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Abstract

Multimodal representation learning for images with
paired raw texts can improve the usability and generality of
the learned semantic concepts while significantly reducing
annotation costs. In this paper, we explore the design space
of loss functions in visual-linguistic pretraining frameworks
and propose a novel Relaxed Contrastive (ReCo) objec-
tive, which act as a drop-in replacement of the widely used
InfoNCE loss. The key insight of ReCo is to allow a re-
laxed negative space by not penalizing unpaired multimodal
samples (i.e., negative pairs) that are already orthogonal
or negatively correlated. Unlike the widely-used InfoNCE,
which keeps repelling negative pairs as long as they are not
anti-correlated, ReCo by design embraces more diversity
and flexibility of the learned embeddings. We conduct exten-
sive experiments using ReCo with state-of-the-art models
by pretraining on the MIMIC-CXR dataset that consists of
chest radiographs and free-text radiology reports, and eval-
uating on the CheXpert dataset for multimodal retrieval and
disease classification. Our ReCo achieves an absolute im-
provement of 2.9% over the InfoNCE baseline on the CheX-
pert Retrieval dataset in average retrieval precision and re-
ports better or comparable performance in the linear eval-
uation and finetuning for classification. We further show
that ReCo outperforms InfoNCE on the Flickr30K dataset
by 1.7% in retrieval Recall@1, demonstrating the general-
izability of our approach to natural images.

1. Introduction
As the most common imaging modality for clinical pur-

poses, chest radiography (chest X-ray) is widely used in
the screening and diagnosis of lung and heart abnormal-
ities. However, collecting structured expert annotation
from radiologists is expensive and time-consuming [19].
With datasets like MIMIC-CXR [21], which consists of
both chest radiographs and corresponding free-text radiol-
ogy reports, learning generalizable multimodal represen-
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Figure 1. Illustration of different contrastive learning losses. We
show the optimization goal of (a) InfoNCE and (b) our proposed
Relaxed Contrastive (ReCo) loss in a 2D embedding space. Given
an image embedding (I1), InfoNCE forces unpaired text embed-
dings to be anti-correlated with I1, while ReCo relaxes the con-
trastiveness by not penalizing text embeddings that are already or-
thogonal or negatively correlated with I1.

tations without structured labels becomes a favorable and
promising direction [35, 2]. In comparison with recent self-
supervised visual representation learning approaches [3, 15,
24, 1, 12, 4, 34] that learns representation from solely un-
labeled images, the strength of the multimodal framework
is the ability to leverage a broader source of supervision
through the semantically denser information in the text.

Visual-linguistic pre-training comes with different
forms, including image captioning [8, 30] and learning
pretext tasks like reconstructing masked tokens and im-
age regions [23, 31, 5]. Recent works follow the con-
strastive learning methodology, which maps images and
texts into a shared embedding space where paired image
and text embeddings are attracted while the unpaired are
repelled under some similarity measure [35, 28, 20]. The
contrastive learning framework is relatively straightforward
compared to visual-linguistic models with cross-attention
modules [23, 31, 5] and can be scaled up to millions [28] or
billions [20] of (image, text) pairs. However, despite the im-
pressive performance achieved by big data, big model, and
big compute, most multimodal contrastive learning frame-
works by default optimize the InfoNCE [25] objective and
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rarely interrogate the impact of loss functions on the learned
multimodal embedding space.

Specifically, given a batch of N (image, text) pairs, an
image (called a query) only has one paired text treated as the
“positive” example, while all other N − 1 texts are treated
as “negatives”. The InfoNCE loss maximizes agreement be-
tween the query and its positive pair and minimizes agree-
ment with the negatives by applying a multi-class cross-
entropy loss1. Since most self-supervised learning frame-
works (both visual and multimodal) use the cosine similar-
ity as the measure of agreement [3, 15, 35, 28], InfoNCE ge-
ometrically forces the positive to be aligned with the query
while the negatives to be anti-correlated with it (Fig. 1a).
However, there is an intrinsically asymmetric distribution:
one query only has one positive pair but has N − 1 negative
pairs in the batch. From the perspective of an image, there
are N − 1 unpaired sentences describing distinct semantic
information but are all repelled to the reverse direction of
the query, which can restrict the diversity and flexibility of
the learned representations.

To tackle the challenge, we propose a Relaxed
Contrastive (ReCo) loss that follows the contrastive learn-
ing scheme but alleviates the contrastiveness for negative
pairs in the embedding space. The new loss aligns posi-
tive pairs by directly maximizing cosine similarity. More
importantly, instead of forcing unpaired samples to be anti-
correlated with the query as in InfoNCE, ReCo does not pe-
nalize negatives that are already orthogonal to or negatively
correlated with the query (Fig. 1b). ReCo embraces more
diversity and flexibility of the embeddings, which is impor-
tant for medical datasets with semantically complex textual
descriptions. Conceptually, the asymmetric design for pos-
itive and negative space is consistent with the imbalanced
distribution of paired and unpaired samples in a batch. We
use a scalar to trade-off positive and negative loss terms and
remove the temperature parameter for scaling the similar-
ity in InfoNCE. Empirically, we observe that ReCo results
in a more right-tailed similarity distribution, improving the
distinguishability between positive and negative pairs.

We conduct extensive experiments to demonstrate the ef-
fectiveness of ReCo on the recognition tasks of chest radio-
graphs. When trained on the MIMIC-CXR [21] database
and evaluated on the CheXpert Retrieval [35] dataset, ReCo
significantly improves the average retrieval precision by
2.9% over the InfoNCE baseline with the same architec-
ture and training protocols. The vision encoder optimized
with ReCo also achieves better or comparable performance
in the linear evaluation and finetuning for disease classi-
fication [19]. Furthermore, by finetuning on the strong
CLIP [28] model pretrained with 400 million (image, text)
pairs, our ReCo loss can still improve the Recall@1 metric

1InfoNCE is symmetrically applied for aligning image to text. Without
loss of generality, we only discuss the text-to-image part here.

by 1.7% on Flickr30K [27] with the same architecture fine-
tuned with InfoNCE loss, demonstrating its generalizability
to other domains beyond chest radiographs.

2. Related Work

Unsupervised representation learning. Recent advances
in unsupervised visual representation learning focus on
learning image representations invariant to transforma-
tions [3, 15, 24, 1, 12, 4, 34]. The optimization is done
by attracting two augmentations of the same sample and re-
pulsing distinct samples using the InfoNCE loss [25] after
projecting them via a Siamese encoder [6, 3]. Improve-
ments include using momentum encoder [15] and cluster-
ing [24, 1]. Empirical and theoretical results suggest that
the InfoNCE loss asymptotically optimizes the alignment
and uniformity metrics [33]. Recent results also show that
the contrasting negative pairs can be removed [12, 4] or
the loss can be changed to a redundancy reduction met-
ric [34]. Practitioners can then optimize a linear classifier
on top of the pre-trained backbone for classification or use
it for other transfer learning tasks. In the language domain,
pre-training includes learning pretext tasks like masked to-
ken and next sentence prediction [9], as well as genera-
tive pre-training [29]. The contrastive learning idea is also
applied for sentence embeddings [11]. In this work, we
focus on the joint learning of visual and language repre-
sentations with primary application on medical data. Un-
like unimodal pre-training, multimodal frameworks do not
use a Siamese architecture as the inputs come from two
different modalities. In addition, compared to unimodal
architectures where the projection layers are removed in
downstream tasks, the projection heads in multimodal ar-
chitectures are usually preserved for applications like text-
to-image retrieval [35, 28, 20].

Vision-language pretraining. Joint representation learn-
ing in the multimodal domain appears in different forms.
The first line of works optimize a vision encoder and a lan-
guage decoder for the image captioning task and transfer
the learned visual representations to downstream applica-
tions [8, 30]. The second line of literature jointly learns
multimodal pretext tasks like reconstructing masked im-
age regions and language tokens, as well as directly pre-
dicting the alignment between image and text [23, 31, 5].
However, the cross-modal attention modules that emerge in
those methods make them less efficient in practical retrieval
systems. The third stream, which is closer to the contrastive
methodology in visual representation learning, uses a dual-
encoder architecture to directly map image and text data
into a shared embedding space, where the agreement be-
tween paired samples is maximized while the agreement be-
tween the unpaired samples is minimized [35, 28, 20]. The
independent encoders improve the flexibility in downstream
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Figure 2. Multimodal learning framework and losses. (a) Image and text encoders (EI and ET ) map multimodal inputs into a shared
embedding space and calculate the cosine similarity matrix. (b) InfoNCE [25] splits the rows and columns and apply a N -class cross-
entropy loss for each vector. (c) Our ReCo splits the diagonal and off-diagonal elements and applies L2 losses to make the paired close
and unpaired orthogonal or negatively correlated. Yellow frames (□□□) denote the similarity between positive pairs.

recognition tasks. However, recent works focus on the data
scale and model architectures but pay less attention to the
energy function that shapes the embedding space. Our con-
tribution is a new loss, ReCo, that relaxes the repelling force
between negative pairs in pre-training, which improves the
state-of-the-art multimodal contrastive learning frameworks
like ConVIRT [35] and CLIP [28] without changing archi-
tectures and training data.

3. Relaxation of Contrastiveness

Problem setup. The goal is to learn meaningful represen-
tations using paired image and text. As shown in Fig. 2a,
the image and text encoders EI and ET project a batch of
inputs from different modalities into a shared embedding
space. Both encoders consist of a backbone model and a
projection head. In recent works, the text backbone is usu-
ally a transformer [32], and the image backbone can be ei-
ther a CNN or a transformer [35, 28, 20]. The projection
head can be an MLP with non-linearity [3, 35], or just a lin-
ear layer [28]. We show results on both types of projection
heads in the experiments.

Suppose the batch size is N and the embedding dimen-
sion is D, EI generates a D ×N image embedding matrix
U = [u1, u2, . . . , uN ] where ui is a D-dimensional vec-
tor, while the text encoder ET generates a text embedding
matrix V = [v1, v2, . . . , vN ]. For clarity, we call (ui, vi) a
positive pair and (ui, vj), i ̸= j a negative pair. Then, co-
sine similarity is commonly used to measure the agreement
between image and text in the embedding space. Specifi-
cally, the N × N cosine similarity matrix C is defined as:

Cij =
⟨ui, vj⟩
∥ui∥∥vj∥

=
u⊺
i vj

∥ui∥∥vj∥
(1)

The range of Cij is [−1, 1], where 1 means two vectors are
aligned while −1 means reverse-aligned, regardless of the
magnitudes. Since ui and vi are usually ℓ2 normalized, the
similarity matrix can be calculated with C = U⊺V .
InfoNCE loss. Recent multimodal pre-training approaches

[28, 35, 20] mainly use the InfoNCE [25] loss (NCE
stands for Noise-Contrastive Estimation [13]), which is
also widely used in unimodal contrastive learning frame-
works [3, 15]. With the cosine similarity matrix C, InfoNCE
for image-to-text alignment is:

LNCE ≜ − 1

N

N∑
i=1

log
exp(Cii/τ)∑N
j=1 exp(Cij/τ)

(2)

where τ > 0 is a temperature parameter to scale the cosine
similarity values, which can be a hyper-parameter [35] or a
learnable part of the model [28]. Intuitively this loss can be
regarded as a N -way classifier loss which maximizes cosine
similarity between ui and its true pair vi and minimizes co-
sine similarity for vj,j ̸=i (Fig. 2b). Symmetrically, the loss
is also applied to C⊺ = V⊺U for matching a text embedding
to the corresponding image embedding. Both loss terms are
added as the final energy function to be optimized.

We show an intuitive geometric interpretation of In-
foNCE in Fig. 1a. For a query ui, making the positive pair
(ui, vi) aligned while making negative pairs (ui, vj), i ̸= j
anti-correlated minimizes the loss for that query (Eqn. 2),
which pushes vj , i ̸= j to the reverse direction of ui. How-
ever, there is an intrinsic asymmetry in the visual-linguistic
contrastive learning framework: for one query in a batch of
N pairs, there is only one positive pair but N − 1 nega-
tive pairs. Even for a relatively small batch size of 64, the
ratio of positive pairs is less than 2%. However, InfoNCE
keeps repelling the negatives to the reverse direction of the
query. Although in practice InfoNCE will not push the co-
sine similarity to be the global maximum and minimum and
make pairs strictly aligned and anti-aligned (using temper-
ature τ < 1 actually make the distribution more concen-
trated [17]), we believe the contrastiveness can be relaxed
to improve the flexibility of the learned embeddings.
ReCo loss. To alleviate the contrastiveness in InfoNCE, we
propose a novel relaxed contrastive (ReCo) loss (denoted
as LRC) that relaxes the negative space of any given query
(Fig. 1b). Specifically, ReCo considers the diagonal and off-
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Algorithm 1 PyTorch-style pseudocode of ReCo

# f, g: image and text encoder networks
# N, D: batch size and embedding dimension
#
# diagonal: diagonal elements of a matrix
# off_diagonal: off-diagonal elements of a matrix
# lambda: weight on the negative pairs

for (x0, y0) in loader: # load a batch with N pairs
# compute embeddings for two modalities
x = f(x0) # NxD image embeddings
y = g(y0) # NxD text embeddings

# l2 normalize along the feature dimension
x_norm = x / x.norm(1, keepdim=True) # NxD
y_norm = y / y.norm(1, keepdim=True) # NxD

# cosine similarity matrix
c = x_norm @ y_norm.T # NxN

# relexed contrastive loss
l_pos = diagonal(c).add_(-1).pow_(2).sum()
l_neg = max(off_diagonal(c), 0).pow_(2).sum()
loss = l_pos + lambda * l_neg

# optimization step
loss.backward()
optimizer.step()

diagonal parts of the cosine similarity matrix C separately
(Fig. 2c), which corresponds to the similarities of positive
and negative pairs in a batch:

LRC ≜
∑
i

(1− Cii)2︸ ︷︷ ︸
positive term

+ λ
∑
i

∑
j ̸=i

max(0, Cij)2︸ ︷︷ ︸
negative term

(3)

where λ is a positive constant balancing the importance of
positive and negative terms. The key of our proposed ReCo
is the max operator, which means the energy function does
not penalize negative pairs that are already orthogonal or
negatively correlated. We can also interpret ReCo as a loss
that adaptively puts attention to all positive pairs and only
challenging negative pairs. The temperature parameter (τ )
for scaling the similarity score in InfoNCE is no longer re-
quired in ReCo. Using popular deep-learning frameworks
like PyTorch [26], ReCo can be implemented with few lines
of code (Alg. 1) and easily incorporated into the standard
multimodal contrastive training framework.
Connection and comparison to other losses. In unimodal
representation learning, Wang and Isola [33] shows that In-
foNCE (with a increasing batch size) asymptotically opti-
mizes L = Lalign + Luniform, where Lalign is the distance
between positive pairs and Luniform is the uniformity of the
feature distribution. The alignment term (Lalign) is similar
to the positive term in ReCo, as maximizing the cosine sim-
ilarity is equivalent to minimizing the mean squared error
of ℓ2 normalized vectors, up to a scale of 2. The uniformity
term is defined as:

Luniform ≜ logE [e−t∥u−v∥2
2 ], t > 0 (4)

which pushes all embeddings away from each other to
make them roughly uniformly distributed on the (D-1)-
dimensional unit hypersphere with sufficient samples. This
interpretation is consistent with empirical observations that
larger numbers of negative pairs lead to better visual rep-
resentation learning results [15, 3]. However, both Con-
VIRT [35] and our studies show that increasing negative
pairs does not improve learned visual-linguistic represen-
tations, demonstrating the unique challenges in the multi-
modal domain. The negative term in ReCo (Eqn. 3) still
pushes unpaired embeddings away but establishes a thresh-
old so that when a negative pair is already far enough (co-
sine similarity ≤ 0), it alleviates the contrastiveness and no
longer consider it in the loss calculation.

We also discuss differences of ReCo with Barlow Twins
(BT) [34]. Although the formulations appear similar, the
key difference is that BT operates on the decorrelation of
feature dimensions, while ReCo (and InfoNCE) operate on
the alignment of embeddings. Specifically, given two D×N
embedding matrix U and V , InfoNCE and ReCo are applied
to the embedding similarity matrix CN×N = U⊺V , while
BT is instead applied to the cross-correlation matrix:

C′
D×D = UV⊺ (5)

where U and V are ℓ2 normalized along the batch dimension
instead of the feature dimension as Eqn. 1. ReCo and BT
have this essential dissimilarity because, in visual represen-
tation learning, researchers usually discard the embedding
space and only keep the backbone for downstream tasks.
While in a visual-linguistic framework, we keep embedding
space for cross-modal applications like text-image retrieval.
Besides, when considering adapting BT to the cosine simi-
larity matrix for multimodal alignment, we see that the min-
imization of max(0, Cij)2 in our ReCo is to make negative
pairs orthogonal or negatively correlated (Cij ≤ 0), instead
of strictly orthogonal as in BT (Cij = 0). In experiments,
we will show that using max is not a random choice but
necessary for robustly improving the multimodal represen-
tation learning performance on different datasets.

The formulation of ReCo also appears similar to the
max-margin contrastive loss [14] considering the conver-
sion between ℓ2 distance and cosine similarity. Our con-
tribution is to adapt such an objective in the multimodal set-
ting without siamese encoders [6] and significantly improve
the widely-used InfoNCE. In comparison with VSE++ [10]
that explicitly compare the positive with the hardest nega-
tive in a batch, ReCo reduces the gradient contribution from
easy negatives, which implicitly emphasize hard negatives.

In summary, since the multimodal embeddings reside on
a unit hypersphere, ReCo relaxes the negative space of a
given query to a hyper-hemisphere to embrace more flexi-
bility and diversity. We also tested a generalized cosine sim-
ilarity using wedge product for additional flexibility, which
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Figure 3. Examples from tested multimodal datasets. (a) Our
main focus is the representation learning on the MIMIC-CXR [21]
database organized by studies, where each study consists of one
or more chest X-ray images with a radiology report in free-text
form. (b) To show the generalizability of our approach, we also
experiment with Flickr30K [27] where each image is associated
with five semantically similar captions.

is discussed in the supplementary material.

4. Experiments
After pre-training on the MIMIC-CXR dataset of chest

radiographs and radiology reports (Fig. 3a), we show the
effectiveness of ReCo in retrieval (Sec. 4.1) and perform ab-
lation studies to understand the impact of hyper-parameters
(Sec. 4.2). We also test the tranfer learning performance
for disease classification through linear evaluation and fine-
tuning (Sec. 4.3). We further apply ReCo to Flickr30K
(Fig. 3b) to demonstrate its generalization. (Sec. 4.4).

4.1. Text and Image Retrieval

Dataset and evaluation metrics. We use the MIMIC-
CXR [21] database for training, which is a collection of
chest radiograph images paired with their textual reports.
This dataset contains a total of about 217k image-text pairs
(organized by studies), with each pair containing an average
of 1.7 images and 6.0 sentences. We show one example in
Fig. 3a. We randomly sample one image and one sentence
from each study to construct a positive pair during training.

Instead of directly splitting the MIMIC-CXR database
for evaluation, we follow ConVIRT [35] to use the CheX-

pert 8×200 Retrieval dataset [35] for performance compari-
son by reporting the validation performance. For simplicity,
we denote it as the CheXpert retrieval dataset in the follow-
ing text. Each image or sentence in this dataset is associated
with 1 of 8 category labels provided by a board-certified ra-
diologist. CheXpert retrieval dataset has 40 query sentences
(5 for each category) and 80 query images (10 for each cate-
gory), and 1,600 candidate images (200 for each category).
Therefore we can evaluate the performance on both text-
image and image-image retrieval.

For the retrieval performance, we use Prec@k with k ∈
{5, 10, 50}. For a given query (can be a sentence or an im-
age), we rank the similarity score of the query with all can-
didate images. Then for the k candidates with the highest
scores, the precision is n

k where n is the number of ground-
truth matches. We average it over all queries to get the
Prec@k score. We also use the average of image-image and
text-image scores to measure the overall performance.
Implementation details. We follow the ConVIRT [35]
implementation. The vision encoder is a ResNet-50 [16]
model pretrained on ImageNet [7]. We repeat the gray-scale
radiograph images along the channel dimension to make
them compatible with the vision encoder. The language en-
coder is a pretrained ClinicalBERT [18] with 12 transformer
layers. The token embedding layer and the first 6 trans-
former layers are frozen during training. Each encoder is
paired with a projection head, a two-layer MLP with ReLU
non-linearity for the hidden layer. The embedding dimen-
sion is 512. The two encoders are jointly trained with the
Adam [22] optimizer using an initial learning rate of 10−4,
weight decay of 10−6, as well as cosine learning rate sched-
uler. We added a small denominator ϵ = 10−7 when cal-
culating the cosine similarity to avoid dividing by 0. We
use a batch size of 64. We set negative weight λ = 0.6
(Eqn. 3) for ReCo. Training is done on a single NVIDIA
V100 GPU (16GB) within two days for 300K iterations.
Hyper-parameter choices are justified in ablation studies.
Results. We show a quantitative comparison in Table 1.
Random initialization gives an average precision of 12.5%
for the 8 categories. ConVIRT [35] is optimized with In-
foNCE (Eqn. 2) and currently has the state-of-the-art per-
formance on this dataset. Since the code of ConVIRT is not
publicly released, we replicate their settings with some help
from the ConVIRT authors and denote it as InfoNCE in our
experiments. The results demonstrate that the contrastive
methodology that directly aligns multimodal embeddings
significantly outperforms other learning schemes (please re-
fer to ConVIRT [35] for details). We then show that by
changing the InfoNCE energy function to our ReCo without
any modification to model architecture and training proto-
cols, both image-image and text-image retrieval scores are
improved consistently by a large margin. Specifically, upon
the InfoNCE baseline with an average precision of 48.6%,
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Table 1. Performance comparison on retrieval. We show the unimodal and multimodal retrieval results of InfoNCE and ReCo models,
averaged over four runs with different random seeds. With the same architecture and training protocol, our ReCo improves InfoNCE by
2.9% in average retrieval precision on the CheXpert 8×200 Retrieval dataset [35] (models are trained on MIMIC-CXR [21]).

Image-Image Retrieval (↑) Text-Image Retrieval (↑)
Average (↑)

Method Prec@5 Prec@10 Prec@50 Prec@5 Prec@10 Prec@50

Random 12.5 12.5 12.5 12.5 12.5 12.5 12.5
ImageNet 14.8 14.4 15.0 – – – –

Results reported in Zhang et al. [35]
Caption-Transformer 29.8 28.0 23.0 – – – –
Caption-LSTM 34.8 32.9 28.1 – – – –
Contrastive-Binary 38.8 36.6 29.7 15.5 14.5 13.7 24.8
ConVIRT 45.0 42.9 35.7 60.0 57.5 48.8 48.3

Our experiments (with standard error)
InfoNCE 43.3±0.5 40.2±0.7 35.0±0.2 63.7±1.4 59.2±1.2 50.1±0.9 48.6±0.6

ReCo (Ours)
45.6±0.7 44.1±0.9 35.7±0.6 67.4±1.9 62.8±1.0 53.1±0.5 51.5±0.6

+2.3 +3.9 +0.7 +3.7 +3.6 +3.0 +2.9

Figure 4. Similarity distributions of learned embeddings on the
Chexpert Retrieval dataset. We show both the (a) text-image and
(b) image-image cosince similarity histograms for models trained
with InfoNCE and our ReCo loss.

ReCo improves the performance to 51.5%, an absolute im-
provement of 2.9%.

To understand the differences in the learned embedding
space, we show the cosine similarity distributions for both
losses in Fig. 4. Qualitatively, for the text-image similar-
ity, which is directly optimized by the losses, ReCo pushes
more pairs to the orthogonal and negative subspace and
has a more right-tailed distribution than InfoNCE (Fig. 4a).
This distribution is consistent with our motivation that the
loss should account for the imbalance of positive and neg-
ative pairs. We also notice that although the losses are not
directly applied for the image-image alignment task, ReCo
also yields a more right-tailed distribution for image-image
similarity than InfoNCE (Fig. 4b).

4.2. Ablation Studies

Batch size. Different from visual contrastive learning
frameworks where larger batch sizes generally leads to bet-
ter performance [15, 3] (e.g., B = 65536 in He et al. [15]),

ConVIRT tested B ∈ {16, 32, 128} on MIMIC-CXR and
show that increasing batch size decreases the multimodal
retrieval performance [35]. We conduct a similar study for
B ∈ {32, 64, 96} using the InfoNCE loss and show that
B = 64 achieves the best average retrieval precision of
48.6% (Fig. 5a). We thus set B = 64 as default for the
following experiments for both InfoNCE and our ReCo as
it denotes a strong InfoNCE baseline.

Embedding dimension. We study the influence of embed-
ding dimensions on the InfoNCE model. Please note that
the vision encoder is a ResNet-50 [16] that has 2048 di-
mensions after global average pooling, while the language
encoder is a ClinicalBERT [18] whose dimension is 768
for each output token. We show that for a wide range of
D ∈ [512, 1536], the performance is quite stable with a
small gap of 0.3% in average retrieval precision between
the best and worst model. We also noticed that when D is
relatively small (256) or large (1792 and 2048), there is an
obvious performance drop. We argue these might be un-
derfitting and overfitting problems, respectively. Following
ConVIRT [35], we fix the embedding dimension to 512 for
the following experiments.

Off-diagonal weight λ. Our proposed ReCo loss (Eqn. 3)
removes the temperature parameter in the InfoNCE loss and
uses a scalar weight λ to trade-off the contribution of diag-
onal (positive) and off-diagonal (negative) terms. In this
study, we solely benchmark the influence of λ and keep
other hyper-parameters identical to the baseline InfoNCE
configurations described above (B = 64 and D = 512).
We tested a wide range of λ ∈ [0.1, 0.8] with a 0.1 interval.
Besides achieving an average retrieval precision of 51.5%
when λ = 0.6, our ReCo loss significantly outperforms the
InfoNCE baseline with all off-diagonal weights we tested
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Figure 5. Ablation studies on model hyper-parameters. We show that the baseline InfoNCE model (a) performs best using a training batch
size of 64 with an embedding dimension of 512, and (b) has stable performance for embedding dimensions from 512 to 1536. Therefore
we fix those two hyper-parameters (B = 64 and D = 512) for other experiments. (c) Models trained with our proposed ReCo loss
consistently outperform the InfoNCE baseline for a wide range of off-diagonal weights λ ∈ [0.1, 0.8].

(Fig. 5c). The minimal average precision of ReCo is 50.0%
when λ = 0.1, which is still 1.4% higher than the InfoNCE
baseline at 48.6%. The observations demonstrate the ro-
bustness of the proposed ReCo loss.

4.3. Linear Evaluation and Finetuning

Setup. Following previous work in self-supervised vi-
sual [3, 15] and multimodal [35] representation learning,
we use both linear evaluation protocol and full finetuning to
evaluate the learned visual encoders. Specifically, we keep
the backbone of the visual encoder (remove the projection
MLP) and add a single fully-connected layer for classifi-
cation. In linear evaluation, only the fully-connected layer
is learnable while the rest are frozen (batch normalization
layers are in inference mode to use previous running statis-
tics). The whole model is learnable in finetuning. Following
ConVIRT [35], we conduct experiments on CheXpert [19],
which is a multi-label classification task as one image can
belong to more than one class (i.e., more than one disease
is observed from the radiology image). We use the binary
cross-entropy loss averaged over classes for training. From
the models trained with different random seeds in Table 1,
we choose the ones whose retrieval precision is closest to
the mean retrieval score for this experiment. Random im-
age augmentations are applied for both scenarios. We set
the learning rate to 0.01 for linear evaluation and 10−4 for
finetuning without tweaking.
Results. We have several observations in Table 2. First,
contrastive learning on radiology data (both InfoNCE and
ReCo) significantly outperforms the model pretrained on
ImageNet [7]. This is expected and indicates that when
there is a large domain gap, in-domain pre-training is re-
quired for satisfactory downstream performance. Second,
ReCo outperforms the InfoNCE baseline in the linear eval-
uation and has comparable results in finetuning, indicating
its effectiveness in learning not only better joint embeddings
but also meaningful unimodal representations. Third, for
the encoder trained with ReCo, the linear protocol achieves

Table 2. Linear evaluation and finetuning results. We show the
AUC scores for multi-label classification on the CheXpert [19]
dataset with pretrained image encoders from multimodal learning.
In linear evaluation, only a fully-connected layer is optimized.

Linear Evaluation Finetuning
Method 1% 10% all 1% 10% all

Results reported in Zhang et al. [35]
Random Init. 58.2 63.7 66.2 70.4 81.1 85.8
ImageNet Init. 75.7 79.7 81.0 80.1 84.8 87.6
ConVIRT 85.9 86.8 87.3 87.0 88.1 88.1

Our experiments
ImageNet Init. 69.90 74.13 77.43 74.90 82.98 87.37
InfoNCE 86.65 88.25 88.38 87.38 88.30 88.55
ReCo (Ours) 86.90 88.28 88.57 87.07 88.33 88.58

an average AUC of 88.57%, which almost reaches the per-
formance of full-finetuning of 88.58%. Considering that
optimizing a linear classifier is several magnitudes faster
than full finetuning, we suggest practitioners use this con-
figuration in real-world applications with a budget.

4.4. Flickr30K Experiments

Setup. To demonstrate generalization of the proposed ReCo
loss, we also conduct experiments on the Flickr30K [27]
dataset, which contains about 32,000 natural-scene images,
each paired with 5 captions describing the image. We
take 1,000 images (with 5,000 captions) as the validation
set and use the rest for training. The evaluation metric is
Recall@k, k ∈ {1, 5, 10}, which corresponds to whether at
least one ground truth is included in the top k retrievals from
the validation set. We report both image and text retrieval
results in this experiment.

For the model, we use a pretrained CLIP [28] architec-
ture called "RN50", which is a hybrid architecture that
uses a customized ResNet-50 as image encoder and a 12-
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Table 3. Multimodal retrieval performance on the Flickr30K.
CLIP-ZS means the zero-shot results of the pretrained CLIP [28]
model. Our proposed ReCo loss consistently outperforms In-
foNCE even when finetuning on the CLIP pretrained model.

Image Retrieval Text Retrieval
Method R@1 R@5 R@10 R@1 R@5 R@10

CLIP-ZS [28] 55.0 80.5 86.9 76.0 93.4 97.0
InfoNCE 70.3 91.3 95.3 87.4 97.7 98.9
ReCo (Ours) 71.9 91.9 95.7 89.2 98.4 99.1

Figure 6. Similarity distributions of learned embeddings on
Flickr30K. We show the image-text cosine similarity histograms
for pretrained CLIP [28] as well as the models finetuned with
InfoNCE and our ReCo loss on the Flickr30K validation set.

layer transformer with 8 heads for each block as the text
encoder. This multimodal architecture is similar to what we
have tested for the MIMIC-CXR dataset (Sec. 4.1). How-
ever, one major difference is that the projection heads for
MIMIC experiments are two-layer MLPs with ReLU non-
linearity, while the projection heads are linear layers for the
CLIP architecture. The model was pretrained on a huge
dataset with 400 million (image, text) pairs. We finetune it
on the Flickr30K training set with a mini-batch size of 64,
an initial learning rate of 10−6 and weight decay of 10−2

for a total of 80K iterations.
Results. Table 3 shows the image-text and text-image re-
trieval scores on the Flickr30K validation set. Starting from
a strong baseline CLIP-ZS (ZS stands for zero-shot), fine-
tuning with InfoNCE loss improves the top-1 recall (R@1)
from 55.0 to 70.3 for image retrieval and 76.0 to 87.4
for text retrieval. With exactly the same training proto-
col, changing InfoNCE to ReCo further improves the R@1
scores to 71.9 and 89.2, achieving absolute improvements
of 1.6% and 1.8% for image and text retrieval, respectively.
The results demonstrate that ReCo can robustly improve the
multimodal representation learning performance with dif-
ferent types of datasets (Fig. 3) and model architectures.

To understand how ReCo changes the structure of the
embedding space, we visualize the cosine similarity distri-
butions between images and captions with different mod-
els in Fig. 6. Different from the observation in radiology
images (Fig. 4a), ReCo significantly increases the smooth-

ness of the similarity distribution and pushes it more to
the negative range instead of stopping when achieving or-
thogonality, showing the unique characteristics of different
datasets. The ReCo similarity distribution is still relatively
right-tailed compared to InfoNCE and CLIP-ZS but less ev-
ident than the CheXpert retrieval dataset. Next, we discuss
another experiment exhibiting dataset differences.
Orthogonality constraint. Inspired by Barlow Twins [34],
we also tested a loss that enforces orthogonality for negative
pairs by removing the max operation in the proposed ReCo
objective (Eqn. 3):

LOC ≜
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

Cij2 (6)

where λ > 0 is the weight for negative terms. We follow the
training and evaluation protocol on the MIMIC-CXR [21]
dataset and show that LOC achieves an average retrieval pre-
cision of 51.3%, slightly lower than ReCo but still outper-
forming the InfoNCE baseline on the CheXpert Retrieval
dataset. However, when applying LOC to Flickr30K [27],
the model overfits quickly and results in recall scores lower
than even the zero-shot results of pretrained CLIP [28].
The multimodal similarity distributions suggest that ReCo
pushes more pairs to be orthogonal (Fig. 4a) on the CheX-
pert Retrieval dataset. Therefore, removing the max func-
tion has a small influence on the results. However, most
multimodal pairs in Flickr30K are far from orthogonality
after applying ReCo (Fig. 6). Therefore the orthogonality
constraint disrupts the embedding space and results in per-
formance degradation. Those observations further demon-
strate the criticality of the max operator in the generaliza-
tion of ReCo to other datasets.

5. Conclusion and Future Work
In this work, we improve the InfoNCE loss in multi-

modal learning by introducing a novel loss function, ReCo,
which alleviates the contrastiveness for negative pairs and
achieves better retrieval and transfer learning performance
with different architectures on different datasets. Compared
with visual representation learning frameworks [3, 15, 24, 1,
12, 4, 34], visual-linguistic models can undoubtedly enjoy
performance gain with the semantically denser natural lan-
guage supervision [35, 28, 20]. However, the limitation is
that multimodal systems usually require the pairing of sam-
ples in different modalities, while unimodal architectures
can work with raw data in a single modality. One natural
extension of our work is to apply ReCo to other modalities
beyond image and text, including but not limited to video,
audio, and genomics. In addition, recent works indicate that
the contrasting negative pairs are not necessary for learning
meaningful representations in vision [12, 4]. We expect that
exploring similar designs for the multimodal setting will
also lead to interesting discoveries.
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