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Abstract

Detecting commercial Ads from a video is important. For
example, the commercial break frequency and duration are
two metrics to measure the user experience for streaming
service providers such as Amazon Freevee. The detection
can be done intrusively by intercepting the network traffic
and then parsing the service providers data and logs, or
non-intrusively by capturing the videos streamed by con-
tent providers and then analyzing using the computer vi-
sion technologies. In this paper, we present a non-intrusive
framework that is able to not only detect an Ad section,
but also segment out individual Ads. We show that our
algorithm is scalable because it uses light weight audio
data to do global segmentation, as well as is domain cross-
ing (movies, TVs and live streaming sports) captured from
the popular streaming services such as the Freevee and the
Prime Video (PV) live sports.

1. Introduction
With the rapid growth of streaming services, quantifying

how content providers’ Ad inserting algorithms has become
important for understanding end-user experience measure-
ment. For example, how often are Ads inserted, is an Ad
played at the right spot, or how relevant is an Ad to the
current streaming content? To compute these metrics, we
need first have an algorithm to reliably segment out indi-
vidual Ads. The segmentation can be done intrusively or
non-intrusively. The intrusive approach intercepts the net-
work traffic and then builds data and logs parsers. The dif-
ficulty of this method is building a robust parser because
the data and logs are usually encrypted by service providers
and their formats also change frequently over time. The
non-intrusive approach is to capture the video first and then
analyze it using computer vision technologies. In this pa-
per, we will focus on the non-intrusive method. Generally
speaking, computer vision based Ad detection algorithms
can be categorized into two groups: the first group is refer-
ence based where we use an Ad gallery to search if there is

any match in a playback. The second group is non-reference
based where we don’t have a gallery and can only make the
decision based on the audio and video features. The non-
reference based approach is usually more challenging be-
cause some Ads, such as a movie trailer, are very similar
to contents. But it also has more applications in the Video
Quality Analysis (VQA) domain because for a streaming
service provider such as the Freevee, its Ad gallery set is not
only difficult to obtain, but also being updated frequently
over time.

Some early works of the computer vision based Ads de-
tection include that in 2005 Hua et. al [31] proposed an al-
gorithm that first extracted the context-based features from
a video and then applied a Support Vector Machine (SVM);
in 2006 M. Covel et. al [9] presented an approach that
used both acoustic and visual cues to detect repeated signals
and then segmented out Ad section. More recently, C. Xu
and X. Du [8] introduced a method to search the Ad logo
from a video stream using template matching. However,
this method requires a collection of Ad logos of interest. N.
Liu et. al [19] presented an algorithm that combines hand
crafted features of the visual modality, textural modality and
audio modality, then employed the Tri-Adaboost classifier
to separate Ad from contents. Despite the rapid develop-
ment of deep learning in the computer vision area these
days, we are only able to find one literature algorithm that
uses DNN: S. Minaee et. al [22] proposed an Ad-Net that
first used an open source video shot algorithm [1] and then
applied a pre-trained DNN to classify the segmented video
clips.

In this paper, we propose a novel non-reference Ad de-
tection framework. The main contributions of our work in-
clude (i) For the global segmentation, we propose a non-
reference DNN model that is based on the audio data. Com-
pared to video data, audio data has much higher tempo-
ral resolution: its sampling rate is usually above 16K HZ
where video signal’s sampling rate is generally below 60
frame per second (fps). In addition, audio data is much
lighter weight compared to video data. For example, 20
minutes of audio playback with 16K hz only has 19.2 mil-
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lion data points, but an RGB video with the same amount of
time sampled in 60 fps will have around 7, 465 million data
points. The other algorithms in this domain, on the other
hand, either used hand-craft features from the video chan-
nel to perform segmentation, or used the audio input but are
reference based( [9]). (ii) We presented a temporal attention
model to for Ads classification and compared the perfor-
mances of temporal pooling with RNN algorithms, where
the other algorithms are mostly using the hand-craft fea-
tures. According to our study, the only literature work that
used DNN model for classification is the Ad-Net presented
in [22]. However, this algorithm only did not study RNN
methods.
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Figure 1. The flow chart of our algorithm. The sample images
listed here are publicly available online.

The rest of the paper is organized as follows: in
Sec. 2, 3 and 4 we describe the algorithm in detail, in Sec. 5
we evaluate our algorithm using data provided by the PV
and Freevee catalogs, and in Sec. 6 we conclude the paper
and discuss future directions. To improve readability, we
listed the acronyms in Table. 1.

2. Audio-based Non-Reference Playback Seg-
mentation

Our segmentation algorithm is shown in Fig. 2. It starts
with searching silent short segments from the audio data,

Table 1. The acronyms used in this paper.

Acronym Meaning
CP Change Point: Content to/from Ad
TAP Temporal Average Pooling Model
LSTM Long Short-Term Memory Model
V iT Vision Transformer

ResNet-34

Feature (512) Feature (512)

Euclidean Distance

D > TCP? No SS is not CP

SS is CP

Yes

SS

Audio Stream

Log Mel Spectrogram Log Mel Spectrogram

Figure 2. The flow chart of our audio-stream based playback seg-
mentation algorithm that finds a silent segment (SS) first and then
classifies whether it is a change point (CP ).

based on our observation that there is usually a short tran-
sition time between a content and an Ad, or between indi-
vidual Ads. Here a silent segment is defined to be a time pe-
riod [t1, t2] such that the maximum volume of the audio sig-
nals within it is less than a threshold. In our algorithm, the
minimum duration is set to 10 milliseconds and the volume
threshold is set to 4 after we normalize the wav data into
int16 type and then take the absolute values. To clean up
the noise, we apply a band pass filter of [300HZ, 6000HZ]
to the input audio data.

Then, we check whether a detected segment is a CP .
Here we first extract the audio clips wav1 and wav2 that
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are before and after the silent segment. Both wav1 and
wav2 have a time duration of win. The win value selec-
tion is important for the downstream classifier because if
it is too small, we don’t have enough information; but if
it is too large, then it may contain scene changes at other
time that will confuse the classifier. We will study win
value in Sec. 5. Next, we compute the Log Mel Spectro-
gram [10, 20] for both wav1 and wav2. Next, we extract
the a 512 dimensional feature vectors. Then we compute
the Euclidean distance between the feature vectors and label
the silent segment as a CP if its value is above a pre-defined
threshold TCP . Here we picked the modified ResNet-34
presented by University of Oxford Robotic Lab’s Speak-
erID framework as the backbone. After fine-tuned it, we
compute the feature vector from a Log Mel Spectrogram.
Briefly speaking, this model starts with a 7× 7 convolution
layer, followed by 3 × 3 max pooling layer, which is then
followed by four residual net blocks. Then it performed a
temporal Self-Attentive Pooling [3] and a fully connected
layer with output dimension 512. For details of this net-
work, please refer to A. Nagrani et. al’s paper [23, 7, 24].

For every silent segment that is classified as non-CP ,
we perform an additional check using the video signals to
prevent under segmentation. Specifically, we run the open
source scene detect algorithm available at [2] for the frames
near it. If a scene change frame is detected inside the seg-
ment, then we will re-label it as a CP . Since we only run
the video detector on the frames near the detected silent seg-
ments, the additional computational cost is low.

After the computation, our algorithm outputs a de-
tected CP list: [CP1, CP2, CP3, ..., CPn]. These CP s
split the input playback into n + 1 segments: {SG0 =
[0, t11], SG1 = [t12, t21], SG2 = [t22, t31], ..., SGn =
[tn2, tend]}. Here ti1, ti2 are the starting time and ending
time of CPi, and tend is the ending time of the playback.

We also added a short segment clean up step: for each
short segment, we check its temporal adjacent neighbors.
If one or more segments are also short, we merge them and
then repeat this process. Otherwise we will discard the short
segment. In our algorithm, we empirically picked eight
seconds as the short segment cutoff. This pruning process
helps reduce the small segments which in turn improves the
down-stream Ad classification step because (i) the Ad clas-
sifier in Sec. 3 requires an input clip of 4.3 seconds and (ii)
we usually have better prediction for a segment with sev-
eral input clips and then aggregate the result at the end. On
the other hand, it creates under-segmentation problem for
short Ads that are less than 8 seconds. We will address this
problem in the post process step as described in Sec. 4.

To train the CP classifier, we picked the Siamese net-
work architecture so that we can easily add new train-
ing videos without having to change the network structure.
Given a training audio clip i, we first find all silent segments

inside it, then randomly select one to create a non-CP (pos-
itive) pair. If no segment is found, then we randomly select
a time stamp to create a positive pair. The CP (negative)
pairs can be obtained by sampling audio clips from differ-
ent playbacks. Since a transition can happen from content
to Ad and between individual Ads, we included both Ad
and content clips in the training stage. For the loss function,
we studied both the triplet loss [28] as defined in Eq. 1 and
the contrastive loss [5, 13] as defined in Eq. 2. The result
that listed in Sec. 5 showed that triplet loss has better per-
formance. Note that for a training batch of size NB, we
have NB non-CP pairs and (NB − 1)2 CP pairs. So we
also performed hard data mining as described in [23] during
training stage to achieve better performance. Transfer learn-
ing is employed to initialize the models weights where we
picked the model trained on the VoxCeleb2 dataset [7] that
contains a million utterances from 6, 112 different people.

L(A,P,N) = max(L(P )− L(N) + α, 0)
L(P ) = ||f(A)− f(P )||2
L(N) = ||f(A)− f(N)||2

(1)

The triplet loss function where A is an anchor input, P is
its non-CP pair (from the same video), N is its CP pair
(from a different video), α is a margin between CP and
non-CP pairs that is usually set to 1, and f is the feature
extractor (ResNet-34 network).

L(X1, X2) = L(1) + L(2)
L(1) = (1− Y ) 12 (||f(X1)− f(X2)||2

L(2) = Y 1
2max(0, α− ||f(X1)− f(X2)||2)

(2)

The contrastive loss function where X1 and X2 are the input
pairs of CP classifier, alpha is the margin between CP and
non-CP pairs that is usually set to 1, and f is the feature
extractor (ResNet-34 network). Y = 0 if X1 and X2 are a
non-CP pair (from the same playback), and Y = 1 if they
are a CP pair (from different playbacks).

3. Temporal Attention Networks for Ad Clas-
sification

The segmentation algorithm described above has split an
input stream into segments [SG0, SG2, ..., SGn]. For each
segment, we need to label it as Ad or content. In our algo-
rithm, we employ a non-reference classifier that consists of
a feature extraction model and a temporal attention based
classification model.

3.1. Feature Extraction Model

We employed F. Xiao et. al’s Audiovisual SlowFast net-
work [32] that fuses the video and audio inputs to extract
the feature vector, as Fig. 3 shows. Briefly speaking, the
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[NFS, NTS, NY, NX]

[NFF, NTF, NY, NX]

[NFA, NTA, 1, NM]

[NFF, NTF,1, 1]

[NFA, NTA, 1, 1]

Avg Pool
[1, 1, NY, NX]

Avg Pool
[1, 1, NY, NX]

[NFS, NTS, 1, 1]

Avg Pool
[1, 1, 1, NM]

Feature Slow

Feature Fast

Feature Audio

Figure 3. We use the Audiovisual SlowFast Networks [32] to ex-
tract the feature vector. Here NFS , NFF and NFA are the num-
ber of channels and NTS , NTF and NTA are the number of tem-
poral resolution used in the slow, fast and audio pathway, respec-
tively; NX , NY are the video image dimension after processed
by the ResNet blocks; NM is the number of mel-spectrum of the
audio frame. Note that NTA equals to NTF because the audio
pathway modules temporally down-samples the data.

Table 2. The temporal dimensions (NTS , NTF and NTA) and
the number channels (NFS , NFF and NFA) used in the slow,
fast and audio pathways of the Audiovideo Slowfast Network to
extract features.

NTS NTF NTA NFS NFF NFA

4 32 256 2048 256 1024

network uses two channels to process a video stream: (i) a
slow pathway that has a lower sampling rate but with more
channels, and (ii) a fast pathway that has higher sampling
rate but with less channels. It also creates an audio path-
way that uses the 2D Log Mel Spectrogram [21] that has
even higher temporal resolution than the fast video pathway.
Then each pathway is processed by the backbone network
ResNet-50. During this step, the audio pathway output are
fused into the fast pathway output which are in turn fused
into the slow pathway output. In addition, the audio data is
also temporally down-sampled till it has the same resolution
as fast pathway data, i.e., NTA equals to NTF . At the end,
it performs XY averaging pooling on the tensors of each
pathways, so that the three output feature vectors have a
unique spatial dimension of 1× 1. Compared with the orig-
inal AVSlowFast network [32], we increased the fast path-
way sampling rate from 2 to 4 so that the input clip length
is doubled to 4.3 seconds. This is based on our observation
that when a clip is too short, e.g., less than 3 seconds, even
a human has difficulty to accurately label it. Similarly, we
also doubled the audio frame number from 128 to 256.

3.2. Temporal Attention Model

Now we have three feature vectors from slow, fast and
audio pathways, respectively. To run a classifier, we need to
fuse them into one feature vector. In the original AvSlow-
Fast network, the authors used 3D convolution to tempo-
rally down-sample the fast and audio pathway tensors and
then concatenated them with the slow pathway tensor. In
addition to this approach, we also studied fusing into the
fast channel: we used a 3D dilated convolution to tempo-
rally up-sample the slow pathway tensor, and then concate-
nated the three pathway tensors.

[NT, NF]
1x1 Conv
[NT, 768]

Permute

[768]

Fully Connected

[2]

Transformer Encoder

0* 1 2 NT. . .

…

Bi-directional LSTM

Feature Vector:[NF, NT]

Fully Connected 1

Fully Connected 2

Fully Connected 4

[1000]

[256]

Fully Connected 3 [10]

[2]

Average Pooling

[NF, 1]

Reshape

[NF]

Fully Connected

[2]

Figure 4. Three temporal attention networks studied in our algo-
rithm. The left one is the Temporal Average Pooling Model, the
middle one is the LSTM model, and the right one is the vision
transformer (V iT ) model. Note NF is the concatenated features
from the slow, fast and audio pathway, and NT is the time reso-
lution that can be either NFS if we fused into the slow pathway
tensor or NTF if we fused into the fast pathway tensor.

After the cross pathway feature fusion, we performed the
classification step. Here we employed the Temporal Atten-
tion Networks that have shown promising performance in
the in activity recognition area [12, 33, 18, 17]. Specifi-
cally, we studied three models: the first one is the simple
Temporal Average Pooling (TAP) layer followed by a fully
connected layer. The second one uses a bi-directional Long
Short-Term Memory (LSTM) model [15] to learn the tem-
poral weights, then it takes the features of T0 and sends it
to a bank of fully connected layers. The third one is the Vi-
sion Transformer (V iT ) recently proposed by D.Ãlexey et
al. [11]. Here we employed the hybrid architecture that
takes a sequence of flattened patch embeddings with a di-
mension of 768 generated by a CNN framework, adds the
positional embeddings into them, then prepends a learnable
embedding whose state at the output of the transformer en-
coder serves as the class representation. In our algorithm,
we first applied 1×1 convolution to get a temporal sequence
of embeddings with size 768, then ran the V iT model that
produces a tensor with 768 channels, which is then sent into
a fully connected layer to make a binary classification. All
these three temporal attention models has an output vector
of size 2 × 1, which is used to compute the loss function
at the training stage, or is activated by a Softmax layer at
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the inference stage to generate the probabilities of a binary
class: Ad vs. Content. Fig. 4 shows the architectures of
these three models.

3.3. Loss Function

For the loss function, we picked the popular cross-
entropy loss as defined in Eq. 3:

Lce = − 1

NB

NB∑
i=1

C∑
c=1

(yi(c)log(xi(c)) (3)

where NB is training batch size, C is the number of classes
with a value of two in our network, xi(c) and yi(c) and are
the model predicted probability and ground truth probabil-
ity for class c, respectively.

3.4. Video Segment Level Classification

The AD model described above classifies a video clip
of 4.3 seconds long. To label a full segment, we cropped it
into a list of 4.3 seconds clips with 2 seconds hopping size.
Then we run the AD classifier on each clip to compute the
ratio of clips labeled as Ad. To come up with a binary deci-
sion, we applied the similar technology as the Canny edge
detector [4]: first, we set double thresholds: Tad(high) and
Tad(low) to label segments as strong Ad, weak Ad or non
Ad, based on their ratio values. Then we track Ad segments
by hysteresis where we suppress those are weak and not
connected to strong Ad segments. In our implementation,
we set two threshold values to 0.3333 and 0.1, respectively.

Note that a streaming event such as a golf game or a
movie can take hours. Unlike the CP classifier described
in Sec. 2 that only uses audio data, the AD classifier needs
to process both video and audio data so that it is expensive
to process long video segments. On the other hand, we ob-
served that one single Ad usually lasts less than 60 seconds.
So we optimized our algorithm by creating a rule: if a video
segment are longer than a certain time window, then we skip
the AD classifier and directly label it as content. Here the
window is empirically set to 85 seconds.

4. Post-processing Algorithm
In addition to the two DNN models to perform segmen-

tation and classification, we also built a post-processing al-
gorithm that consists of two steps to further improve perfor-
mance.

The first step is the Ad segment under segmentation cor-
rection. In the segmentation step as described in Sec. 2, a
video segment can be under-segmented by two reasons: (i)
we set the minimum duration of silent segment detection
to 10 milliseconds where in reality, the transition time be-
tween two Ads can be shorter than that, and (ii) we merge
a video segment less than 8 seconds with its temporal adja-
cent neighbors. However, there are short Ads that are only

4-5 seconds. So to address this problem, we used more ag-
gressive thresholds: (i) 2 milliseconds as opposed to 10 mil-
liseconds for silent segment detection, and (ii) 4 seconds
as opposed to 8 seconds as short video segment cut-off, to
see if an Ad segment can be further split into a list sub-
segments. However, this process may over correct, partic-
ularly for vocal only scenes where there are pauses during
conversations. To prevent this, we employed an audio neu-
ral network: PANNs [16], into our system. The PANNs
model is trained on the large-scale AudioSet dataset and
classifies an audio clip into 527 types of voices. We run
PANNs model on each Ad segment and group the output
into two categories: the continuous category including the
instrument sound, fire sound, water sound, etc., and the
non-continuous category including the human vocal sound,
bird sound, reptile sound, etc. Generally speaking, it is less
likely for the continuous category sounds to have false posi-
tive silent segments. On the other hand, we need to be care-
ful to mixed sounds, e.g., human vocals with background
music. This kind of sounds usually don’t have false posi-
tive so that they should be classified as continuous. How-
ever, the PANNs model will output higher non-continuous
probability value when the foreground vocal is louder. So
in our algorithm, we first weaken the vocal signal using the
voice music separation algorithm [26] as implemented in
Librosa [25]. As a result, vocal/music mixed audio is clas-
sified as continuous but vocal only audio is still classified as
non-continuous.

We applied the PANNs model based classification
method described above into every video segment. Then
for each adjacent pairs, if both of them are non-continuous,
we merge them. Next, we run the CP classifier to further
validate the remaining newly created silent segments using
the aggressive thresholds.

The second step is the content segment under segmenta-
tion correction: for a long video segment (over 85 seconds
in our algorithm), we check if there is Ad inside it using
similar algorithm as described in Sec. 2. If it can be parti-
tioned into multiple segments, instead of using audio based
CP classifier to validate each, we run the audio plus video
based AD classifier on head and tail sub segments only. If
either sub-segment is classified as Ad type, then we cut it
out from the video segment and create a new Ad type seg-
ment.

These two steps are designed for reduce under-
segmentation error caused by pre-defined thresholds and the
errors from the CP classifier. As mentioned at the end of
Sec. 2, we perform these steps here because longer video
clips helps increase the AD classifier’s accuracy. In ad-
dition, using a conservative segmentation in the beginning
will help preserve long clips. As we skip the AD classifier
on long video segments, it improves the overall processing
time.
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Table 3. The number of video sub-playbacks in the training, test-
ing and validation set for the CP and AD classifiers. These sub-
playbacks were created from the short video playbacks (part 1)
with 1 to 5 minutes long each.

Ad Count Content Count
Train 5609 5367
Test 1038 1154

Validate 1040 1154

5. Experiments and Performance

5.1. Dataset Description

As we are not able to find a dataset in the literature for
Ad detection, we created our own dataset for performance
evaluation. It consists of two parts: (i) short video play-
backs with 1 to 5 minutes long each. They were collected
from the Freevee catalog, the PV catalog and so on. These
playbacks are further broken into sub-playbacks of 10− 30
seconds for better scene coverage in the training and test-
ing process. (ii) Long video playbacks with each 20 to 120
minutes long. They are provided by the Freevee and PV
catalogs that consist of 32 movies of different titles and 16
live sport streaming events.

5.2. Training Process Description

We used the short video dataset (part 1) to train the mod-
els. Specifically, we selected 70% of the sub-playbacks as
the training data and 15% as the validation data. To have
a balanced data points across classes, we performed down-
sampling so that the ratio between samples of Ad and Con-
tent is within 0.9 to 1.1. We trained the CP classifier and
the AD classifier separately using the same dataset. During
the training process, we iterate for 196 epochs and pick the
one with the best validation performance.

Transferred learning is employed for our classifiers.
Specifically, we initialized the CP classifier shown in Fig. 2
using the pre-trained model provided in [6], the feature ex-
traction model shown in Fig. 3 using the pre-trained AvS-
lowFast network model [32]. For the temporal attention
models shown in Fig. 4, we performed initialization as be-
low: the Temporal Average Pooling model and the LSTM
model were initialized using the uniform distribution func-
tion proposed by KM He et. al [14]; the V iT model was
initialized using the jx vit base resnet50 384 pre-trained
model downloaded from Ross Wightman’s library [30].

5.3. Individual Classifiers Performance Evaluation

We evaluated the performance of our models using
the remaining 15% of sub-playbacks of the short video
dataset (part 1). Similar to the training process, we also
performed data down-sampling to have a balanced dataset.

Specifically, we have 1038 content clips and 1154 Ad clips
from 121 unique playbacks.

To evaluate the CP classifier, we sequentially selected
one sub-playback from each playback, randomly sampled
a pair of temporally adjacent video clips from it and then
computed their feature vectors. By iterating all testing play-
backs, we got 121 pairs of feature vectors. Then we com-
puted the distance matrix of 121 × 121, where the diago-
nal 121 values are non-CP distances and the remaining off-
diagonal values are CP distances. Since one playback may
have up to 38 sub playback, we repeated this process 38
times to iterate over these sub playbacks, and then concate-
nate all the distances. So in total we got 121× 121× 38 =
556358 distances with 121 × 38 = 4598 of them are non-
CP type.

Figure 5. The performance study of the CP classifier on the testing
dataset with a total of 556358 distances. The left figure is the Area
Under Curve (AUC) for models trained using different values of
win and loss functions Ltr and Lct, and the right figure is the
ROC curve up to 0.2 false positive rate for the model trained using
the triplet loss and window size of 2 seconds.

Fig. 5 lists the performance of LCCP . The left sub-figure
lists the impacts in terms parameter values of win, Ltr as
defined in Eq. 1 and Lct as defined in Eq. 2. We can see
that Ltr has better performance than Lct overall. We also
see that the CP classifier has best accuracy when win is
set to 2 seconds. This confirms our hypothesis proposed in
Sec. 2. The right sub-figure plots the ROC curve when Ltr

is used and win is set to 2 seconds. We can see that the
∼ 90% detection rate is achieved at 10% false positive rate.

To evaluate the AD classifier, we employed the same
testing data sampling method as F. Xiao et. al’s work [32].
Briefly speaking, given a testing video clips, we performed
5 temporal uniform sampling. Then for each sample, we
performed 3 spatial sampling: left, middle and right. So in
total we created 15 sub-clips from a video clip. Then we ran
the AD classifier on each of them, and reported the perfor-
mance in Table. 4. We can see that for these Ad only or con-
tent only short videos, the TAP model achieved the best Ad
recall rate and Content precision rate, and LSTM model on
the slow pathway output achieved the best Ad precision rate
and content recall rate. Overall, similar and better balanced
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Table 4. The performance of the AD classifier in terms of preci-
sion rate (PR.) and recall rate (RC.) tested on a total of 17310 Ad
video clips and 17310 Content video clips. Here we compared the
output of three temporal models on the slow and fast fusion path-
ways and the numbers are reported in percentage.

Alg. Fusion PR. RC. PR. RC.
Pathway Ad Ad Content Content

TAP Slow 91.9 97.5 97.3 91.4
LSTM Slow 94.9 96.4 96.4 94.9
LSTM Fast 93.4 96.9 96.8 93.2
V iT Slow 94.7 96.8 96.8 94.6
V iT Fast 94.8 96.8 96.8 94.6

performance numbers are reported by the RNN models.

5.4. End-to-end algorithm Performance Evaluation

We also performed end-to-end test on the 48 long play-
backs (part 2 of our database). For each playback, we ran
our algorithm to compute the Ads segments, then compared
them with the manually labeled segments. For simplicity,
we defined that video segment i maps video segment j if
their RT as defined in Eq. 4 is greater than 0.5. This simple
majority rule allows each computed segment maps to 0 or
1 manual segment and vice versa. Then we quantified the
performance using the five metrics as Fig. 6 defines.

RTSGi
(SGj) =

Intersect(SGi,SGj)
duration(SGi)

(4)

where SGi and SGj are two video segments.

Computed

Manual

Correct
Over

segmentation
Under

segmentation
False 

Positive
Miss

Figure 6. The five metrics defined to measure the end-to-end algo-
rithm performance. Here an arrow from video segment i to video
segment j means i maps to j.

Table. 5 listed the end-to-end performances of our algo-
rithm on the 48 long video dataset (part 2) consisting of
the 16 golf games and 32 movies of different titles. The
ground truth data were created manually where we iden-
tified 621 Ad segments in this dataset with each duration
ranging from 4 seconds to 60 seconds. Here the overseg,
underseg and miss metrics are normalized with the number
of ground truth Ad segments (621), and correct and False
Pos. metrics are normalized with the number of computed
Ads. (Col. 3 of Table. 5) We can see that all algorithms
achieved 96%+ correct rate, less than 1% over-seg, under-
seg and miss rate, and false positive rate below 2.5%. The
result suggests that our model is able to work decently for

Table 5. The end-to-end algorithm performance of the Ad detec-
tion algorithm using the long video dataset (20 minutes to 120
minutes) consisting of the 16 golf games and 32 movies of dif-
ferent titles. These playbacks have 621 Ad segments with dura-
tion ranging from 4 to 60 seconds. The performance numbers are
in percentage where overseg, underseg and miss metrics are nor-
malized with the number of ground truth Ad segments (621), and
correct and False Pos. metrics are normalized with the number of
computed Ads. (Col. 3).
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TAP Slow 635 96.2 0.6 0.5 0.3 2.4
LSTM Slow 627 97.1 0.6 0.5 0.3 1.1
LSTM Fast 628 97.0 0.6 0.5 0.6 1.6
V iT Slow 632 96.7 0.6 0.5 0.3 1.9
V iT Fast 627 96.8 0.6 0.5 1.0 1.8

both sport and movie streaming, as well as multiple stream-
ing service providers such as the Freevee. In addition, we
also noticed that for playbacks that do not contain any Ad,
our algorithm does not generate any false positives.

From Table. 5 we can see that the RNN based models
LSTM and V iT have overall better performance than the
TAP model. This is expected because RNN models can
learn better temporal weights than simple averaging over
time. On the other hand, the LSTM model on the slow
pathway output achieved best performance: 97.4% correct
rate and 1.1% false positive rate. This is kind of surprising
as we were expecting the V iT to stand out, because many
other research works [11, 29] showed that transformer is a
better RNN model than LSTM . We speculate that this is
caused by the relatively small size of our training dataset.

We performed further study on the LSTM model on
the slow pathway output that reported the best performance.
Fig. 7 showed the error rate and the loss value changes over
the training time. We can see that both of them converged
after 90 epochs and achieved the best values at 190 epochs.
We also computed the recognition rate of each individual
component in this framework and listed the results in Ta-
ble. 6. We can see that the audio-based segmentation mod-
ule itself is able to achieve very descent performance.

5.5. Computational Speed Evaluation

We also studied the computational speed of our algo-
rithm. We tested the algorithm on a Ubuntu 18.04 machine
with one NVIDIA GeForce Titan X Pascal GPU with 12G
memory and one Intel(R) Xeon(R) CPU @2.30GHz. We
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Figure 7. The error rate in percentage on the validation dataset and
the loss value changes over the training epochs for the LSTM
model on the slow pathway output.

Table 6. The Ads segmentation accuracy using only the Audio-
based segmentation algorithm vs. the full algorithm. The numbers
are computed on the long video dataset with 48 playbacks cap-
tured from 16 golf games and 32 movies of different titles, and
we picked the LSTM model on the slow pathway output that re-
ported the best performance.

Metrics Audio Seg. Only Full Algorithm
GT Ads 621 621

Computed Ads 610 627
Correct 584 609
Overseg 3 4

Underseg 13 3
Miss 8 2

False Pos. 7 7

used a mp4 testing file of 20 minutes long with 48k hz au-
dio sampling rate and 60 fps video sampling rate. For the
segmentation, the I/O time is ∼ 9.8 seconds to load the full
audio data and the CPU time is ∼ 4.7 seconds to search
silent segment. For the CP classifier, the I/O time is ∼ 0.9
seconds to load a pair of two seconds long audio clips and
the GPU time is ∼ 0.013 seconds. For the AD classifier,
the I/O time is ∼ 12 seconds to load a 4.3 seconds long AV
clip and the GPU time is ∼ 0.04. We can see that the AD
classifier is the most expensive component. Fortunately, we
do not run it on the very long clips so that it substantially
saves the processing time.

As mentioned earlier, one key contribution of our work is
the audio-based non-reference segmentation module as de-
scribed in Sec. 2. We compared its running speed with the
segmentation only module of two state-of-art scene change
detection algorithms. The first one is proposed by A. Rao et.
al. [27] in 2020. It is a DNN based multi-model algorithm
that extracts semantic features from both video and audio
channels. The second one is the open source pydetect li-

brary [2]. It is a traditional CV based algorithm that uses
colors from the video data. Three sample videos are tested:
two of them are from our evaluation dataset and another
one is from the multi-model algorithm paper [27]. Table. 7
listed the results, where we can see that our segmentation
module is 6− 10 times faster than the one in the traditional
CV based algorithm and 8− 12 times faster than the one in
the DNN based Multi-model algorithm.

Table 7. The computation time comparison in terms of sec-
onds between the segmentation modules of a DNN based Multi-
modal (MM) segmentation algorithm [27], a traditional CV based
scene detection algorithm [2] using colors, and our algorithm. The
Golf Game and Movie testing videos are sampled from our evalu-
ation dataset, and the Demo testing video is provided in the multi-
model segmentation algorithm website [27] .

Alg. Golf Game Movie Demo
(20 mins) (60 mins) (8 minutes)

MM [27] 379 1136 42
Color [2] 283 839 30

Ours 25 87 5

6. Conclusions and Future Study
In this paper, we presented a non-reference algorithm to

detect individual Ad from a captured video playback. It
consists of three components: a segmentation step, an Ad
classification step and a post-processing step. We trained
and tested individual component using Ad only or content
only short videos of 1-5 minutes long. We also tested the al-
gorithm end-to-end using 48 long captured playbacks from
popular streaming service providers such the Freevee, PV,
etc. The playbacks are crossing multiple domains includ-
ing movies, TVs and live streaming sports. The results
showed that our algorithm has achieved promising perfor-
mance with 97.4% accuracy. We also studied the false pos-
itive and miss segments reported by the LSTM model on
the slow pathway output, and listed the sample images in
Fig. 1 and 2 in the Supplementary doc. We can see that the
false positive errors came from the beginning and credits
sections, and the miss errors came from an Ad segment that
are very similar to contents.

Today, Ad research such as sentiment analysis, relevancy
study, etc. are mainly using the content and Ad clips from
providers where they have already been segmented. With
this framework, we can study these metrics from end-user
point of view by analyzing videos captured from streaming
service providers. In terms of future study, one direction
is to combine two DNN models into one so that we can
have the whole system end-to-end trainable. Also, we are
building a large Ads detection dataset including NBA and
NFL live streaming contents that contain more complicated
Ads scene, and will release it to the community in the near
future.
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