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Abstract

Video denoising is a fundamental problem in numerous
computer vision applications. State-of-the-art attention-
based denoising methods typically yield good results, but
require vast amounts of GPU memory and usually suffer
from very long computation times. Especially in the field of
restoring digitized high-resolution historic films, these tech-
niques are not applicable in practice. To overcome these
issues, we introduce a lightweight video denoising network
that combines efficient axial-coronal-sagittal (ACS) convo-
lutions with a novel shifted window attention formulation
(ASwin), which is based on the memory-efficient aggrega-
tion of self- and cross-attention across video frames. We
numerically validate the performance and efficiency of our
approach on synthetic Gaussian noise. Moreover, we train
our network as a general-purpose blind denoising model for
real-world videos, using a realistic noise synthesis pipeline
to generate clean-noisy video pairs. A user study and non-
reference quality assessment prove that our method outper-
forms the state-of-the-art on real-world historic videos in
terms of denoising performance and temporal consistency.

1. Introduction

Image/video denoising and restoration have been the
subject of research for several decades. This persistent fo-
cus of the research community is driven by the fact that de-
noising is essential for numerous image/video processing
and computer vision tasks, e.g., for the reconstruction of
microscopy images, tomography, or satellite data. In this
work, we focus on denoising of digitized high-resolution
historic films, which are degraded by various noise sources
such as digital noise or film grain, which strongly depends
on the facilitated film stock, the acquisition process, and
the digitizing procedure [8, 36]. Typically, historic movies
are recorded on analog film reels, which is why the noise
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Figure 1: Lightweight frame-wise aggregated shifted win-
dow (ASwin) attention, designed for effective video denois-
ing. At any position in the video, a multilayer perceptron
(MLP) processes the concatenated (CAT) local information
and an attention output, thereby efficiently fusing self- and
cross-attention between frames.

of movie frames is only spatially correlated, not tempo-
rally. The spatial correlation of the noise is proportional to
the resolution of digitized films [8], which results in highly
correlated noise in digitized cinematic movies. Throughout
this work, we refer to this type of noise as analog noise.
Moreover, the high resolution of cinematic movies limits
the complexity of denoising algorithms, despite increasing
computing power and memory. Consequently, memory-
efficient and fast video denoising models are required that
deal with spatially correlated noise.

Video denoising algorithms essentially exploit two prin-
ciples – locality and self-similarity. The locality principle
assumes that neighboring elements (pixels or frames) are
more likely similar, while self-similarity [44] accounts for
repetitive structures (e.g., edges, textures, objects) within
an image/frame or between multiple frames. Image fil-
tering methods [14, 32] and convolutional neural networks
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(CNNs) [20,29,31] strongly exploit the locality principle by
means of convolutions. Self-similarity-based methods build
upon the extraction of similar repetitive structures, which
are jointly processed, e.g., block-matching 4D collaborative
filtering (BM4D) [25], video denoising via spatio-temporal
nonlocal Bayes [2], or recently patch craft [33]. Interest-
ingly, the extraction of patches and the collaborative filter-
ing strongly resembles the query-key-value search pattern
of transformers [34], which has outperformed the state-of-
the-art in image and video processing [5,24]. Further, trans-
former and attention mechanisms have proven to be partic-
ularly suited for video processing [11,23]. In particular, the
state-of-the-art in image denoising is obtained by combin-
ing convolutions and transformer blocks [42]. In this pa-
per, we combine the locality and self-similarity principles
within a novel deep learning architecture designed for ef-
fective video denoising. In detail, the main contributions of
this paper are as follows:

• We propose a novel attention mechanism, termed
aggregated shifted window attention (ASwin), that
exploits a frame-wise aggregated self- and cross-
attention scheme with shared projection matrices,
which is combined with a shifted window approach.

• For our attention mechanism, we utilize a frame-wise
search window. In combination with axial-coronal-
sagittal (ACS) convolutions [37] within our deep learn-
ing model, we obtain a lightweight (small memory us-
age and runtime) yet effective approach.

• We train our network as a general-purpose blind de-
noising model, suitable for real world noisy video data.
A user study and a non-reference quality assessment
shows that our method outperforms other state-of-the-
art denoising approaches in terms of denoising perfor-
mance and temporal consistency.

2. Related Work
Traditional video denoising algorithms pursue a spa-

tial and temporal patching scheme to exploit redundancy
of videos (self-similarity). For example, BM4D [25]
extends the collaborative filtering idea of BM3D [7] to
spatio-temporal patches and enforces sparsity in a higher-
dimensional transform domain. Similarly, VNLB [2] per-
forms a joint empirical Bayes estimation for each group,
assuming a Gaussian model. Nowadays, these methods
are typically outperformed by data-driven methods based
on learned CNNs [21, 27, 30, 31, 43]. VNLnet [9] finds
self-similar video patches using a nonlocal search algo-
rithm, which are subsequently processed by a CNN. Re-
cently, PaCNet [33] combined the concept of self-similarity
and CNNs by means of artificial patch-craft frames, con-
structed by stacking matched patches. Furthermore, the

query-key-value search principle of transformers [34] en-
ables video models [11, 23] to incorporate self-similarity.
VRT [23] applies this principle on multiple scales to extract
long-range dependencies within videos and implements a
warping scheme for motion compensation. For video de-
noising, VRT is conditioned on the noise level and thus
its performance depends on an a-priori knowledge or es-
timation of the noise level. Other non-blind video de-
noising methods include DVDNet [30], FastDVDNet [31],
and PaCNet [33]. In contrast, blind video denoising ap-
proaches [6, 26, 29, 39, 41, 42] do not require a noise level
estimation and are therefore more suitable for real-world
scenarios with unknown noise types and levels.

We can further classify methods based on their usage
of motion information. For instance, DVDnet [30] incor-
porates optical flow in a three stage process. First, in-
put frames are processed separately by an image denois-
ing CNN, then the optical flow between frames is calcu-
lated using DeepFlow [35] to apply motion compensation,
and finally the motion-compensated frames are processed
by another CNN. FastDVDnet [31] extends DVDnet, how-
ever, it employs an end-to-end-trained UNet structure [28]
that uses five consecutive input frames to reconstruct the
central frame without explicitly accounting for the optical
flow. The recent transformer VRT [23] performs explicit
motion compensation by feature warping on different res-
olutions. However, motion compensation always bears the
risk of introducing motion artifacts due to inaccurate opti-
cal flow estimation, which is especially noteworthy in the
case of real-world noise that is often spatially correlated.
Hence, we refrain from explicitly using optical flow within
our model.

Regarding the style of learning, real-world approaches
can be classified into unsupervised/self-supervised and
supervised methods. The unsupervised/self-supervised
framework exploits basic principles of natural images and
videos to train a model with the goal of reconstructing cor-
rupted parts of the data by using local neighborhood infor-
mation [10, 22, 29]. Multi Frame-to-Frame (MF2F) [10]
and Unsupervised Deep Video Denoising (UDVD) [29] are
state-of-the-art in self-supervised video denoising and have
been shown to perform well on removing real-world noise
in videos. MF2F is fine-tuning a pre-trained FastDVDnet
model by minimizing the distance to motion-compensated
adjacent frames. This method incorporates TV-ℓ1 optical
flow [40], thereby creating a significant dependence on the
accuracy of a motion estimate. This typically leads to blurry
results [12, 38, 41]. UDVD avoids motion compensation by
extending the blind spot framework [19] to video denoising
using a causal rotated CNN. In contrast, supervised learn-
ing on synthesized realistic noisy-clean video pairs enables
training of general-purpose blind video denoising models,
as demonstrated for images [42].
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3. Method
In this section, we introduce a novel attention mech-

anism termed aggregated shifted window (ASwin) atten-
tion that is combined with an efficient CNN, leading to
a lightweight convolution-transformer model for video de-
noising. Formally, video denoising means restoring a clean
video ū ∈ RF×M×N×C from a noisy observation u ∈
RF×M×N×C , where F refers to the number of frames –
each of size M ×N with C channels. The relation between
u and ū is determined by the noise generation process.

3.1. Aggregated Shifted Window Attention

The proposed aggregated shifted window (ASwin) atten-
tion extends recent attention mechanisms [11, 24, 34] to ef-
fectively process video data. Attention layers are the core
unit of a transformer, in which all elements in an input se-
quence of length L aggregate information from all other el-
ements in parallel, thereby generating context information.
Attention combines queries Q ∈ RL×C , keys K ∈ RL×C ,
and values V ∈ RL×L for RC-dimensional features of an
input sequence. Attention is computed as the weighted sum
of the values

SoftMax(QK⊤)V,

where the matrix QK⊤ represents the similarity between
the query-key pairs and the SoftMax function is applied
along the rows. Note that the memory consumption in-
creases quadratically in L. A straightforward adaption of
recent 2D image processing transformers, by simply re-
placing convolutions and attention mechanisms with their
respective 3D counterparts, results in models with large
memory consumption and long computation times, which
is therefore infeasible for high-resolution digitized analog
films (e.g. cinematic scenes). There are several options
to reduce memory requirements, e.g., restricting to a lo-
cal window instead of a global computation [24] or chunk-
ing the queries [13]. In this work, we advance these ideas
by introducing a frame-based aggregation scheme, where
the attention is computed individually for all frames within
local windows. Typically, non-overlapping windows are
considered to reduce computation time and memory con-
sumption. However, this could potentially lead to block
artifacts, which can be circumvented by the shifted win-
dow approach (Swin) [24]. Let JAK := {1, . . . , A} for
any A ∈ N. We consider a fixed rectangular window
W ⊂ Ω := JF K × JMK × JNK. The key kt,h,w and
value vt,h,w pair within a position (t, h, w) ∈ W are com-
puted as

kt,h,w = PKxt,h,w + bK ∈ RR,

vt,h,w = PV xt,h,w + bV ∈ RC ,

where PK ∈ RR×C , PV ∈ RC×C are learned projection
matrices, bK ∈ RR, bV ∈ RC are learned biases, and

xt,h,w ∈ RC is the corresponding input feature vector in the
window W . By stacking the resulting vectors, we obtain the
subsequent matrices:

KW =


...

k⊤
t,h,w

...

 , VW =


...

v⊤
t,h,w

...

 for (t, h, w) ∈ W.

For any position (f,m, n) ∈ W ⊂ Ω, which is not neces-
sarily in W , the query is defined as

qf,m,n = PQxf,m,n + bQ ∈ RR,

where PQ ∈ RR×C and bQ ∈ RR are learned as above.
Likewise, the queries are stacked into the matrix

QW =


...

q⊤
f,m,n

...

 for (f,m, n) ∈ W.

Then, the weighted attention of two windows reads as

AW
W

= SoftMax(QWK⊤
W
/
√
R)VW , (1)

where SoftMax denotes the row-wise softmax function.
For clarity, the derivation only describes a single attention
head. However, we do use multiple heads [34] in the im-
plementation to simultaneously focus on different aspects
within one transformer block.

We use the attention mechanism (1) to compute self-
attention within a frame and cross-attention to adjacent
video frames. Both windows are equal in the case of frame-
wise self-attention (W = W ), whereas, for cross-attention
between frames W is equal to W shifted along the frame
dimension, i.e., only a temporal offset is applied. For the
sake of simplicity, we denote this shifted window by Wt for
t ∈ JT K. Consequently, we get W = Wt in the case of
cross-attention. To account for positions within the shifted
windows, we utilize a 2D sine positional encoding.

To combine self- and cross-attention efficiently, we pro-
pose the following residual aggregation scheme. By starting
from a feature xf,m,n ∈ RC at position (f,m, n) ∈ W ⊂ Ω
ASwin attention aggregates different temporal windows by

yf,m,n = xf,m,n +
1

|T |
∑
t∈T

h(xf,m,n, [A
W
Wt

]f,m,n),

where T is the set of considered temporal shifts, and
[AW

Wt
]f,m,n ∈ RC denotes the corresponding row-vector of

the attention AW
Wt

at the considered location (f,m, n). Note
that f ∈ T implies that self-attention is included. The fu-
sion function h : RC × RC → RC consists of a linear layer
used for feature reduction of the channel-wise concatena-
tion of xf,m,n and [AW

Wt
]f,m,n, followed by LayerNorm [3]
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and a subsequent multilayer perceptron (MLP). The final at-
tention zf,m,n is obtained by function g : RC ×RC → RC ,
consisting of the channel-wise concatenation of the initial
feature xf,m,n and frame-aggregated attention yf,m,n, fol-
lowed by LayerNorm and another MLP.

zf,m,n = g(xf,m,n,yf,m,n)

We highlight that the same fusion network h is used to
aggregate the attention for all considered temporal frame
shifts t ∈ T . Consequently, ASwin requires only constant
memory to process T frames.

3.2. Architecture

Our general network architecture is inspired by Swin-
Conv-UNet (SCUNet) [42] and is depicted in Figure 2.
Like SCUNet, our denoising strategy combines the local
modeling ability of residual convolutions with the non-local
modeling ability of efficient shifted window attention. Our
architecture incorporates the proposed ASwin/ACSconv
block as the main processing block of a residual UNet.

Instead of using standard 3D convolutions, which are
expensive in terms of computation time and memory con-
sumption, we incorporate ACS (axial-coronal-sagittal) con-
volutions [37], which aim to approximate standard 3D con-
volutions by splitting each kernel into three 2D parts and
extract 2D spatial information along all three different axes
pairs of a 3D volume. In particular, ACS convolutions can
be seen as a special case of 3D convolution with blocks of
sparse kernels. Since ACS kernels are reshaped 2D kernels,
the number of learned parameters coincides with the num-
ber for 2D convolutions, which thus reduces memory con-
sumption and computation time. The ACS block consists of
a 3×3×3 ACS convolution, followed by a ReLU activation
and a second 3× 3× 3 ACS convolution.

Each ASwin/ACSconv block consists of three residual
stages in which the feature volume is first processed by a
1×1×1 convolution, to achieve inter-channel communica-
tion, split evenly into two parts along the channel dimension
after which one part is fed to the ASwin block and one to the
ACSconv block, respectively. Finally, the residual of the in-
put features is obtained by merging the processed output of
each of the two blocks via concatenation along the channel
dimension and post-processing by another 1×1×1 convolu-
tion to allow an information flow between both blocks. The
downsampling in the encoder part is obtained by a 2×2 con-
volution with spatial stride 2 and the upsampling in the de-
coder part is obtained in the same manner by a 2× 2 trans-
posed convolution with spatial stride 2. Temporal down-
sampling did not show to be beneficial during our initial
experiment and is therefore omitted.

3.3. Real-world Noise Synthesis

Our proposed method is also designed for deep blind
real-world video denoising, where we particularly focus on
analog noise in digitized historic films. Since no ground
truth exists for real digitized videos, the generation of syn-
thetic realistic data of clean-noisy video pairs properly rep-
resenting the distribution of real image noise (including
analog noise) is necessary. For this reason, we modify the
image noise synthesis pipeline presented in [42] for realistic
video noise synthesis.

The main idea is based on the degradation of images by
adding many various kinds of noise and including a resiz-
ing operation in order to approximate non-i.i.d. noise dis-
tributions commonly seen in digitized videos. The noise
synthesis procedure builds upon a double degradation strat-
egy with a random order of applying different noise models,
which helps the generalization ability of the blind denoising
model by further expanding the learned degradation space.
The noise synthesis pipeline includes the following degra-
dations, which are applied twice in random order: Gaussian
noise, Poisson noise, camera sensor noise, speckle noise,
jpeg compression noise, resizing. In particular, Gaussian
noise is applied with a probability of 1 while all other degra-
dations are applied with a probability of 0.5. The exact
hyperparameters used for each degradation model can be
found in the supplementary material.

We adopt the 3D generalized zero-mean Gaussian noise
model with varying correlation across the color channels,
with the two extreme cases being grayscale Gaussian noise
and additive white Gaussian color noise. Signal-dependent
(color or grayscale) Poisson noise is added to the clean
video to simulate photon shot noise. Although we focus
on digitized analog videos, modeling camera sensor noise
is still of interest, since during the digitizing process the
analog video can be processed in a similar manner as in
a digital in-camera image processing pipeline (ISP). This
kind of noise is incorporated by applying a reverse ISP
pipeline [4] to the video, resulting in raw images. Subse-
quently, read and shot noise are added before applying the
forward ISP pipeline to again obtain RGB images. Multi-
plicative speckle noise can simply be modeled by multiply-
ing Gaussian noise (generated by Gaussian noise synthesis
as above) to a clean image. Since JPEG compression causes
reduced image quality and can introduce strong block arti-
facts, it is also considered in the noise synthesis. Digitized
analog videos often exhibit analog film grain, which is spa-
tially correlated noise. The resizing operation itself does not
introduce any additional noise to clean videos, however, the
noise distribution of a video already degraded with one of
the noise models described above is altered. Upsampling
leads to a higher spatial correlation of noise in the data,
while downsampling can reduce the spatial correlation.
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Figure 2: T noisy input frames are denoised in parallel. The model combines ASwin/ACSconv blocks as the main building
blocks of a residual UNet. For details regarding the architecture see Section 3.2.

4. Experiments and Results

In this section, we present numerical details demon-
strating the applicability and superiority of the proposed
method. First, we elaborate on further details about the
model configuration in Section 4.1. Subsequently, we
benchmark our approach with competing methods on addi-
tive Gaussian noise in Section 4.2 and the challenging task
of digitized analog film denoising in Section 4.3.

4.1. Training and Evaluation Setup

Our network consists of four scales, i.e., three encoder
blocks, a body, and three decoder blocks with residual
skip connections between the contracting and expanding
path. We set the number of residual ASwin-ACSconv stages
within each scale to 3, to effectively combine locality and
(global) similarity. The 3D attention window size (t×h×w)
of the ASwin blocks is set to 3×8×8 in the first and second
scale, and 6× 16× 16 in the third and fourth scale, respec-
tively. The number of channels is 64 in the first scale, 128
in the second scale, and 256 in the third and fourth scale.

We train our model on the DAVIS 2017 training data
set [17]. In particular, we train on sequences of 6 frames,
randomly cropped to 128 × 128 pixels. The network is
trained for 50 000 epochs with a batch size of 4, using the
Adam [18] optimizer to minimize the mean-squared error
between our model prediction and the corresponding target.
The initial learning rate is set to 10−4 and is decreased by a
factor of 0.5 every 10 000 epochs.

For non-blind Gaussian denoising, we synthesize
noisy/target pairs by simply adding white Gaussian noise
to samples from the standard 480p DAVIS 2017 training
set [17]. In contrast, for the task of blind real-world de-
noising, we synthesize corrupted noisy videos as described
in Section 3.3. Here, we use the full DAVIS 2017 data

set in high resolution, due to the downsampling opera-
tions in the noise synthesis. In detail, we randomly crop
samples of size 600 × 600 pixels before noise synthesis.
Then, the resulting noisy video frames are again randomly
cropped to 128 × 128 pixels and fed to the denoising net-
work for training. It is important to note that the syn-
thetic noise data was generated on the fly during training,
to further increase the variety of samples and expand the
learned degradation space of the network. A random col-
lection of generated noisy-clean videos can be found in the
supplementary material. In the case of non-blind Gaus-
sian denoising, we learn individual models for each noise
level σ ∈ {10, 20, 30, 40, 50}, whereas for real-world de-
noising we train one general blind-denoising model appli-
cable to any noisy video. For both scenarios, the number
of denoised output frames equals the number of corrupted
input frames.

During inference, we process 24 video frames in par-
allel to effectively exploit temporal redundancy. In detail,
we divide each test video into groups of 24 frames such
that neighboring groups overlap by 2 frames. Each group is
processed individually, yielding the final predictions for the
non-overlapping frames. For the overlapping frames, we
calculate the mean to fuse both predictions.

4.2. Gaussian Denoising

Although not specifically designed for additive Gaus-
sian denoising, we evaluate our approach on two com-
monly used data sets for synthetic denoising: Set8 [30] and
DAVIS2017 [17]. A qualitative comparison of the results
on a single frame of Set8 is shown in Figure 4. Zooming
in on the snowboarder, visual differences become apparent,
with PaCNet [33] displaying artifacts on the sky, FastDVD-
net [31] preserving fewer fine details, such as the valleys of
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the mountain in the background, and VRT [23] exhibiting a
seemingly over-smoothing behavior on the yellow jacket.

In order to obtain a quantitative comparison to the state-
of-the-art methods, we evaluate the denoising performance
in terms of PSNR; the results are shown in Table 1. Our
model yields results close to the state-of-the-art VRT [23]
and consistently outperforms all other competing methods.
When considering both the denoising performance and the
runtime (see Figure 3), we can observe that the better per-
formance of VRT comes along with a significant increase in
computation time. In detail, VRT is 21.2× slower than our
model. Moreover, VRT suffers from an excessive memory
consumption and videos can only be processed in a patched
way. We provide a detailed comparison of the memory con-
sumption of VRT and our method in the supplementary ma-
terial. The long runtime and memory restrictions, as well as
the fact that VRT is designed as a non-blind denoising net-
work, discard it as a candidate for real-world denoising on
high resolution cinematic scenes. The same holds for PaC-
Net, which is the slowest of the compared learning-based
methods. FastDVDnet has a low runtime, however, it per-
forms significantly worse than our method, on both Davis
and Set8, regardless of the noise level. Our model provides
by far the best trade-off between performance and runtime,
and is therefore very well applicable for the task of high-
resolution cinematic video denoising.

0 5000 10000 15000 20000 25000

runtime in ms

35

36

37

38

P
S

N
R

ours

FastDVDnet

VNLnet

DVDnet

PACnet

VRT

Figure 3: Visualization of denoising performance versus
runtime for our method and other state-of-the-art methods.

4.3. Real-world Denoising

In this section, we show quantitative and qualitative re-
sults of our blind real-world denoiser and compare them to
state-of-the-art real-world video denoising techniques. To
evaluate the different methods, we used 10 high-resolution
sequences of digitized analog film footage, exhibiting dif-
ferent unknown noise types of varying strength. The camera
model, the analog film type, and the exact digitizing process
are unknown. Further details and a visual overview of the
real-world test data can be found in the supplementary. De-
noising digitized analog videos is even more challenging

VBM4D VNLB DVDnet VNLnet FastDVD PaCNet VRT ours
device CPU CPU GPU GPU GPU GPU GPU GPU

runtime (s) 156.0 420.0 4.91 1.87 0.08 24.64 7.86 0.37

D
AV

IS

σ = 10 37.58 38.85 38.13 35.83 38.71 39.97 40.82 40.15
σ = 20 33.88 35.68 35.70 34.49 35.77 36.82 38.15 37.12
σ = 30 31.65 33.73 34.08 32.86 34.04 34.79 36.52 35.37
σ = 40 30.05 32.32 32.86 32.32 32.82 33.34 35.32 34.13
σ = 50 28.80 31.13 31.90 31.43 31.86 32.20 34.36 33.17
mean 32.39 34.34 34.53 33.39 34.64 35.42 37.03 35.99

Se
t8

σ = 10 36.05 37.26 36.08 37.10 36.44 37.06 37.88 36.99
σ = 20 32.19 33.72 33.49 33.88 33.43 33.94 35.02 34.06
σ = 30 30.00 31.74 31.68 31.59 31.68 32.05 33.35 32.41
σ = 40 28.48 30.39 30.46 30.55 30.46 30.70 32.15 31.22
σ = 50 27.33 29.24 29.53 29.47 29.53 29.66 31.22 30.31
mean 30.81 32.47 32.25 32.52 32.31 32.68 33.92 33.00

Table 1: Quantitative (PSNR) results for Gaussian denois-
ing. The best and second best scores are printed in bold and
blue. The runtime is given for a video frame of resolution
960 × 540 using FP16 precision.

than other real-world denoising tasks, due to a high spa-
tial correlation of noise induced by the physical structure
of analog film and additional digital noise caused by the
digitizing process. We compare our approach to the state-
of-the-art real-world denoising methods MF2F [10] and
UDVD [29], which – due to operating in a self-supervised
manner – were both fine-tuned directly on each noisy test
video. We additionally compare our method to commercial
denoising software for high-end video restoration, namely
NeatVideo [1] and DarkEnergy [15].

4.3.1 Visual Quality Assessment

A qualitative comparison of our method, MF2F, UDVD,
NeatVideo, and DarkEnergy is provided in Figure 5. A
visual assessment shows that our method outperforms all
other methods in terms of noise removal and detail preser-
vation. In the first row of Figure 5, one can see that there
is severe residual noise for all methods except ours, espe-
cially in bright areas. Our denoising algorithm is able to
remove the noise completely while still preserving detail.
The second and third row of Figure 5 show two other exam-
ples of the test data set. As can be seen, our approach again
outperforms all other methods, which either create visually
unpleasing artifacts, are too blurry, or are not able to remove
the noise effectively. Since UDVD is based on a blind-spot
denoising strategy (missing central pixel in the receptive
field), the resulting denoised image is of low quality, due to
a strong spatial correlation of the noise. MF2F generates vi-
sually more appealing results, however, it suffers from low
temporal consistency, which is also confirmed by the results
of the user study shown in section 4.3. An obvious draw-
back of fine-tuning a model during inference, as it is the
case for UDVD and MF2F, is the largely increased runtime.
In addition, MF2F requires an upfront optical flow estima-
tion and generation of occlusion masks, which is a time-
consuming task, especially in the case of high-resolution
videos. UDVD does not depend on the prior estimation of
motion, however, if the network is trained from scratch on a
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Figure 4: Comparison of the qualitative denoising performance on Gaussian noise with σ = 40 on a test video of Set8.

single sequence, the time for the model to converge is con-
siderable. Moreover, manual early stopping had to be per-
formed to avoid overfitting to the noisy reference, due to
spatially correlated noise in the videos. We observed that
the commercial denoising software DarkEnergy often gen-
erates blob artifacts and produces slightly blurry results in
general. In contrast, NeatVideo is not able to remove all the
noise sufficiently, however, the details are well preserved
and the overall result looks more visually appealing. Addi-
tional results can be found in the supplementary.

4.3.2 No-Reference Video Quality Assessment

Since the actual ground truth is not available for real-world
noisy videos, standard quality assessment metrics, such as
PSNR, cannot be computed. To get quantitative proof of
the superiority of our approach compared to other state-of-
the-art methods, we perform a No-Reference Image Qual-
ity Assessment (NR-IQA) on the denoised real videos. The
goal of NR-IQA is to estimate the perceptual image or video
quality in accordance with quality ratings provided by hu-
man subjects. Therefore, we use the state-of-the-art NR-
IQA metric MUSIQ [16], which is computed by a multi-
scale image quality transformer. Due to the multi-scale
representation, this method can assess the visual quality at
different granularities and outperforms traditional NR-IQA
methods by a large margin. A high MUSIQ score refers to a
high-quality image that is visually pleasing to a human. As
can be seen in Table 2, the NR-IQA evaluation reinforces
that our method is able to generate the highest quality recon-
struction on the test videos. Detailed results of each video
are provided in the supplementary.

noisy UDVD MF2F DarkEnergy NeatVideo ours

mean 25.11 25.77 35.29 31.05 33.14 38.16

Table 2: Quantitative evaluation of image quality using
MUSIQ [16]. Mean over test data set. Best and second
best score are printed in bold and blue, respectively.

4.3.3 User Study

To verify that the proposed method generates – besides
numerically competitive results – also visually appealing

videos, we conducted a user study including 30 individu-
als. In the user study design, we balanced the participants
regarding their computer vision background. In detail, ap-
proximately 47% of the participants had no background in
computer vision or related fields, while 53% of the partici-
pants had a computer vision background. The subjects were
given an instruction sheet, explaining the tasks they were
asked to perform (see supplementary material). The user
study was conducted using 20 video sequences, which were
obtained by taking two crops of each video from our real
test data set and the respective denoised results. The user
interface showed the reference video and three competing
methods, which were anonymized by labeling them as ”A”,
”B”, and ”C”, as well as randomly shuffled w.r.t. the as-
signed labels to avoid any bias. Users were asked to se-
lect the best and second best performing method, accord-
ing to one of two criteria: First, participants were asked
to judge each of the 20 videos based on its visual acuity
w.r.t. noise removal. Second, the users were asked to rate
the same 20 sequences for each method w.r.t. temporal con-
sistency. The exact description of these two terms was given
in the task sheet, see supplementary material. The user
study was performed for two groups of methods - academic
and commercial. In the first run, our method was com-
pared to two state-of-the-art academic denoising methods;
MF2F [10] and UDVD [29]. In the second run, our method
was compared to two commercial high-end denoising meth-
ods; NeatVideo [1] and DarkEnergy [15]. Figure 6 shows
that our denoised videos were the first choice of 70% of the
participants among commercial methods and 82% among
academic methods. We can further observe that NeatVideo
and MF2F are a clear second choice in their respective cate-
gories, which is in accordance with the NR-IQA evaluation
in Table 2 and visual assessment in Figure 5. Additional
results are provided in the supplementary material.

4.4. Ablation Study

We conducted an ablation study regarding the network
architecture, where we evaluate the network’s performance
with respect to the spatial and temporal window size used in
our ASwin strategy. Moreover, we investigate the influence
of replacing traditional 3D convolutions with ACS convolu-
tions and standard Swin attention with our proposed ASwin
attention. The results of all ablation experiments can be
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Figure 5: Visualization of the qualitative denoising performance on three digitized analog film scenes.

(a) Commercial Methods

(b) Academic Methods

Figure 6: Combined user study results for noise removal
and temporal consistency task. We want to note that the
ranking of the evaluated methods stays the same, regardless
of the criterion at hand, see supplementary material.

seen in Table 3. It can be observed that increasing the spatial
and temporal window size leads to an improved denoising
result. The constant memory consumption of ASwin during
inference, regardless of the number of considered frames,
also allows to increase the spatial window size further than
if standard Swin attention would be used. We observed
slightly worse results when using standard Swin attention
instead of our proposed ASwin attention and also when in-
corporating full 3D convolutions instead of ACSconv. Due
to the increased memory consumption, directly caused by
these changes, the architecture setup had to be changed for
these experiments, i.e., reducing the training batch size as
well as the spatial and temporal size of the attention win-
dows, which explains the slightly worse performance.

spatial ASwin window size

h× w × t 4x4x6 8x8x6 16x16x6

PSNR 36.84 36.96 37.12

temporal ASwin window size

h× w × t 16x16x2 16x16x3 16x16x6

PSNR 36.86 36.95 37.12

main block configuration

Swin+ACSconv Swin+3Dconv ASwin+ACSconv

PSNR 36.92 36.97 37.12

Table 3: Results of ablation experiments.

5. Conclusion

In this work, we introduced a lightweight denoising
model that combines efficient ACS convolutions with a
novel attention block. The frame-wise aggregation of
shifted windows (ASwin) results in a constant memory
footprint regardless of the number of considered frames.
A comparison on Gaussian video denoising demonstrated
that our model yields results close to the state-of-the-art
– at only a fraction of the runtime and memory consump-
tion. Moreover, on the challenging task of blind real-world
denoising of digitized analog film footage, our model out-
performs the state-of-the-art qualitatively and quantitatively
as demonstrated in a user study and a non-reference image
quality analysis.
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