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Abstract

Existing face anti-spoofing (FAS) models have achieved
high performance on specific datasets. However, for the ap-
plication of real-world systems, the FAS model should gen-
eralize to the data from unknown domains rather than only
achieve good results on a single baseline. As vision trans-
former models have demonstrated astonishing performance
and strong capability in learning discriminative informa-
tion, we investigate applying transformers to distinguish the
face presentation attacks over unknown domains. In this
work, we propose the Domain-invariant Vision Transformer
(DiVT) for FAS, which adopts two losses to improve the gen-
eralizability of the vision transformer. First, a concentra-
tion loss is employed to learn a domain-invariant represen-
tation that aggregates the features of real face data. Sec-
ond, a separation loss is utilized to union each type of at-
tack from different domains. The experimental results show
that our proposed method achieves state-of-the-art perfor-
mance on the protocols of domain-generalized FAS tasks.
Compared to previous domain generalization FAS models,
our proposed method is simpler but more effective.

1. Introduction
Face recognition technology is used in many applica-

tion scenarios, such as access verification in key areas, mo-
bile phone registration and payment systems. Modern face
recognition models have achieved high accuracy in face
recognition. However, face presentation attacks (such as
printed face photos and replayed face videos) still pose se-
rious security risks to face recognition models, raising the
need for face anti-spoofing (FAS) research.

Several approaches are proposed, including pixel-level
supervision using auxiliary information and disentangle-
ment of the spoof trace from the data, to improve the effi-
cacy of FAS models [1, 14, 31, 38, 43]. These methods can
achieve high performance on specific datasets or domains.
However, even if the attack types are the same, they cannot
well identify attack samples from different domains.

To make the learned model effective in different do-
mains, various domain generalized FAS methods are intro-
duced [4, 13, 18, 19, 27, 28, 30, 32, 41]. In the research
track on conducting domain generalization models, it is as-
sumed that the model is learned from some training do-
main datasets D1 · · · DK and then applied to an unknown
target-domain dataset DK+1 in a zero-sample way. That is,
no target-domain data are available in the model-learning
phase in either a supervised or unsupervised sense. The
learned model should be insensitive to domain changes and
can be successfully applied to unknown domains.

To address the above mixed-domain FAS problem, state-
of-the-art domain generalization methods [13, 18, 19, 32]
utilize adversarial learning, feature generation networks,
meta-learning of adaptive feature normalization, or con-
trastive learning on Convolutional Neural Networks (CNN)
backbone to extract robust features. Since the purpose of
FAS is to classify whether an input face image is a real
(i.e. live) face or a spoofed face, currently the leading meth-
ods [13, 32] tend to centralize all of the real faces of dif-
ferent domains in the feature embedding space or unify-
ing style information related to liveness. Domain-specific
or attack-type dependent representations are separated and
pushed away from each other during the learning process.
The feature space learned in this way can effectively gener-
alize to unknown domains concentrated or emphasized by
real face embeddings, and domain-specific attack informa-
tion is distributed or suppressed.

In this paper, we propose a new approach to domain gen-
eralized FAS. Note that spoofing patterns can be globally
distributed over the attacked input face image. Because
transformer-based models can provide a larger receptive
field than CNN and are good at capturing long-range depen-
dencies [25], these models are better at extracting globally
distributed cues, a niche for facial spoofing determination
tasks. Therefore, we adopt the visual transformer architec-
ture as the backbone in our domain generalizable FAS ap-
proach. It can take advantage of input-adaptive attention
and global relational encoding that is lacking in CNNs.
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Figure 1. In our work, we centralize the feature embedding of the
real face from all domains. And all the attacked face of the same
type from different domains form a separated category.

However, transformer models (such as ViT [8] and swin
transformer v1, v2 [21, 22]) suffer from large model size
and computational resources. To address this issue, we
adopt a lightweight but efficient transformer model Mobile-
ViT [24] in the proposed method for domain-varying FAS.

Inspired by the works [13, 32], we also unify real faces
from all domains into a group and expect to learn their fea-
ture embeddings that are invariant to this group. This en-
forces a uniform categorization of real or liveness face pat-
terns regardless of their domains. However, unlike previous
works that used complex adversarial training mechanisms
to attain the goal, in our method, as the transformer model
is already powerful in feature learning of the whole face, we
only adopt a simple concentration loss to centralize the real
faces in the embedding space and find that the performance
on the domain generalized FAS is quite favorable.

As for the attacked faces, unlike previous work, we also
unify the data of the same attack type from all domains
into one category. We then use a separation loss to push
groups of different attack types and real faces away from
each other. Our approach is simple, easy to implement, and
effective. In experiments, we collect multiple FAS datasets
and apply a leave-one-out setting to evaluate the domain
generalization ability of the proposed solution. The re-
sults show that our method not only outperforms existing
domain-generalized FAS methods, but is also more efficient
in terms of resource consumption. Figure 1 illustrates our
idea, which is succinctly used to learn domain-invariant fea-
ture representations in FAS. Due to the strong capability of
transformer models on learning the discriminating informa-
tion that can be not only locally specific but also globally
distributed, we find that simple loss and learning mecha-
nism designs are efficient and perform reasonably well in
domain-generalized FAS.

2. Related Work
The study of FAS can be characterized in terms of several

aspects, including the modality of the input signal and the
type of approaches (e.g. frame-based or video-based).
Multi-modality: More than one modality can be used to
distinguish between real and spoofed face images. For ex-
ample, we can combine 3D sensors and RGB cameras to
form a multimodal FAS classifier [9]. Since not all mobile
phones are equipped with powerful 3D sensors, RGB im-
ages are commonly used in recent FAS studies [40].
Frame-level vs video-level: Spoofed faces can be de-
termined using individual image frames or from a video
[20, 33, 42]. The former does not assume the availability of
temporal motion information. The latter can utilize cross-
frame matching or motion estimation cues to enrich fea-
ture representations and improve performance. However,
video-based methods introduce more response latency time
for FAS systems because they rely on grabbing a sufficient
number of input frames. On the other hand, frame-level
methods can be more flexibly integrated into responsive and
efficient interactive systems. Yet, the problem is more chal-
lenging because only image-based information is used.

This paper introduces a new RGB-image-based method
for domain generalized FAS. We give a concise review of
frame-level RGB-based FAS in Sec. 2.1, and then survey vi-
sion transformer models and their usage in FAS in Sec. 2.2.

2.1. RGB Image-based FAS

Early RGB-based FAS methods exploited various hand-
crafted local descriptors, such as local binary patterns [5],
gradient histograms [16], and speeded-up robust features
[2]. The extracted features are fed into a binary classifier
like a support vector machine to determine if the input im-
age is an attack. With the success of deep learning, many
methods use CNN-based models for FAS tasks. CDCN [43]
and BCN [39] use depth and reflection maps generated by
using other models [11, 44] to improve the discriminability
of learned FAS models with pixel-wise supervision. CDCN
further leverages neural architecture search (NAS) on the
proposed central difference convolution to find a more pow-
erful model and boost the performance. STDN [38] and
Dual-stage Feature Learning FAS [31] employ generative
adversarial training to learn models for disentangling the
spoof trace from the images. The generated traces further
increase the explainability of the model’s decision.

Our work focuses on domain-generalizable FAS. Al-
though the above methods achieve good performance when
the training and testing domains have little distribution shift,
they show poor generalization ability if there is a large dis-
crepancy among the domains. As a consequence, many do-
main generalized FAS methods have been proposed. SSDG
[13] uses single-side adversarial training to make the ex-
tracted features of real data more invariant across different
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domains. Also, an asymmetric triplet loss is proposed to
aggregate the features of the same classes (real data of all
domains and spoof data of separated domains) and scatter
these classes. ANRL [19] explores refining the normal-
ization mechanism in the feature extraction process to im-
prove the domain-generalization ability. Adaptive normal-
ization is proposed to enforce the model to extract domain-
agnostic and discriminating representation for the face im-
ages. SSAN [32] introduces the use of content and style
disentanglement to solve the FAS problem. The approach
extracts the style features of the face images and then ap-
plies contrastive learning to extract the generalized repre-
sentation across different domains. FGHV [18] proposes to
generate different distribution hypotheses of real faces and
known attacks. By fitting the face feature to the hypoth-
esis generated by the feature generation network with the
Gaussian input, the extracted features are more reliable in
defending against attacks in unknown domains

2.2. Transformers and FAS

Transformer [29] has been widely used in natural lan-
guage processing and has gained more attention in solving
computer vision tasks. Dosovitskiy et al. [8] proposed the
Vision Transformer (ViT), instead of treating pixels as to-
kens in a self-attention mechanism, it divides the image into
many patches and projects them into a low-dimensional fea-
ture space to make the computation affordable. Later, a lot
of work improved the ViT model. Swin Transformer [22]
introduces a shifted-window attention mechanism, which
computes self-attention within a local window and simu-
lates cross-region relations by shifting windows in succes-
sive layers. Focal Transformer [37] proposes focal self-
attention. Each patch focuses not only on other patches in
the local window, but also on the summarized tokens out-
side to encode long-range information with marginal over-
head. CoAtNet [6] considers the similarity in computational
form between self-attention and depth-wise convolution.
They fuse the two modules by adding input-independent
weights to the attention mechanism, embedding translation-
equivalent information into the transformer. MobileViT
[24] combines convolution and transformer in one module
to capture local and global information efficiently. With the
utilization of this module, the model provides good perfor-
mance even if the model is shallow and makes the visual
translator more suitable for edge devices.

In the past, only a few studies have used the transformer
model in FAS [10, 12]. The approach in [10] directly uses
ViT [8] with binary cross-entropy loss for FAS. Unlike [10],
the method in [12] uses the transformer models in an in-
direct way; it adopts multiple visual transformers as the
teacher model, and aims to train a smaller student CNN and
improve the student model’s performance. Thus the solu-
tion is still a CNN inference model. Apart from the issue

of computational overhead, although they can achieve com-
petitive performance in the single-domain setting, they are
not designed to handle domain generalized FAS problems.

Instead, our work uses a light-weight transformer model,
MobileViT [24], which contains fewer parameters. Lever-
aging the transformer models, we propose two loss terms
to handle the cross-domain FAS problem, domain-invariant
concentration loss and attack separation loss. Our solution,
referred to as Domain-invariant Vision Transformer (DiVT)
for FAS, can achieve higher performance than the previous
approaches on the domain generalized FAS problem with
comparable or better resource consumption efficiency.

3. Proposed Method
Our approach takes a transformer model as the network

backbone. Without loss of generality, we employ Mobile-
ViT [24] as the backbone model of our approach. It can
be replaced with the other transformer models as well (eg.,
ViT [8], Swin Transformer [22]). In the experiments, we
present our study on the ablation results of choosing the
backbone transformer model for domain generalized FAS.

Our employed MobileViT is composed of a series of
MobileNet-v2 [26] and MobileViT blocks. The MobileNet-
v2 blocks are primarily responsible for down-sampling the
feature maps. The MobileViT block models the spatial rela-
tionships, where the feature map is first processed by a con-
volution layer (to encode the local spatial information) and
a point-wise convolution (to project into a high-dimensional
space). It is then partitioned into a sequence of patches fed
into multiple transformer modules to encode the global re-
lationships. Later, further projection and fusion are applied
before producing the output. Details can be found in [24].

3.1. Domain-invariant Concentration Loss

Suppose we have K datasets, namely, D1 · · · DK ; each
dataset specifies a domain. Assume that one domain con-
tains C types of attacks, and Dc

k denotes the dataset con-
sisting of the c-th type attack images in domain k where
k ∈ {1 · · ·K} and c ∈ {1 · · ·C}. In addition, let Dreal

k

indicate the set of real face images in domain k.
Given an actual face image in Dreal

k , our goal is to pro-
vide it with a feature representation that is not biased to-
ward specific domains. The learned representation is thus
expected to be invariant to the domain changes. To achieve
this purpose, we simply union all the real faces of different
domains as a positive (non-spoof) class of data as follows:

DR =

K⋃
k=1

Dreal
k . (1)

When passing the data in DR to a deep transformer model
π (e.g., MobileViT), let ER = π(DR) be the feature repre-
sentations obtained in the embedding layer. That is, we join
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Figure 2. Overview of the proposed method. The feature extractor is concatenated with a classifier, which classifies the data into real and
multiple attack classes that represent different attack types. To make the features of real data more compact, they are pulled to the origin
by a concentration loss. (Different colors in the LDiC figure mean different domains.)

all domains’ real face embedding as a group ER. Then, we
hope that ER is concentrated on the origin of the feature
embedding space, 0 = [0]d (the d-dimensional vector with
all elements being zero), where d is the dimension of the
feature embedding space of the transformer model π.

Hence, no matter the domain of a real face image, we
hope that its feature embedding is near to the origin of the
embedding space. The idea of pulling the features to the ori-
gin has also been used for action analysis [17]. The domain-
invariant concentration (DiC) loss is defined as follows.

LDiC =
1

N

N∑
i=1

1[xi ∈ DR] · ‖fi‖1, (2)

where 1 is the indicator function, ‘·’ denotes the inner prod-
uct, N means the batch size, and fi = π(xi) is the i-th
feature embedding extracted by the transformer backbone,
respectively. In essence, Equation 2 encourages to make
smaller the norm of the feature embedding learned for the
real face images in all domains. An illustration is shown in
the right bottom part of Figure 2.

It is worth comparing our concentration loss LDiC with
the center loss [35] widely used for effective training of a
face recognizer (FR). In the center loss, each category has
a center. When giving a sample, we hope to make the fea-
ture embedding close to the center of the category that con-
tains this sample. As each individual defines a category in
FR, multiple categories exist and their centers have to be
learned together with the network weights. However, in our
domain-generalized FAS, the real-face patterns are unified

while the ways of attack types have infinite possibilities.
We thus merely center the features of real face and let the
spoofing features distributed in the space freely. Since we
only apply the centering principle to a single category (real
face), it is unnecessary to express multiple group centers si-
multaneously. Hence, we can skip the parametrization for
leaning of the group centers and directly specify the center
at the origin. The center does not move with mini-batches
and the training process is easier and stable.

3.2. Domain-invariant Attack-separation Loss

The concentration loss encourages the real-face embed-
ding to have smaller norms and pulls all their features to the
origin. For each type of attack, we also hope to group the
data belonging to the attack regardless of the data’s domain.
To this end, we also group all domains’ spoofed faces of the
same attack type as follows:

Dc =

K⋃
k=1

Dc
k, c ∈ {1 · · ·C}. (3)

As the origin can draw the actual face features in the em-
bedding space, no matter the domains, we hope to push the
attack images’ feature representation to each other and away
from the origin. Figure 1 illustrates the idea. To achieve this
purpose, We simply add a classification layer in the trans-
former model π to classify the data into the categories of
real face and different attack types via cross-entropy loss.

Consider a batch consisting of N samples {x1 · · ·xN}.
Let ŷi = 1[xi ∈ Dc]|Cc=0 be the corresponding domain-
union one-hot label of xi, where D0 (c = 0) represents
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Dataset Real videos Fake videos
CASIA-FASD [45] 150 450
MSU-MFSD [34] 70 210

Idiap Replay-Attack [5] 140 700
OULU-NPU [3] 720 2880

Table 1. The number of real and fake videos used in our evaluation.

the real face category DR to simplify the notation. The
domain-invariant attack-separation loss is defined as:

Lce
DiA =

1

N

N∑
i=1

C∑
c=0

−ŷci log yci , (4)

where yci is the class c’s softmax output produced by the
transformer model π. The attack types classification task
separate the groups of different attack types and real faces
from each other. It enforces the model to learn a domain
insensitive latent space.

3.3. Training and Testing

In the training phase, we train the transformer model by
combining the two losses in a supervised manner. A hyper-
parameter λ is used as a balance factor between them.

Ltotal = Lce
DiA + λLDiC (5)

By shrinking the real-face feature embedding toward the
origin and separating different types of the attacked embed-
ding in a transformer model, our approach is simple but ef-
fective in learning domain-invariant representations to solve
the associated FAS problem.

Figure 2 gives an overview of our approach, DiVT for
FAS. In the testing phase, we directly use the output of Real
head (in Figure 2) as the predicted probability of the input
image captured from a real person. Our approach is easy
to realize and can achieve state-of-the-art performance on
standard benchmarks in domain-generalized FAS. Experi-
mental results demonstrate the efficacy of our method.

4. Experiments
4.1. Datasets and Evaluation Metrics

We evaluate our method using four public FAS datasets,
namely, CASIA-FASD [45], MSU-MFSD [34], Idiap
Replay-Attack [5] and OULU-NPU [3]. CASIA-FASD
is collected by using three cameras with different video
qualities under natural scenes. Print and replay attacks
are produced by printing the highest-quality image on cop-
per papers and displaying the videos on a tablet, respec-
tively. MSU-MFSD is collected by using a laptop and a
mobile phone camera. Two qualities of replay attacks are
introduced by playing a high-end camera-recorded video
on a tablet and a mobile-recorded video on another mobile

phone. The high-quality photos are printed on paper to pro-
duce print attacks. Idiap Replay-Attack is gathered under
two different environments, a lamp illuminated one with a
uniform background and a day-light illuminated one with a
complex scene. The replay and print attacks are generated
by a similar setting to the MSU-MFSD dataset with differ-
ent devices. Besides, these attack materials are held either
by hands or via a fixed-support. OULU-NPU is collected
during three sessions with different illuminations and back-
grounds. The videos are recorded using six different mobile
phones. Two printers and two video players are utilized to
simulate the diversity of devices the intruder will use.

Following the setting of domain-generalized FAS [13],
we only use the training and testing sets in Idaip Replay-
Attack and OULU-NPU, while discarding their validation
sets. The other two datasets are all used. Table 1 shows
the amount of real and fake videos utilized in our experi-
ment. The Half Total Error Rate (HTER) and the Area Un-
der Curve (AUC) are utilized as the evaluation metrics.

4.2. Implementation Details

In the image pre-processing stage, we align all the video
frames by MTCNN [36] algorithm. We then crop the face
regions, and resize the cropped regions into 256 × 256.

Because there is little discrepancy among different
frames in a video, we follow the same training setting as
[13], which randomly samples one frame in each video as
the training data. In each training step, the same number of
real and fake data are sampled from all training datasets.

We use MobileViT-S [24] implemented by CVNets [23]
as our backbone. The model is pre-trained on ImageNet-1K
[7] and optimized by Adam optimizer [15] with the learn-
ing rate and weight decay parameter being 10−4 and 10−6,
respectively. The balance factor λ is set to 0.2 in our work.

4.3. Domain Generalized Evaluation

4.3.1 Leave-one-out setting

To evaluate the approaches in domain generalized FAS, a
commonly adopted setting is the leave-one-out testing on
the datasets mentioned in Section 4.1. In this evaluation
protocol, the model is trained on three of the datasets and
then tested on the remaining dataset. We follow the setting
and show the performance comparison of our approach and
previous competitive methods in Table 2 (each dataset is de-
noted using its prefix). Note that the methods are all frame-
level approaches like ours, except that NAS-FAS [42] is a
video-based approach that utilizes further temporal motion
information to enhance performance.

The results shown in Table 2 for comparison refer to
the papers of SSAN [32] and NAS-FAS [42]. The best-
and second-best- performed methods are shown in bold
and underline, respectively. Among the previous methods,
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Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
MADDG (CVPR’ 19) [27] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02

DR-MD-Net (CVPR’ 20) [30] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
NAS-FAS (TPAMI’ 20) [42] 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18

RFMeta (AAAI’ 20) [28] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16
D2AM (AAAI’ 21) [4] 12.70 95.66 20.98 85.58 15.43 91.22 15.27 90.87
DRDG (IJCAI’ 21) [41] 12.43 95.81 19.05 88.79 15.56 91.79 15.63 91.75

ANRL (ACM MM’ 21) [19] 10.83 96.75 17.85 89.26 16.03 91.04 15.67 91.90
FGHV (AAAI’ 22) [18] 9.17 96.92 12.47 93.47 16.29 90.11 13.58 93.55

SSDG-R (CVPR’ 20) [13] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
SSAN-R (CVPR’ 22) [32] 6.67 98.75 10.00 96.67 8.88 96.79 13.72 93.63

DiVT-M (Ours) 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04

Table 2. Performance on the domain-generalized evaluation of previous methods and ours. Bold faces indicate the best performance and
underlines for the second one.

Methods
M&I to C M&I to O

HTER(%) AUC(%) HTER(%) AUC(%)
SSDG-R [13] 19.86 86.46 27.92 78.72
SSAN-R [32] 25.56 83.89 24.44 82.56

DiVT-M 20.11 86.71 23.61 85.73

Table 3. Evaluation on limited training data. We obtain the results
of previous methods by using their source codes.

SSAN-R is the state-of-the-art model and NAS-FAS has
outstanding performance on some evaluation sets. Com-
pared to the previous state-of-the-art domain generation
methods of FAS, such as SSDG and SSAN, our proposed
DiVT achieves better performance on all evaluation sets.
The improvement of HTER in our work is particularly sig-
nificant. There are two settings that even improve more than
3%. The results show that our approach is a more favorable
one than the previous approaches.

The only evaluation result where our method achieved
second place is the AUC measure setting I&C&M to O. The
best model on this evaluation set is NAS-FAS, but its per-
formance on HTER is not as good as ours. However, NAS-
FAS is a video-based method. In contrast, our DiVT-M,
an image-based method, still achieves competitive results
(with a difference of less than 0.2% in AUC).

4.3.2 Limited training data setting

The above protocol uses larger-scale training domain data
for the performance comparison. Another popular setup is
to use smaller-scale training domain data for the evaluation.

We also evaluate our method while the training data is
limited in the setting (following [13]). The MSU-MFSD
and Replay-Attack datasets are used as training data, and
the two remaining datasets are used as testing data. Since
SSDG-R [13] and SSAN-R [32], which use a stronger con-
volutional backbone, are more effective models than the
other respective versions in the works [13] and [32]. For

a fairer comparison, we use the source codes released for
SSDG-R and SSAN-R to re-train this setting and obtain bet-
ter results than that achieved using weaker backbone models
shown in [13] and [32], respectively. As can be seen in Ta-
ble 3, our method still demonstrates its effectiveness in the
situation of limited training data and outperforms previous
state-of-the-art domain generalization methods in general.
The only result our method performs worse is the HTER in
the M&I to C setting (0.25% worse than SSDG-R). How-
ever, our method is still better in AUC (0.25% higher).
Since AUC generally reflects the balance between false ac-
ceptance and rejection with varying thresholds, a higher
AUC reveals that our method is generally better.

4.4. Ablation Study

We conduct several ablation studies to evaluate our pro-
posed method, including using different backbones, the ef-
ficacy of proposed losses, different classification objectives,
and combining domain adversarial training.

4.4.1 Different Backbones

We evaluate the performance of our approach using dif-
ferent vision transformer backbones, including vanilla ViT
(ViT-Base) [8], Swin Transformer (Swin-T) [22], and
MobileViT (MobileViT-S) [24]. They are denoted as DiVT-
V, DiVT-S, and DiVT-M, respectively. We also evaluate our
method on ResNet-18, a CNN backbone to compare the ef-
fectiveness of using CNN and transformer. All of the back-
bones are pre-trained on ImageNet-1K dataset. We adopt
hyper-parameter tuning to find the best balance factor λ for
four backbones. The factor we use are 0.5, 0.05, 0.2, and
0.2, respectively. Table 4 shows the results, and the upper
half shows the results when these backbones are trained by
using binary cross-entropy loss only.

The results reveal that transformer backbones mostly
perform better than CNN. The superiority in performance
could be due to the attention module and global feature-
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Methods
O&C&I to M O&M&I to C O&C&M to I I&C&M to O Average

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
ResNet-18 12.62 93.78 25.89 84.67 25.00 75.73 21.11 86.14 21.15 85.08
ViT-Base 7.14 97.94 24.00 84.27 10.79 94.69 28.91 78.57 17.71 88.87
ViT-Tiny 8.57 97.18 22.00 86.85 15.00 94.89 17.76 90.93 15.83 92.46
Swin-T 2.86 99.34 11.78 95.83 11.36 94.99 14.88 93.08 10.22 95.81

MobileViT-S 5.48 93.99 13.22 93.32 17.14 90.98 15.28 90.78 12.78 92.26
DiVT-ResNet 11.43 94.68 18.67 91.32 21.43 88.28 17.48 89.97 17.25 91.06

DiVT-V 10.00 96.64 14.67 93.08 5.71 97.73 18.06 90.21 12.11 94.42
DiVT-V(Tiny) 7.14 98.27 11.89 95.17 11.43 97.00 15.42 92.97 11.47 95.85

DiVT-S 8.57 97.29 7.22 98.13 6.43 98.21 14.27 93.62 9.12 96.81
DiVT-M 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04 7.07 97.34

Table 4. Performance on the domain-generalized evaluation of the proposed method with various backbones. The suffixes after DiVT
represent the adopted feature extractor: ResNet-18, ViT, ViT(Tiny), Swin Transformer, and MovileViT, respectively. The upper half shows
the results when these backbones are trained by using binary cross-entropy only.

Components O&C&I to M O&M&I to C O&C&M to I I&C&M to O
Lce

DiA LDiC HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%) HTER (%) AUC (%)
5.48 93.99 13.22 93.32 17.14 90.98 15.28 90.78

X 2.62 99.10 9.33 96.40 7.71 96.92 15.42 91.52
X 5.71 98.36 10.00 96.80 17.86 88.88 13.33 94.11

X X 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04

Table 5. Evaluation of each components in our method. The binary classification is used while LDiA is not applied.

extraction characteristic of the transformer. Furthermore,
we find that the methods using our losses (the lower half of
Table 4) are generally better than the methods using the bi-
nary cross-entropy loss (the upper half of the table) in most
cases. This reveals the effectiveness of our losses in overall.

As for the comparison of using different vision trans-
former backbones in our approach (the lower half of Table
4), we find that DiVT-V performs worse than the others.
We conjecture the reason to be that ViT lacks the model-
ing of local patterns and has a huge number of parameters,
which requires a large amount of training data to converge.
Swin Transformer and MobileViT adopt hierarchical archi-
tecture or convolutional modules to model the local spatial
property, which can adapt to the situation of less training
data. Both of these two methods achieve competitive per-
formance. Since DiVT-M achieves the best average per-
formance on both evaluation metrics and has the smallest
model size, we use it in the following studies.
Size-compatible ViT comparison: DiVT-M performs bet-
ter than DiVT-V. This could be due to the appropriate ratio
of the model size to the amount of training data. Hence, we
further investigate the performance of using ViT-Tiny [8]
as the backbone, which has a comparable model size with
DiVT-M. As shown in Table 4, DiVT-V(Tiny) outperforms
DiVT-V probably because of its suitable size for the data.
DiVT-M still achieves the best among the transformer mod-
els. We conjecture that it is because MobileViT also takes
the advantage of convolution, which is lacking in the others.
Comparison to FAS using transformer [10]: Only a few

works [10, 12] have applied transformers for FAS. Since
[12] mainly uses transformers as teacher models for distil-
lation and still conducts a CNN model for inference, we
compare [10] in the experiments. As mentioned before, [10]
just adopts ViT as the backbone with binary cross-entropy
loss. Hence, the results of ViT-Base in Table 4 just reveal its
performance on the leave-one-out domain-generalized FAS
protocol. As can be seen, ViT-Base [10] performs worse
than DiVT-V in most cases. When replacing the backbone
with ViT-Tiny, Swin-T, and MobileViT-S, their average per-
formances are still worse than DiVT-V(Tiny), DiVT-S, and
DiVT-M, respectively. Another version of implementation
in [10] is to fix the backbone weights and train the classi-
fier layer only. We have done the experiments too, but the
results are far worse and are shown in the supplementary
material. From the results, our method is more favorable.

4.4.2 Loss Combinations and Classification Objectives

We investigate the effectiveness of two core components
(Lce

DiA and LDiC) in our method, and the results of four
component combinations are illustrated in Table 5. When
both of the Lce

DiA and LDiC are not used, we employ the
classification head of two classes (real and spoof) instead,
and train the model by using binary cross-entropy loss.

The results prove that both components are effective for
improving the vision transformer on domain-generalized
FAS tasks. The domain-invariant attack-separation loss pro-
vides the main improvement (roughly 3.7% AUC on av-
erage) and the domain-invariant concentration loss boost
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Classification Objective
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
Binary Classification 5.71 98.36 10.00 96.80 17.86 88.88 13.33 94.11

Attack Types 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04
Domains 5.95 98.31 9.89 96.54 12.86 94.49 10.10 96.43

Attack Types + Domains 9.76 96.37 12.78 96.12 9.36 96.14 13.04 94.15

Table 6. Performance of different categorized methods (with LDiC is adopted).

Method
O&C&I to M O&M&I to C O&C&M to I I&C&M to O

HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
DiVT-M 2.86 99.14 8.67 96.92 3.71 99.29 13.06 94.04

DiVT-M + Domain-adversarial 4.29 98.20 7.33 97.56 5.71 98.07 15.14 92.55

Table 7. Leveraging domain-adversarial learning technique in our approach.

Method Flops(G) Params(M)
Avg Avg

HTER(%) AUC(%)
SSDG-R [13] 2.38 11.18 11.29 93.81
SSAN-R [32] 2.24 8.07 9.28 96.46

DiVT-V 17.59 85.8 12.11 94.42
DiVT-V(Tiny) 1.26 5.52 11.47 95.85

DiVT-S 4.49 27.5 9.12 96.81
DiVT-M 2.00 4.94 7.07 97.34

Table 8. Comparison of computation resource.

about 1.3% average AUC. The model achieves the best per-
formance while both components are applied.

In this work, the attack-separation loss is proved to be
effective for the task of cross-domain FAS tasks. Based
on the success, we are curious about the effect of different
classification objectives on model improvement. In addi-
tion to binary classification and our attack types classifica-
tion, we also conduct experiments on domain classification.
Table 6 shows the results of different classification objec-
tives, where “Domains” means categorizing the data to the
real face and different domains of attacks, and “Domains +
Attack Types” indicates categorizing the data into real face
and the combination classes of domains and attack type. We
can observe that attack types classification gains the best
average performance, revealing the efficacy of the domain-
invariant assumption in our approach. Domain classifica-
tion improves the model a little but not significantly. The
performance gets worse when adopting the combination of
attack type and the domain classification. The reason may
be that the model overfits on these combined categories.

4.4.3 Domain-adversarial Learning

We additionally employ the same domain adversarial loss
used in both SSDG and SSAN [13, 32] to our feature extrac-
tor, which discriminates the attack domains using a gradient
reversal layer and a two-layer discriminator. The results are
shown in Table 7. Adding adversarial loss performs slightly
worse. MobileViT still performs the best even when us-

ing the simpler losses designed in our solution. It could be
because the features can already be well extracted by su-
pervised learning. Adversarial training seems to result in an
over-competition in this case. Furthermore, how to well em-
ploy vision transformers in adversarial training is still worth
exploring.

4.5. Comparison of computation resources

We compare the model size (number of parameters) and
FLOPs between previous methods and ours. As shown in
Table 8, DiVT-M performs more favorably and requires
fewer parameters than DiVT-S and DiVT-V. The model
DiVT-V(Tiny) has fewer FLOPs, but its performance is
worse and requires more parameters. This verifies again
that the MobileViT model adopted in our approach is suit-
able for the domain-generalized FAS task.

5. Conclusion
Handling the attack sample from unknown domains is

an important problem in face anti-spoofing. We propose
Domain-invariant Vision Transformer (DiVT) to solve the
domain generalized FAS problem in this work. We apply
an efficient vision transformer-based module to extract both
the globally and locally distributed cues of spoofing pat-
terns. We then introduce two loss terms to learn a domain-
invariant latent space. First, a domain-invariant concen-
tration loss is applied to concentrate the features of real
faces. Second, a separation loss is adopted to push away
the groups of different attack types and real faces from each
other. The experimental results show that our proposed
model achieves state-of-the-art performance on the cross-
domain evaluation protocols. Compared to previous domain
generalized FAS methods, our proposed DiVT for FAS is
not only efficient and easy to implement. It is also more
favorably performed.
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