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Abstract

Model quantization enables the deployment of deep neu-
ral networks under resource-constrained devices. Vector
quantization aims at reducing the model size by indexing
model weights with full-precision embeddings, i.e., code-
words, while the index needs to be restored to 32-bit during
computation. Binary and other low-precision quantization
methods can reduce the model size up to 32×, however, at
the cost of a considerable accuracy drop. In this paper,
we propose an efficient framework for ternary quantization
to produce smaller and more accurate compressed mod-
els. By integrating hyperspherical learning, pruning and
reinitialization, our proposed Hyperspherical Quantization
(HQ) method reduces the cosine distance between the full-
precision and ternary weights, thus reducing the bias of the
straight-through gradient estimator during ternary quanti-
zation. Compared with existing work at similar compres-
sion levels (∼30×, ∼40×), our method significantly im-
proves the test accuracy and reduces the model size.

1. Introduction
Despite promising results in real-world applications,

deep neural network (DNN) models usually contain a large
number of parameters, making them impossible to deploy
on edge devices. A significant amount of research has
been made to reduce the size and computational overhead
of DNN models through quantization and pruning.

Pruning brings high sparsity, but cannot take advan-
tage of compression and acceleration without customized
hardware [25]. Cluster-based quantization, such as vector
quantization and product quantization, remarkably reduces
the model disk footprint [67, 53, 7], but its memory foot-
print is larger than that of the low-precision quantization
method [12, 60, 10, 83, 37], as the actual weight values
involved in computation remain full-precision [12]. Ultra-
low-precision quantization, e.g., binary [33, 11, 10], ternary
[37, 83], and 2-bit quantization [82, 8, 18], has fast infer-

ence and low memory footprint [60], but it usually leads to
a significant accuracy drop, due to the inaccurate weights
[22] and gradients [78].

Gradually discretizing the weights can overcome such
non-differentiability [52, 34, 9], i.e., reducing the discrep-
ancy between the quantized weights in the forward pass and
the full-precision weights in the backward pass. However,
it only performs well with 4-bit (or higher) precision as the
ultra-low bit quantizer may seriously damage the weight
magnitude leading to unstable weights [22]. Intuitively,
ternary quantization barely affects the sign of the weights,
making the direction of weight vectors [62] changes rela-
tively more stable than their magnitude. Recently, many
studies [48, 49, 47, 15, 13, 59, 5] show that the angular in-
formation [45] preserves the key semantics in feature maps.

We propose hyperspherical quantization (HQ), a method
combining pruning and reinitialization [20, 81] to produce
accurate ternary DNN models with a smaller memory/disk
footprint. We first pre-train a DNN model with a hyper-
spherical learning method [49] to preserve the direction in-
formation [62] of the model weights, then apply our pro-
posed approach to push the full-precision weights close
to their ternary counterparts, and lastly, we combine the
straight-through estimator (STE) [2] with a gradually in-
creased threshold to fulfill the ternary quantization process.
Our main contributions are summarized as follows:

• We demonstrate that simply integrating pruning and
reinitialization can significantly reduce the impact of
weight discrepancy caused by the ternary quantizer.
We unify the pruning and quantization thresholds to
one to further optimize the quantization process.

• Our method significantly outperforms existing works
in terms of the size-accuracy trade-off of DNN mod-
els. For example, on ImageNet, our method can com-
press a ResNet-18 model from 45 MB to 939 KB (48×
compressed) while the accuracy is only 4% lower than
the original accuracy. It is the best result among the
existing results (43×, 6.4% accuracy drop).
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2. Related Work
2.1. Hyperspherical Learning

Hyperspherical learning aims to study the impact of the
direction [62] of weight vectors on DNN models. [62] dis-
covers that detaching the model weight direction informa-
tion from its magnitude can accelerate training. [49] shows
that the direction information of weight vectors, in contrast
to weight magnitude, preserves useful semantic meanings
in feature maps. [47, 15, 72] propose to apply regulariza-
tion to angular representations on a hypersphere to enhance
the model generalization ability in face recognition tasks.
[46, 47, 15, 13, 59, 5, 44] further study the empirical gener-
alization ability of hyperspherical learning.

2.2. Quantization

Low-bit quantization methods convert float values of
weights and activations to lower bit values [10, 11, 60, 54].
These methods make it possible to substantially reduce the
computational cost during CPU inference [71]. For exam-
ple, binary quantization [10, 11] compresses full-precision
weights into a 1-bit representation, thus significantly reduc-
ing the memory footprint by 32×.

Clustering-based weight quantization, such as product
quantization [21] and vector quantization [23, 4, 67] focus
on optimizing the size-accuracy trade-off and can signifi-
cantly compress the disk footprint by grouping weight val-
ues to a codebook. Common approaches cluster weights
through k-means [67, 75, 66, 23] and further finetune the
clustering center by minimizing the reconstruction error in
the network [19, 67, 75]. The compression ratio and ac-
curacy trade-off can be adjusted by changing the number
of groups. [26] applies k-means-based vector quantiza-
tion with pruning and Huffman coding to further reduce
the model size. However, the codebook usually consists of
32-bit float numbers [67, 53], the memory footprint during
computation is uncompressed.

Some mixed-precision quantization methods overcome
the shortcomings of low-bit and clustering based methods
by means of reinforcement learning [73], integer program-
ming [3], and differentiable neural architecture search [74],
so as to apply different bit-widths in model weights to op-
timize inference time and model size. However, mixed-
precision still cannot effectively compress the model size
due to the use of 8 to 32-bit weights. Other mixed-precision
quantization methods assign different bit widths to layer
weights according to various measures, including hardware
[73, 77] and second-order information [17, 65].

2.3. Pruning

Pruning consists of structured and unstructured methods.
It can greatly compress redundancy and maintain high ac-
curacy. Unstructured pruning brings high sparsity, but can-

not take advantage of acceleration without customized hard-
ware [25]. Only structured pruning methods can reduce the
inference latency and are easier to accelerate [30, 38] be-
cause the original weight structures of the model are pre-
served. Unstructured pruning uses criteria, such as gradient
[56, 35], and magnitude [26, 55] information, to remove in-
dividual weights; structured pruning [38, 32, 1] aims to re-
move unimportant channels of the convolutional layer based
on similar criteria. The lottery ticket hypothesis [20] shows
that there exists sparse subnetworks that can be trained from
scratch and achieve the same performance as the full net-
work. [81] studies the lottery ticket hypothesis from the
perspective of weight reinitialization and points out that the
key premise is the sign of weight values.

Re-training after pruning [20, 81] reveals the link be-
tween the network structure and performance. Furthermore,
our findings show that training after pruning and reinitial-
ization can be used to produce more accurate and highly
compressed ternary weights, which surpasses the current
model compression methods and has a wide range of ap-
plication scenarios.

3. Preliminary and Notations
3.1. Hyperspherical Model

A general representation of a hyperspherical neural net-
work layer [49] is:

y = ϕ(WTx), (1)

where W ∈ Rn×m is the weight matrix, x ∈ Rn is the
input vector to the layer, ϕ represents a nonlinear activation
function, and y ∈ Rm is the output feature vector. The
input vector x and each column vector wj ∈ Rn of W
satisfy ∥wj∥2 = 1,∥x∥2 = 1 for all j = 1, ...,m.

3.2. Ternary Quantizer

In this work, the ternary quantizer is:

Ŵ = Ternary(W,∆) =



1√
|I∆|

: wij > ∆,

0 : |wij | ≤ ∆,

− 1√
|I∆|

: wij < −∆,

(2)

where W is the full-precision weights, ∆ is a threshold,
I∆ = {i||wij | > ∆} [37], and |I∆| denotes total non-
zero values in the j-th column vector wj . With ∆ = 0,
Ternary(·) becomes a variant of Binary(·) operation.
And ϕ(ŵT

j x) = ϕ( 1√
|I∆|

w̄T
j x) s.t. w̄ ∈ {−1, 0, 1}.

3.3. Pruning

The unstructured pruning [26] is defined by:

W′ = Prune(W, r) = W ⊙M, (3)
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Figure 1: The overall preprocessing and ternary quantization process of our proposed method (Section 4.1). α = 1√
|I∆|

,

r1 = rl, and r2 = rh. The dotted-line square denotes the preprocessing step. The “Pruning Re-init.” process can increase
S(Ŵ,W), i.e., reduce D (Section 4.1.1, 4.1.2). We seek to minimize D before “Ternary Quantization”.

where ⊙ denotes the element-wise multiplication. Mask M
selects the top r percent of the smaller weights in W:

M = Mask(W, r) = Sign(|Ternary(W,∆)|), (4)

where ∆ = threshold(W, r), and 0 ≤ r < 1. The
threshold(W, r) returns the corresponding minimum
value of matrix W based on the percentage r. We use prun-
ing to represent unstructured pruning for simplicity.

3.4. Cosine Similarity S on HyperSphere

Based on Eq. (2) and hyperspherical learning, we have
∥ŵj∥2 = 1 and ∥wj∥2 = 1. The vector-wise cosine simi-
larity between wj and ŵj is:

S(ŵj ,wj) =
ŵj ·wj

∥ŵj∥2∥wj∥2
=

n∑
i=1

1√
|I∆|

|wij |. (5)

If without pruning, W and Ŵ will not contain 0. With
∆ = 0, we have |I∆| = n and the cosine similarity between
Ŵ and W becomes:

S(Ŵ,W) =
1

m

m∑
j=1

n∑
i=1

1√
n
|wij |. (6)

After applying pruning (Eq. (3)) to W:

S(Ŵ′,W′) =
1

m

m∑
j=1

n∑
i=1

1√
|I∆|

|w′
ij |. (7)

The cosine distance between full-precision and ternary
weights is:

D = 1− 1

l

l∑
k=1

S(Ŵk,Wk), (8)

where l denotes the number of quantized layers.

4. Hyperspherical Quantization
In this section, we propose using pruning to increase the

cosine similarity S between the full-precision weights W

and the ternary weights Ŵ. We show how we can effec-
tively quantize such discrepancy reduced model weights.

Our proposed method includes the preprocessing and
quantization steps (Fig. 1). In the preprocessing step, we
use iterative pruning with gradually increasing sparsity and
reinitialization [81] to push W close to its ternary coun-
terpart Ŵ. In the quantization step, as W is close to Ŵ
after the first step, it is easy to obtain a more accurate Ŵ
by using regular STE-based ternary quantization methods.
We unify the thresholds of pruning and quantization as one
single threshold during ternary quantization process.

4.1. Increasing S by Preprocessing

We show that pruning on hypersphere can increase the
cosine similarity S(Ŵ,W), thus pushing the full-precision
weight close to its ternary version. But the decayed weights
during training cause unstable S, which makes ternary
quantization infeasible. Then the reinitialization is pro-
posed to stabilize S.

4.1.1 Cosine Similarity and Hyperspherical Pruning

Given a full-precision W and its ternary form Ŵ, we seek
to optimize the following problem under hyperspherical
learning settings:

max
r

S(Ŵ′,W′) (9)

s.t. 0 < S ≤ 1,

where W′ = Prune(W, r) and Ŵ′ = Ternary(W′, 0).
Obviously, if ∥W′∥0 = 1 then S(Ŵ′,W′) = 1, but it
is meaningless. Although there is no explicit solution for
r, we can increase S by gradually increasing r. Since
the model is trained with hyperspherical learning, based on
Eq. (6)-(7), with pruning ratio r, we have 1√

|I∆|
≥ 1√

n
and:

|w′
ij | =

|wij |
∥w′∥2

≥ |wij |
∥w∥2

= |wij |, (10)

where ∥w′∥2 ≤ ∥w∥2 = 1. Therefore:

S(Ŵ′,W′) ≥ S(Ŵ,W) (11)
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(a) ResNet-50 with the fixed sparsity.
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(b) ResNet-50 with iterative processing.

Figure 2: Weight distribution of a hidden convolutional layer. The zero-drifting is relieved by iterative pruning and reini-
tialization. Q = |ŵ| = | 1√

I∆
|, ±µ denotes the mean values of w+ ∈ R>0 and w− ∈ R<0 during training. (a) When the

sparsity is fixed, due to the decayed weights, |µ| is heading towards zero. (b) When we iteratively performe pruning and
reinitialization, |µ| grows with the sparsity and keeps moving closer to |ŵ| as epoch increases.

Eq. (10)-(11) indicate that pruning with ratio r can in-
crease the cosine similarity S(Ŵ′,W′). However, we still
need a proper pruning ratio to maintain the model’s perfor-
mance, as the over-pruned weight has a higher S but may
not perform well. For example, w = [0.3, 0.2, 0.0001],
w′ = [0.3, 0.2, 0], ŵ = [1, 1, 1], and ŵ′ = [1, 1, 0], then
S(ŵ′,w′) = 0.98 is greater than S(ŵ,w) = 0.80. If we
further apply pruning to w′ then we have w′′ = [0.3, 0, 0],
ŵ′′ = [1, 0, 0], and S(ŵ′′,w′′) = 1.0. It is obvious that ŵ′′

cannot perform as well as ŵ′.

4.1.2 Zero-Drifting and Iterative Reinitialization

In addition to the pruning ratio r, Eq. (5) indicates that S
is also related to |wij |. In this section, we discuss how the
decayed weights has negative impact on S, and how to mit-
igate such impact through periodical reinitialization.

Weight decay and learning rate push the weight val-
ues toward and around zeros [16, 58, 31]. Learning rate
plays a similar role as weight decay (see Eq. (8) in the
work of [27]). As wij drifting toward zero during train-
ing (Fig. 2a), S(Ŵ,W) is also reduced (Eq. (5)). In-
tuitively, this zero-drifting phenomenon hinders accurate
ternary quantization as the reduced S(Ŵ,W) enlarges the
quantization searching space. We reinitialize the weights by
W = Ternary(W, 0) to neutralize the negative effect of
the decayed weights.

Fig. 2a shows the zero-drifting phenomenon with fixed
pruning sparsity. Our experimental results show that it-
erative pruning and reinitializing can increase S(Ŵ,W)
and prevent the negative impact of decayed weights (Table
5,6). Once we periodically prune, reinitialize and re-train
the model, we always have a larger S (Table 5,6) and the
zero-drifting is relieved (Fig. 2b, Table 5).

4.2. Quantization with a Unified Threshold

With W close to Ŵ in the preprocessing step, we still
need to perform weight quantization and pruning to further
increase S(Ŵ,W). We introduce a gradually increasing

quantization threshold ∆ (Eq. 2) to unify pruning and quan-
tization, as ∆ can be seen as a pruning threshold. The non-
differentiability of Ternary(·) is bypassed with STE [2]:

Forward:

Ŵ = Ternary(W,∆) (12)

Backward:

∂E

∂W
=

∂E

∂Ŵ

∂Ŵ

∂W
≈

ST̄E

∂E

∂Ŵ
. (13)

STE essentially ignores the quantization operation and ap-
proximates it with an identity function.

The threshold ∆ should gradually increase along with
the training error, and such increase should slow down after
the model converges (Fig. 3). Therefore, we directly use the
averaged gradients to update the pruning threshold:

∆ =

n∑
i=1

∂L

∂wi
, wi ∈ w and wi ̸= 0. (14)

The gradient of ∂L
∂wi

where wi = 0 is ignored. The train-
ing error is very large at the beginning, leading to a rapid
increase of the threshold. As the model gradually con-
verges, the training error will decrease and the threshold
growth slows down (Fig. 3). The model sparsity is gradu-
ally increasing along with the learned threshold. The accu-
racy starts to decrease if the quantization continues after the
model converges.

4.3. Implementation Details

4.3.1 Training Algorithm

Our proposed method is shown in Algorithm 1. We prune
the model with a ratio from rl = 0.3 to rh = 0.7 based
on [50, 83]. The overall process can be summarized as: i)
Pre-training with hyperspherical learning architecture [49];
ii) Iterative preprocessing the model weights, i.e., prune the
model to target sparsity rh and reset the weights via W =
Ternary(W, 0) after each pruning (Fig. 1); iii) Ternary
quantization, updating the weights and ∆ through STE.
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(a) ResNet-18 on ImageNet.
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(b) ResNet-50 on ImageNet.

Figure 3: The trend of sparsity, threshold ∆ and accuracy during ternary quantization. The blue area denotes model sparsity.

Algorithm 1 HQ training approach

1: Input: Input x, a hyperspherical neural network
ϕ(W, ·), rl = 0.3, rh = 0.7, and step size δ = 0.01.

2: Result: Quantized ternary network for inference
3: 1. Preprocessing:
4: r = rl
5: while r < rh do ▷ Iterative pruning and reinitializing
6: M = Mask(W, r) ▷ Obtain the pruning mask
7: W = W ⊙M ▷ Pruning
8: W = Ternary(W, 0) ▷ Reinitialization
9: while not converged do

10: y = ϕ((M⊙W),x) ▷ Eq. (1)
11: Perform SGD, calculate ∂L

∂W , and update W
12: end while
13: r+ = δ ▷ Increase the pruning ratio r
14: end while
15: 2. Ternary Quantization:
16: while not converged do
17: Ŵ = Ternary(W,∆)
18: y = ϕ((M⊙ Ŵ),x)
19: Get ∂L

∂W via SGD; update W, ∆ ▷ Eq. (13,14)
20: end while

4.3.2 Training Settings and Training Time

For image classification, the batch size is 128. The weight
decay is 0.0001, and the momentum of stochastic gradient
descent (SGD) is 0.9. We use the cosine annealing sched-
ule with restarts every 10 epochs [51] to adjust the learning
rates. The initial learning rate is 0.001. All of the experi-
ments use 16-bit half-precision from PyTorch to accelerate
the training process. Thus, all parameters (except codebook
with 2-bit) are stored as 16-bit precision values.

It takes about 50 epochs to convert a Pytorch model to a
hyperspherical one. The SGD loop (Line 5-14 in Algorithm
1) takes at least 200 epochs. The ternary quantization loop
(Line 16-20 in Algorithm 1) takes about 200 epochs.

4.3.3 Compression Strategy

Inspired by vector quantization, we use codebook as the
compression method [67, 53]. Unlike the vector quanti-
zation methods that use a learned codebook, we use the
Huffman table [70] as a fixed codebook (Table 2 in the
Appendix). We use gzip to finalize the model file as in
other work [69, 67]. It is shown that the Huffman table
can maximize the compression effect when each codeword
consists of three ternary values, e.g., {0, 0, 0}. Note that
the Huffman table can only boost the compression when
the high-frequency patterns exist, such as {0, 0, 0}. For
other works with low-sparsity or non-sparse quantization
[67, 7, 53, 83], applying the Huffman table may not help
compress the model. We find inconsistent compression re-
sults in ABGD [67] and PQF [53]. The actual size of their
models (obtained from github in gzip format) is shown in
Table 2 is different from the results stated in their paper.

5. Experiments
Our experiments involve image classification and object

detection tasks. We evaluate our method on ImageNet data
set [61] with MobileNetV2 [63] and ResNet-18/50 [29]. For
object detection, we use the MS COCO [42] dataset and
Mask R-CNN [28, 76]. The pre-trained weights are pro-
vided by the PyTorch zoo and Detectron2 [76].

5.1. Image Classification

Following the practices of mainstream model compres-
sion work [67, 17, 53], when compressing the model size,
we quantize all of the weights of the convolution and the
fully-connected (FC) layers to 2-bit (except the first layer).
We compare our results with leading compression results
from PQF [53], ABGD [67], BRECQ [41], HAWQ [17],
and TQNE [19]. We also compare our work with mile-
stone approaches, such as ABC-Net [43], Deep Compres-
sion (DC) [26], Hardware-Aware Automated Quantization
(HAQ) [73], Hessian AWare Quantization (HAWQ) [17],
LR-Net [64], and BWN [60].

Our method significantly outperforms leading model
compression methods in terms of bit-width, compression
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Figure 4: The compression ratio and accuracy of ResNet-18/50 on ImageNet. Our method achieves much higher accuracy
and compression ratio compared to other work. The dash-line is the baseline accuracy from PyTorch zoo.

Table 1: Ternary quantization results on ImageNet. We
leave the last FC layer as full-precision like other works.

Models Methods Acc.

ResNet-18
Acc.: 69.76

HQ (OURS) 68.5
TWN (2016) [37] 61.8
TTQ (2016) [83] 66.6
INQ (2017) [80] 66.0
ADMM (2018) [36] 67.0
LQ-NET (2018) [79] 68.0
ADAROUND (2020) [57] 55.9
BRECQ (2021) [41] 66.3
RTN (2020) [40] 68.5

ResNet-50
Acc.: 76.15

HQ (Ours) 75.2
TWN[37] 72.5
LQ-NET [79] 75.1
ADAROUND [57] 47.5
BRECQ [41] 72.4

ratio and accuracy (Fig. 4, Table 2). It compresses ResNet-
18 from 45 MB to 1.28MB (35× compressed) while main-
taining high accuracy (67.03% vs. 69.7% of the original
model), and compress ResNet-50 from 99 MB to 3.1MB
(32× compressed) with an accuracy of 74.7% (vs. 76.15%
of the original model). In the extreme cases, our method
produces much smaller models with less than 4% accuracy
drop, for example, 935KB out of 45 MB (48× compressed)
for ResNet-18 and 2.6 MB out of 99 MB (37× compressed)
for ResNet-50. Although DKM’s results [7] are close to
ours, their models cannot reduce the memory footprint.

For MobileNetV2, our method performs better at above
15× compression level. Quantizing the pointwise layer of
MobileNet leads to significant accuracy loss [24]. That is
the reason why the fully quantized 2-bit precision meth-
ods [26, 41] have low accuracy. Whereas, HAQ [73] ap-
plies mixed-precision to improve accuracy. In addition, the
works [14, 24, 68] show that a less complex model is sen-
sitive to ternary quantization due to the potential lack of
redundant representation capability.

We also compare our work with conventional ternary
quantization works which leave the last FC layer as full-
precision (Table 1). Our work achieves comparable results
with other leading methods.

5.2. Object Detection and Segmentation

Similar to previous work [67, 53, 41], we test our method
on the Mask R-CNN [28] architecture with ResNet-50
backbone to verify its generalizability. The source code,
hyperparameters and the pre-trained model are provided by
Detectron2 [76]. We apply our method to the entire model
except for the first layer. We compare against recent base-
lines, such as the ABGD [67], PQF [53], and BRECQ [41].
As shown in Table 3, compared to ABGD and PQF, our
method gives a higher compression ratio and a similar or
better recognition result.

5.3. Model Size and Accuracy

The accuracy, sparsity and size of the quantized ResNet-
18 models are shown in Table 4 and Fig. 5. The results
show that the model accuracy will increase with the spar-
sity until it reaches a certain level (the triangle symbol in
Fig. 5). Then the accuracy starts to decrease as the prun-
ing continues, which is the same as the Figure 5 in TTQ
[83]. This phenomenon is different from pruning, where
the accuracy decreases linearly as the sparsity increases.
One possible reason is that the capacity [68] of the quan-
tized model changes with the portion of 0 and ± 1√

|I∆|
. The

model capacity is low when the number of ± 1√
|I∆|

is dom-

inant (close to binary). As the sparsity increases, the weight
tends to become ternary, whose capacity is higher than bi-
nary weights. Pruning does not have this issue since it has
full-precision weight values. As the proportion of 0 keeps
increasing, the capacity will drop, leading to accuracy drop.
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Table 2: Model compression results on ImageNet. “Bits (W/A)” denotes the bit-width of weight and activation. “Ratio”
denotes the storage compression level. “+” denotes 16-bit weight precision in FC layer. “Size” denotes disk size. “*”
indicates gzip-compressed publicly available models. The detailed bit allocations can be found in the Appendix.

Models Comp. Level Methods Bits (W/A) Acc. Size Ratio

ResNet-18
Acc.: 69.76
Size: 45 MB

∼30×

HQ (OURS) 2/16 67.03 1.23 MB 37×
DKM (2022)[7] 32/32 66.7 1.49 MB 30×
PQF* (2021)[53] 32/32 66.74 1.54 MB 30×
ABGD* (2020)[67] 32/32 65.81 1.51 MB 30×

∼40×

HQ (OURS) 2/16 65.48 939 KB 48×
DKM(2022)[7] 32/32 65.1 1 MB 45×
PQF* (2021)[53] 32/32 63.33 1.04 MB 43×
ABGD* (2020)[67] 32/32 61.18 1.01 MB 45×

ResNet-50
Acc.: 76.15
Size: 99 MB

10−20×

HQ (Ours) 2/16+ 75.2 6.89 MB 14×
HAWQ (2019)[17] 2∼8/4∼8 75.4 7.96 MB 12×
PQF* (2021)[53] 32/32 75.04 5.10 MB 19×
TQNE (2020)[19] 32/32 74.3 - 19×
ABGD* (2020)[67] 32/32 73.79 5.01 MB 20×
HAQ (2019)[73] 2∼8/2∼8 70.63 6.30MB 16×
DC (2015)[26] 2/32 68.95 6.32MB 16×

∼30×

HQ (OURS) 2/16 73.87 2.63 MB 38×
HQ (OURS) 2/16 74.7 3.01MB 33×
DKM (2022)[7] 32/32 74.5 3.32 MB 29×
PQF* (2021)[53] 32/32 72.18 3.26 MB 30×
TQNE (2020)[19] 32/32 68.8 - 32×
ABGD* (2020)[67] 32/32 68.21 3.16 MB 31×

MobileNetV2
Acc.: 71.88
Size: 14 MB

15−20×

HQ (OURS) 2/16 58.74 0.71 MB 20×
HAQ (2019)[73] 2∼8/2∼8 66.75 0.95 MB 15×
BRECQ (2021)[41] 2/8 56.29 0.83 MB 17×
HAN et al. [26, 73] (2015) 2/32 58.07 0.96 MB 17×

Table 3: The model size and Average Precision (AP) with
bounding box (bb) and mask (mk) are compared.

Methods Bits (W/A) APbb APmk Size Ratio

BASELINE 32/32 37.9 34.6 170MB 1×

HQ (OURS) 2/16 35.0 31.7 4.92MB 34×
ABGD (2020) 32/32 33.9 30.8 6.6MB 26×

PQF (2021) 32/32 36.3 33.5 6.6MB 26×
BRECQ (2021) 2/8 34.23 - - -

Table 4: Size-accuracy results of ResNet-18 on ImageNet.

Epoch Accuracy (%) Sparsity (%) Size

19 65.64 74.06 1.50MB
99 65.97 75.77 1.40MB
179 67.03 78.96 1.30MB
259 66.66 81.86 1.20MB
299 66.23 84.67 1.10MB
389 65.37 87.26 0.94MB
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Figure 5: The trend lines of size-accuracy and sparsity of
ResNet-18. The blue dashed line denotes the model size.

6. Ablation Study

We experiment with the criteria including differ-
ent pruning settings, reinitialization, and hyperspheri-
cal learning. “HYPER” means hyperspherical training.
“PRUNING+REINIT” means pruning with reinitialization.
“BASELINE/BL” means the pre-trained model from Py-
Torch or Detectron[76]. Experiments in the Section 6.2 and
6.3 apply full-precision to the last FC layer.

6.1. Hyperspherical Pruning and Reinitialization

We study the change of the cosine distance D (Eq. (8))
brought by our proposed method: applying hyperspherical
preprocessing method prior to ternary quantization.

Table 5 shows that pruning can reduce D with or with-
out hyperspherical learning and D tends to decrease along
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Table 5: The cosine distance D of convolutional layers of
ResNet-50 on ImageNet.

Methods D Accuracy Sparsity

BASELINE 0.262 76.15 0.0
HYPER 0.288 76.18 0.0

BASELINE+PRUNING 0.187 76.06 0.4
HYPER+PRUNING 0.155 76.99 0.4

HYPER+PRUNING+REINIT 0.068 77.04 0.4

BASELINE+PRUNING 0.149 76.09 0.6
HYPER+PRUNING+REINIT 0.056 77.03 0.6

Table 6: Distance comparison of convolutional layers on the
object detection task.

Methods D APbb APmk Sparsity

BASELINE 0.263 41.0 37.2 0.0
HYPER 0.246 41.03 37.54 0.0

HYPER+PRUNING 0.193 41.33 37.94 0.8
HYPER+PRUNING+REINIT1 0.186 40.92 37.33 0.8
HYPER+PRUNING+REINIT10 0.113 40.31 36.86 0.8

Table 7: Quantization accuracy of ResNet-18 on ImageNet.

Initial Models (Accuracy) HYPER NON-HYPER

BASELINE (69.76) 66.45 60.46
BL+PRUNING+REINIT (69.63) 67.17 66.11
HYPER+BL+PRUNING+REINIT (69.67) 67.50 65.24

with the growing sparsity. “PRUNING+REINIT” signifi-
cantly enlarges the distance gap with the pruning-only re-
sults and can improve model’s performance [81, 20].

Table 6 shows the difference between applying reinitial-
ization once (REINIT1) and 10 times (REINIT10) to the tar-
get sparsity of 0.8. “REINIT10” has a smaller average dis-
tance than “REINIT1”, indicating that iterative pruning and
reinitialization encourage model weights close to its ternary
version (Section 4.1, Fig. 2b).

6.2. Hyperspherical Ternary Quantization

We perform ternary quantization on ResNet-18 to
examine the impact of hyperspherical learning and
“PRUNING+REINIT”. The models are initialized by three
different pre-trained weights (Table 7). The initialized mod-
els are quantized with hyperspherical learning and regular
training (“NON-HYPER”) by 100 epochs. Table 7 shows
significant improvements brought by hyperspherical learn-
ing and “PRUNING+REINIT”. The figure of trend lines can
be found in the Appendix.

6.3. The impact of Pruning Settings

We further study the impact of different pruning ranges
(r) and step sizes (δ, line 14 of Algorithm 1) on ResNet18.
The Figure 5 of TTQ [83] indicates that a proper prun-

ing range before ternary quantization is from 0.3 to 0.7,
and we take that as a reference. During preprocessing,
r changes from 0.3 to 0.7 or 0.4 to 0.8. The step sizes
can be 0.01, 0.02, or controlled by cosine annealing. The
“PRUNING+REINIT” starts at the 20-th epoch. The total
training epochs are 100. Fig. 6 shows that pruned models
with larger step sizes and ratios perform poorly and take
longer to recover. Using cosine annealing [51] method to
adjust the step size δ improves the overall performance.
Fig. 7 shows the following ternary quantization results. Co-
sine annealing accelerates the convergence.
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Figure 6: The accuracy trends of ResNet-18 with different
pruning settings during preprocessing.
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Figure 7: The following ternary quantization accuracy of
ResNet-18 after preprocessing.

7. Conclusion
We propose a novel method, Hyperspherical Quantiza-

tion, to construct sparse ternary weights by unifying prun-
ing, reinitialization and ternary quantization on the hyper-
sphere. The proposed iterative pruning and reinitialization
strategy greatly outperform state-of-the-art model compres-
sion results in terms of size-accuracy trade-offs. A ma-
jor contribution of our method is the use of hyperspherical
learning to enhance the compression capability. Our work
further reveals and demonstrates that pruning and quanti-
zation are linked through hypersphere. Our work also ex-
plores a new way to extremely compress DNN models with-
out using clustering. Future work may combine our method
with ternary activation quantization [6, 39] to further speed
up the inference.
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