stability.
Indeed, based on our analysis, current techniques still suffer
from poor temporal consistency. Stabilizing depth tempo-
rally in dynamic scenes is challenging due to concurrent ob-
ject and camera motion. In an online setting, this process is
further aggravated because only past frames are available.
We present a framework named Consistent Online Dynamic
Depth (CODD) to produce temporally consistent depth es-
timates in dynamic scenes in an online setting. CODD aug-
ments per-frame stereo networks with novel motion and fu-
sion networks. The motion network accounts for dynam-
ics by predicting a per-pixel SE3 transformation and align-
ing the observations. The fusion network improves tempo-
ral depth consistency by aggregating the current and past
estimates. We conduct extensive experiments and demon-
strate quantitatively and qualitatively that CODD outper-
forms competing methods in terms of temporal consistency
and performs on par in terms of per-frame accuracy.

1. Introduction
For online applications such as augmented reality, esti-

mating consistent depth across video sequences is impor-
tant, as temporal noise in depth estimation may corrupt vi-
sual quality and interfere with downstream processing such
as surface extraction. One way to acquire metric depth (i.e.
without scale ambiguity) is to use calibrated stereo images.
Recent developments in stereo depth estimation have been
focusing on improving disparity accuracy on a per-frame
basis [5, 2, 4, 24, 11]. However, none of these approaches
considers temporal information nor attempts to maintain
temporal consistency. We examine the temporal stability
of different per-frame networks and find that current solu-
tions suffer from poor temporal consistency. We quantify
such temporal inconsistency in predictions in Sect. 4 and

provide qualitative visualization of resulting artifacts in the
video supplement to further illustrate the case.

We posit that stabilizing depth estimation temporally re-
quires reasoning between current and previous frames, i.e.
establishing cross-frame correspondences and correlating
the predicted values. In the simplest case where the scene
is entirely static and camera poses are known [13, 14], cam-
era motion can be corrected by a single SE3 transforma-
tion. Considering geometric constraints of multiple cam-
era views [1], the aligned cameras have the same viewpoint
onto the static scene and therefore, depth values are ex-
pected to be the same, which allows pixel-wise aggregation
of depth estimates from different time for consistency.

However, in a dynamic environment with moving and de-
forming objects, multi-view constraints do not hold. Even if
cross-frame correspondences are established, independent
depth estimates for corresponding points cannot simply be
fused. This is because depth is not translation invariant and
thus, fusion requires aligning depth predictions into a com-
mon coordinate frame. Therefore, prior works [16, 10] ex-
plicitly remove moving objects and only stabilize the static
background to comply with the constraint. Given additional
3D motion, e.g. estimated by scene flow, depth of both mov-
ing and static objects can be aligned, which then enables
temporal consistency processing [33]. However, as do the
previously mentioned approaches, Zhang et al. [33] use in-
formation from all video frames and optimizes network pa-
rameters at application time, limiting itself to offline use.

In an online setting, prior works [23, 32, 3] incorporate
temporal information by appending a recurrent network to
the depth estimation modules. However, these recurrent
networks do not provide explicit reasoning between frames.
Moreover, these approaches [23, 32, 3] consider depth es-
timation from single images, not stereo pairs. Due to the
scale ambiguity of monocular depth estimation, prior works
mainly focus on producing estimates with consistent scale
[10, 33] instead of reducing the inter-frame jitter that arises
in metric depth estimation.

Traditionally, to encourage temporal consistency in met-
ric depth, prior techniques have relied on hand-crafted prob-
ability weights [8, 18, 27]. One example is the Kalman filter
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Figure 1: Temporal consistency comparison of per-frame stereo depth estimation solutions and our proposed CODD frame-
work. The point cloud visualization is generated given the depth estimates. This animated figure is best viewed in Adobe
Reader (click button to play). More visualizations can be found in the video supplement.

[8], which combines previous and current predictions based
on associated uncertainties. However, it assumes Gaussian
measurement error, which often fails in scenarios with oc-
clusion and de-occlusion between frames.

We present a framework named Consistent Online Dy-
namic Depth (CODD) that produces temporally consistent
depth predictions. To account for inter-frame motion, we
integrate a motion network that predicts a per-pixel SE3
transformation that aligns previous estimates to the current
frame. To remove temporal jitters and outliers from es-
timates, a fusion network is designed to aggregate depth
predictions temporally. Compared with existing methods,
CODD produces temporally consistent metric depth and
is capable of handling dynamic scenes in an online set-
ting. Qualitative results of improved temporal consistency
of CODD framework is shown in Fig. 1.

For evaluation, we first show empirically that current
stereo depth estimation solutions indeed suffer from poor
temporal stability. We quantify such inconsistency with a
set of temporal metrics and find that networks with bet-
ter per-frame accuracy may have worse temporal consis-
tency. We then benchmark CODD on varied datasets, in-
cluding synthetic data of rigid [19] or deforming [29] ob-
jects, real-world footage of driving [28, 20], indoor and
medical scenes. CODD improves over competing methods
in terms of temporal metrics by up to 31%, and performs
on par in terms of per-frame accuracy. The improvement
is attributed to the temporal information that our model
leverages. We conduct extensive ablation studies of differ-
ent components of CODD and further demonstrate the per-
formance upper bound of our proposed setup empirically,
which may motivate future research. CODD can run at 25
FPS on modern hardware.

Our contribution can be summarized as following:

– We study an important yet under-studied problem for

online applications such as augmented reality: tem-
poral consistency in depth estimation from stereo im-
ages. We demonstrate that contemporary per-frame so-
lutions suffer from temporal noise.

– We present a general framework CODD that builds on
per-frame stereo depth networks for improved tempo-
ral stability. We design a novel motion network to ac-
commodate dynamics and a novel fusion network to
encourage temporally consistency in an online setting.

– We conduct experiments across varied dataset to
demonstrate the favorable temporal performance of
CODD without sacrificing per-frame accuracy.

2. Related Work
Stereo depth networks compute disparity between left

and right images to obtain the depth estimate given cam-
era parameters. Classical approaches, such as SGM [5], use
mutual information to guide disparity estimation. In recent
years, different network architectures have been proposed
including 3D-convolution-based networks such as PSMNet
[2], correlation-based networks such as HITNet [24], hy-
brid approaches with both 3D convolution and correlation
such as GwcNet [4], and transformer-based networks such
as STTR [11]. CODD builds on top of these per-frame
methods to improve temporal consistency.

Temporally consistent depth networks aim to produce
coherent depth for a video sequence. Offline approaches
assume no temporal constraints. Some methods [13, 14]
are only applicable in static scenes while others [16, 10]
explicitly mask out moving objects and optimize for static
background only. Zhang et al. [33] extend the aforemen-
tioned prior methods to dynamic scenes by using additional
3D scene flow estimation. Online approaches [23, 32] have
used recurrent modules to aggregate temporal information.
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Figure 2: Consistent Online Dynamic Depth (CODD) framework has three sub-networks: stereo (S), motion (M) and fusion
(F) networks. Each sub-network extracts or updates a memory state m, containing semantic and disparity information.
Given an input video sequence, the stereo network extracts an initial estimate mt

S on a per-frame basis. The motion network
then aligns the preceding fusion memory state mt−1

F with the current frame, generating the motion memory state mt
M. A

fusion network lastly fuses the two memory states as mt
F, containing the temporally consistent disparity dt

F. Images from
FlyingThings3D dataset [19].

However, these approaches were studied in the context of
monocular depth, where errors are dominated by scale in-
consistency [10, 33]. Moreover, the recurrent modules do
not provide an explicit mechanism of how temporal infor-
mation is used. CODD is instead designed for metric depth
from stereo images and provides explicit reasoning between
frames in an online setting.

Scene flow estimation seeks to recover inter-frame 3D
motion from a set of stereo or RGBD images [17, 30, 26].
While previous algorithms aim at generating accurate scene
flow between frames, our work uses the 3D motion as an in-
termediary such that previous estimates can be aligned with
the current frame. Following RAFT3D [26], we predict the
inter-frame 3D motion as a per-pixel SE3 transformation.

Simultaneous localization and mapping (SLAM)
jointly estimates camera poses and a mapping of the scene.
Many approaches [21, 7, 31, 15], such as DynamicFusion,
accumulate information over all past frames. These ap-
proaches may include objects that have already exited the
scene and are thus not relevant anymore, leading to excess
compute. Another common assumption is that only a single
or few objects are in the scene, which restricts applicability.
CODD can be seen as a “temporally local” SLAM system
where only the immediately preceding frames are consid-
ered and no prior information of the scene is assumed.

3. Consistent Online Dynamic Depth

The goal of CODD is to estimate temporally consistent
depth in dynamic scenes in an online setting. A stereo video
stream is taken as input, where each image is of dimension
RIH×IW×3. Let a memory state m ∈ RIH×IW×(3+C+1) be

a combination of per-pixel 3 + C-channel semantic and 1-
channel disparity information. CODD, as shown in Fig. 2,
consists of three sub-networks:

– A stereo network NS (Sect. 3.1) estimates the initial
disparity and semantic feature map on a per-frame ba-
sis. The semantic information is encoded as feature
maps and RGB values.

– A motion network NM (Sect. 3.2) accounts for motion
across frames by aligning the previous predictions to
the current frame. Such motion information is also
added to the semantic information for better fusion.

– A fusion networkNF (Sect. 3.3) that fuses the disparity
estimates across time to promote the temporal consis-
tency in an online setting.

We introduce the high-level concepts of each sub-network
in the following sections and detail the designs in Appx A.

3.1. Stereo Network

The objective of the stereo network is to extract an ini-
tial estimate of disparity and semantic feature map on a per-
frame basis. The stereo networkNs takes the current stereo
images as input and outputs the stereo memory state mt

S at
time t. Internally, it extracts RIH×IW×C semantic feature
maps from the stereo images, and computes RIH×IW×1 dis-
parity by finding matches between the feature maps. In this
paper, we use a recent network, HITNet [24], as our build-
ing block to estimate per-frame disparity due to its real-time
speed and superior performance. In the subsequent sections,
we discuss how to extend the stereo network to stabilize the
disparity prediction temporally.
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Figure 3: (a) The motion network computes a per-pixel SE3 transformation T. The transformation T is used to align mt−1
F

to current stereo state mt
S by differentiable rendering, generating the motion memory state mt

M. (b) The fusion network first
extracts a set of input cues from the memory states mt

M and mt
S. It then regresses the reset and fusion weights, where wreset

removes outliers and wfusion aggregates the predictions. The fusion network outputs mt
F, containing the temporally consistent

disparity estimate dt
F.

3.2. Motion Network

The motion network aligns the previous memory state
with that of the current frame. Let mt−1

F denote the preced-
ing memory state from our online consistent depth network
at time t− 1. Our motion networkNM, as shown in Fig. 3a,
transforms mt−1

F into current frame based on mt
S:

mt
M ← NM

(
mt−1

F , mt
S

)
,

where mt
M is the state from t− 1 aligned to t.

To perform such alignment, the inter-frame motion must
be recovered. In a dynamic scene with camera movement
and object movement/deformation, the motion prediction
needs to be on a per-pixel level. Our motion network builds
on top of RAFT3D [26] to predict a per-pixel SE3 transfor-
mation map T ∈ SE(3)IH×IW . The motion is predicted
using a GRU network and a Gauss-Newton optimization
mechanism based on matching confidence for K iterations.
Once the motion between frames is recovered, we project
the previous memory state mt−1

F to the current frame simi-
lar to [12] using differentiable rendering [22]:

mt
M ← π

(
Tπ−1

(
mt−1

F

))
, (1)

where π and π−1 are perspective and inverse perspective
projection, respectively. Thus, the motion memory state
mt

M resides in the current camera coordinate frame and
has pixel-wise correspondence with the current prediction,
which enables temporal aggregation of disparity. Addition-
ally, we estimate a binary visibility mask by identifying the
regions in the current frame that is not visible in previous
one. We also compute the confidence of motion via Sig-
moid and compute the motion magnitude as the L2 norm of
the scene flow. These information are added to the mem-
ory state mt

M for the fusion network to adaptively fuse the

predictions. We detail differences between our motion net-
work and RAFT3D and provide quantitative comparison in
Appx A.2.

3.3. Fusion Network

The objective of the fusion network (Fig. 3b) is to pro-
mote temporal consistency by aggregating the disparities of
the motion and stereo memory states. The output of the fu-
sion network is the fusion memory state mt

F:

mt
F ← NF

(
mt

M, mt
S

)
, (2)

whereNF is the fusion network and mt
F contains the tempo-

rally consistent disparity estimate dt
F. We first discuss the

fusion process (Sect. 3.3.1) and then cover the set of cues
extracted from the memory states (Sect. 3.3.2) to guide such
fusion process.

3.3.1 Fusion Process

The temporally consistent disparity dt
F is obtained by fus-

ing the aligned and current disparity estimates. Let dt
M be

the disparity from the motion network and dt
S be the dispar-

ity from the stereo network. The fusion network computes
a reset weight wreset and a fusion weight wfusion both of di-
mension RIH×IW . The fusion process of disparity estimates
is formulated as:

dt
F =

(
1−wreset wfusion

)
dt

S +wreset wfusion d
t
M . (3)

The fusion memory state mt
F is thus formed by the fused

disparity dt
F and semantic features extracted by the stereo

network.
The intuition behind the fusion process is two-fold. First,

it filters out outliers using wreset. The outliers can be either
induced by inaccurate disparity or motion predictions. In
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Figure 4: The pixel-to-patch correlation mechanisms and
example visualizations of a single channel of disparity cor-
relations. Black pixels: source pixels. Blue pixels: cor-
related pixels. We note that, qualitatively, self-correlation
identifies local discontinuities and cross-correlation iden-
tifies inter-frame disagreements. Images from FlyingTh-
ings3D dataset [19].

our work, wreset is supervised to identify outliers whose er-
rors are larger than the other disparity estimate by a thresh-
old of τreset. Second, the fusion process encourages tempo-
ral consistency by fusing current disparity prediction with
reliable predictions propagated from previous frame us-
ing wfusion. When disparity estimates are considered to be
equally reliable within a threshold τfusion, the fusion network
aggregates them with a regressed value between 0 and 1. As
reset weights should already reject the most significant out-
liers, we set τfusion < τreset.

3.3.2 Input Cues

To determine the reset and fusion weights, we collect a set
of input cues from mt

M and mt
S. We find explicit input cues

are advantageous over channel-wise concatenation of the
two memory states.

First, the disparity confidence of dt
S and dt

M are com-
puted. As disparities are computed mainly based on ap-
pearance similarity between the left and right images, we
approximate the confidence of disparity prediction by com-
puting the ℓ1 distance between the left and right features ex-
tracted from stereo network. For robustness against match-
ing ambiguity, we additionally offset each disparity esti-
mate by −1 and 1 to collect local confidence information,
forming a 3 channel confidence feature.

However, in the case of stereo occlusion, i.e. regions that
are only visible in the left but not the right image, the dis-
parity confidence based on appearance similarity becomes
ill-posed. Thus, we additionally use the local smooth-
ness information as a cue. We implement a pixel-to-patch
self-correlation (Fig. 4a) to approximate the local smooth-

ness information, which computes the correlation between
a pixel and its neighboring pixels in a local patch of size
W ×W , forming a RIH×IW×(W 2−1) correlation feature. A
dilation may be used to increase the receptive field. We ap-
ply the pixel-to-patch self-correlation for both disparity and
semantic features to acquire local disparity and appearance
smoothness.

In the case of inaccurate motion predictions, the aligned
memory state may contain wrong cross-frame correspon-
dences. Therefore, the predictions in these regions need
to be discarded as outliers. To promote such outlier re-
jection, the fusion network applies a pixel-to-patch cross-
correlation (Fig. 4b) to evaluate the cross-frame dispar-
ity and appearance similarities. In cross-correlation, each
pixel attends to a local W ×W patch of the previous im-
age centered at the same pixel location after motion cor-
rection, forming a RIH×IW×W 2

correlation feature. In our
implementation, we use the ℓ1 distance for disparity and
dot-products for appearance correlation.

Lastly, we observe that when the inter-frame motion is
large, the motion estimate is less reliable and may thus re-
sult in wrong cross-frame correspondences. Therefore, we
provide the flow magnitude and confidence as a motion cue.
We additionally use the visibility mask from the projection
process to identify the invalid regions and provide the se-
mantic features for context information.

3.4. Supervision

Stereo and Motion Network We supervise the stereo
network on the per-frame disparity estimate dt

S against the
ground truth following [24]. We supervise the motion net-
work on the transformation prediction T, with a loss im-
posed on its projected scene flow against the ground truth
following [26].

Fusion Network We supervise the fusion network to
promote temporal consistency of disparity estimates. We
note that optimizing for disparity changes only may not be
ideal, as errors in the previous frame will propagate to the
current frame even if the predicted disparity change is cor-
rect. Therefore, we impose losses on the disparity predic-
tion dt

F, and predicted weights wreset,wfusion.
We supervise the predicted disparity dt

F against the
ground truth using Huber loss [6], denoted as the disparity
loss ℓdisp.

Further, we supervise the reset weights wreset such that
they reject the worse prediction between the stereo and mo-
tion network disparity estimates. Let eM = |dt

M − dt
gt| be

the error of the motion disparity and eS = |dt
S − dt

gt| be the
error of the stereo disparity against the ground truth dt

gt. Be-
cause wreset rejects the motion disparity estimate dt

M when
its value is zero (Eqn. 3), we impose a loss such that it favors
zero when eM is worse and favors one when eM is better.
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Thus, we have

ℓreset =


wreset, 1) if eM > eS + τreset,

1−wreset, 2) if eM < eS − τreset,

0, 3) otherwise,

where eM is worse in condition 1) while eM is better in con-
dition 2). Otherwise, the loss is zero as shown in condition
3).

The fusion weights wfusion are supervised such that they
aggregate the past two disparity estimates correctly:

ℓfusion =


wfusion, 1) if eM > eS + τfusion,

1−wfusion, 2) if eM < eS − τfusion,

αreg · |wfusion − 0.5|, 3) otherwise.

Different from the reset weights, the fusion weights are not
only trained to identify the better estimate as shown in con-
dition 1) and 2), but also trained with an additional regu-
larization term such that the fusion weights are around 0.5
when both estimates are considered equally good as shown
in condition 3).

The final loss for fusion network training is computed as:

ℓF = αdispℓdisp + αfusionℓfusion + αresetℓreset , (4)

which is the weighted sum of ℓdisp, ℓfusion and ℓreset.

4. Experimental Setup
4.1. Implementation Details

We use a batch of 8 and Adam [9] as the optimizer on
Nvidia V100 GPUs. Following [26], we use a linearly de-
cayed learning rate of 2e−4 for pre-training and 2e−5 for
fine-tuning. We pre-train motion and fusion networks for
25000 and 12500 steps, and halve the steps during fine-
tuning. We perform K = 1 steps of incremental updates
in the motion network when datasets contain small motion
(e.g. TartanAir [29]) and K = 16 otherwise (e.g. FlyingTh-
ings3D [19], KITTI Depth [28] and KITTI 2015 [20]). In
the fusion network, we use a patch size W = 3 with a di-
lation of 2 for pixel-to-patch correlation to increase the re-
ceptive field. By default, we set τreset = 5, τfusion = 1,
αreg = 0.2, and αdisp = αfusion = αreset = 1. Due to
the sparsity of ground truth in KITTI datasets, supervising
the fusion weights can be ill-posed as only few pixels are
aligned across time. We set αfusion = αreset = 0.

4.2. Metrics

We propose to quantify the temporal inconsistency by
a temporal end-point-error (TEPE) metric and the relative
error (TEPEr) given cross-frame correspondences:

TEPE = |∆d−∆dgt| , TEPEr =
TEPE
|∆dgt|+ ϵ

, (5)

where ∆d,∆dgt are signed disparity change and ϵ = 1e−3
avoids division by zero. Intuitively, TEPE and TEPEr re-
flects the absolute and relative error between predicted and
ground truth depth motion between two time points. TEPE
is generally proportional to the ground truth magnitude and
thus better reflects consistencies in pixels with large mo-
tion. TEPEr better captures the consistencies of static pixels
due to the 1/ϵ weight. We also report threshold metrics of
3px for TEPE and 100% for TEPEr (δt

3px, δt
100%). Tempo-

ral metrics themselves can be limited as a network can be
temporally consistent but wrong. Therefore, we also report
the per-pixel disparity error using EPE and threshold metric
of 3px (δ3px). We exclude pixels with extreme scene flow
(> 210px) or disparity (<1px or >210px) following [26] as
they are generally outliers in our intended application. For
all metrics, lower is better.

5. Results and Discussion
We first show quantitatively that current stereo depth es-

timation solutions suffer from poor temporal consistency
(Sect. 5.1). We then show that CODD improves upon
per-frame stereo networks and outperforms competing ap-
proaches across varied datasets, sharing the same stereo
network without the need of re-training or fine-tuning
(Sect. 5.2–Sect. 5.3). We lastly present ablation studies
(Sect. 5.4) and inference time (Sect. 5.5) to characterize
CODD.

5.1. Temporal Consistency Evaluation

We examine the temporal consistency of stereo depth
techniques of different designs that operate on a per-frame
basis. We use FlyingThings3D finalpass [19] dataset as it is
commonly used for training stereo networks.

Results As shown in Tab. 1, all considered approaches
have large TEPE and TEPEr, with TEPE often larger than
EPE and more than 14 times the ground truth disparity
change as implied by TEPEr. This suggests that the con-
sidered approaches suffer from poor temporal stability de-

Table 1: Temporal and per-pixel metrics of contemporary
approaches evaluated on the FlyingThings3D dataset [19]
with the official checkpoints when provided. †: Classical
approach. ‡: Non-occluded regions only. We use HITNet
[24] as stereo network due to its real-time speed and supe-
rior performance.

TEPE δt
3px TEPEr δt

100% EPE δ3px

SGM [5] † 2.355 0.065 78.482 0.591 2.965 0.090
STTR [11] ‡ 0.482 0.014 11.434 0.374 0.449 0.014

PSMNet [2] 1.371 0.056 35.136 0.466 1.079 0.045
GwcNet 0.959 0.041 22.598 0.409 0.752 0.032

HITNet [24] 0.812 0.040 16.840 0.291 0.607 0.030
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Table 2: Results on the FlyingThings3D dataset [19].

TEPE δt
3px TEPEr δt

100% EPE δ3px

Stereo [24] 0.812 0.040 16.840 0.291 0.607 0.030
Motion 0.875 0.036 24.533 0.390 0.777 0.030

Kalman filter [8] 0.793 0.040 15.843 0.230 0.610 0.030
CODD (Ours) 0.741 0.034 15.205 0.214 0.595 0.028

spite good per-pixel accuracy. A qualitative visualization is
shown in Fig. 1. We show the resulting artifacts in video
supplement to further illustrate the case.

5.2. Pre-training on FlyingThings3D

We first demonstrate that CODD improves the tempo-
ral stability of per-frame networks by using the pre-trained
HITNet [24] as our stereo network and freezing its parame-
ters during training for fair comparison. We follow the offi-
cial split of FlyingThings3D. Tab. 2 summarizes the result.

Results To ensure temporal consistency, one naive way
is to only forward the past information to current frame.
Thus, we compare the results of the per-frame prediction
dt

S of the stereo network with the the aligned preceding pre-
diction dt

M of the motion network. To evaluate fairly, we fill
occluded regions that are not observable in the past with dt

S.
As shown in Tab. 2, the motion estimate dt

M is worse than
stereo estimate dt

S due to outliers caused by wrong motion
predictions as shown blue in Fig. 5, suggesting that only for-
warding past information is not feasible. Nonetheless, dt

M
performs on par with dt

S most of the cases (white) and can
even mitigate errors of dt

S that is hard to predict in current
frame (red). Thus, techniques to adaptively handle these
cases can greatly reduce temporal noise.

While Kalman filter [8] successfully improves the tem-
poral consistency by combining the two outputs, it leads to
worse EPE. The result indicates that temporal consistency is
indeed a different problem from per-frame accuracy. In con-
trast, CODD performs better in all metrics, which suggests
that CODD achieves better stability across frames by push-
ing predictions towards the ground truth instead of propa-
gating errors in time. We further show that our pipeline is
applicable to other stereo networks in Appx C.1.

5.3. Benchmark Results

We benchmark CODD across varied datasets. We first
fine-tune the stereo network on each dataset to ensure good
per-frame accuracy and keep it frozen for fair comparison.
We then fine-tune the motion and fusion networks, using the
output of stereo network as input. We summarize results in
Tab. 3, provide end-to-end results in Appx C.2 and zero-
shot results in Appx C.3.

Dataset TartanAir [29] is a synthetic dataset with simu-
lated drone motions in different scenes. We use 15 scenes

(219434 images) for training, 1 scene for validation (6607
images) and 1 scene (5915 images) for testing.

KITTI Depth [28] has footage of real-world driving
scenes, where ground truth depth is acquired from LiDAR.
We follow the official split and train CODD on 57 scenes
(38331 images), validate on 1 scene (1100 images), and test
on 13 scenes (3426 images). We use pseudo ground truth
information inferred from an off-the-shelf optical flow net-
work [25] trained on KITTI 2015.

KITTI 2015 [20] is a subset of KITTI Depth with 200
temporal image pairs. The data is complementary to KITTI
Depth as ground truth optical flow information is provided,
however the long-term temporal consistency is not captured
as there are only two frames for each scene. We train on 160
image pairs, validate on 20 image pairs and test on 20 image
pairs. Given the small dataset size, we perform five-fold
cross-validation experiments and report the average results.

Results We find that CODD consistently outperforms
the per-frame stereo network [24] across all metrics sim-
ilar to findings in Sect. 5.2. The TEPEr is improved by
up to 31%, from 9.039 to 6.206 in the TartanAir dataset.
Compared to the Kalman filter, CODD leads to smaller EPE
in contrast to Kalman filter, indicating both improved tem-
poral and per-pixel performance. This again demonstrates
the improved temporal performance does NOT guarantee
improved per-pixel accuracy. We note that all settings in
KITTI 2015 have the same EPE and δ3px, because we do
not have ground truth information to evaluate the per-pixel
accuracy of the fusion result of second frame. More quali-
tative visualizations can be found in video supplement and
Appx B.

5.4. Ablation Experiments

We conduct experiments on the FlyingThings3D dataset
[19] to ablate the effectiveness of different sub-components.

5.4.1 Fusion Network

We summarize the key ablation experiments of fusion net-
work in Tab. 4 and provide additional results in Appx C.4.

a) Reset weights: In theory, only the fusion weight
wfusion is needed between two estimates as it can reject
outliers by estimating extreme values (e.g., 0 or 1). How-
ever, we find that predicting additional reset weights wreset
improves performance across all metrics. This may be
attributed to the difference in supervision, where reset
weights wreset are trained for outlier detection, while fusion
weights wfusion are trained for aggregation.

b) Fusion input cues: Other than the disparity confi-
dence, self- and cross- correlation, we incrementally add
the flow confidence/magnitude (+FL), visibility mask (+V)
and semantic feature map (+SM) to the fusion networks.
We find that the metrics improve marginally with additional
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Figure 5: Temporal consistency comparison be-
tween stereo dt

S and motion dt
M predictions.

While dt
M contains outliers (blue), it can also miti-

gate errors of dt
S (red). Our fusion networks learns

to adaptively fuse the estimates. Images from Fly-
ingThings3D dataset [19].

Stereo network 
performs better

Motion network 
performs better

Break even

Table 3: Results on TartanAir [29], KITTI Depth [28], KITTI 2015
[20].

TEPE δt
3px TEPEr δt

100% EPE δ3px

TartanAir
dataset [29]

Stereo [24] 0.876 0.053 9.039 0.339 0.934 0.055
Kalman Filter [8] 0.829 0.053 7.501 0.252 0.935 0.055
CODD (Ours) 0.751 0.045 6.206 0.240 0.904 0.053

KITTI Depth
dataset [28]

Stereo [24] 0.289 0.001 3.630 0.156 0.423 0.004
Kalman Filter [8] 0.278 0.001 2.615 0.125 0.431 0.005
CODD (Ours) 0.258 0.001 2.764 0.132 0.418 0.003

KITTI 2015
dataset [20]

Stereo [24] 0.570 0.026 10.672 0.126
0.811 0.033Kalman Filter [8] 0.533 0.026 9.668 0.117

CODD (Ours) 0.507 0.022 8.740 0.112

Table 4: Ablation studies of fusion network. Underline:
base setting.

TEPE δt
3px TEPEr δt

100% EPE δ3px

a) Reset × 0.783 0.036 15.953 0.217 0.618 0.030
weight ✓ 0.756 0.035 15.013 0.211 0.604 0.029

b) Fusion
input
cues

+FL 0.763 0.035 15.103 0.211 0.604 0.029
+V 0.758 0.035 15.082 0.210 0.605 0.029

+SM 0.756 0.035 15.013 0.211 0.604 0.029

c) Training 2 0.756 0.035 15.013 0.211 0.604 0.029
sequence 3 0.753 0.035 14.942 0.211 0.600 0.029

length 4 0.741 0.034 15.205 0.214 0.595 0.028

inputs, especially for TEPE.
c) Training sequence length: During training, by default

we train with sequences with length of two frames, where
the second frame takes the stereo outputs of first frame as in-
put. However, during inference process, the preceding out-
puts are from the fusion network. Thus, to better approx-
imate the inference process, we further extend sequence
length to three and four. We find that fusion network consis-
tently benefits from the increasing training sequence length.
However, this elongates training time proportionally.

5.4.2 Empirical Best Case

We provide an empirical study of the “best case” of mo-
tion or fusion network in Tab. 5. For empirical best motion
network NM, we use ground truth scene flow and set flow
confidence to one. For empirical best fusion network NF,
we pick the better disparity estimates pixel-wise between
the stereo dt

S and motion dt
M estimates given ground truth

disparity. We find that perfect motion leads to substantial
reduction in TEPEr while perfect fusion leads to substan-
tial reduction in TEPE. In both cases, EPE also improves.
While CODD performs well against competing approaches,
advancing the motion or fusion networks has the potential
to substantially improve temporal consistency.

Table 5: Ablation study of empirical best case by using
ground truth information.

TEPE δt
3px TEPEr δt

100% EPE δ3px

CODD (Ours) 0.741 0.034 15.205 0.214 0.595 0.028
Empirical best NM 0.879 0.043 5.401 0.125 0.571 0.027
Empirical best NF 0.529 0.025 9.936 0.214 0.455 0.021

5.5. Inference Speed and Number of Parameters

The inference speed of CODD on images of resolution
640×480 withK = 1 is 25 FPS (stereo 26ms, motion 13ms,
fusion 0.3ms) on an Nvidia Titan RTX GPU. The total num-
ber of parameters is 9.3M (stereo 0.6M, motion 8.5M and
fusion 0.2M). Compared to the stereo network, the overhead
is mainly introduced by the motion network.

5.6. Limitations

While CODD outperforms competing methods across
datasets, we recognize that there is still a gap between
CODD and the empirical best cases in Sect. 5.4.2. Further-
more, CODD cannot correct errors when both current and
previous frame estimates are wrong, as the weights between
estimates in the fusion process are bounded to (0, 1). Lastly,
we design CODD to look at the immediate preceding frame
only. Exploiting more past information may potentially lead
to performance improvement.

6. Conclusions
We present a general framework to produce temporally

consistent depth estimation for dynamic scenes in an online
setting. CODD builds on contemporary per-frame stereo
depth approaches and shows superior performance across
different benchmarks, both in terms of temporal metrics and
per-pixel accuracy. Future work may extend upon our mo-
tion or fusion network for better performance and extend to
multiple past frames.
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