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Abstract

3D lane detection based on LiDAR point clouds is a
challenging task that requires precise locations, accurate
topologies, and distinguishable instances. In this paper,
we propose a dual-level shape attention network (DSANet)
with two branches for high-precision 3D lane predictions.
Specifically, one branch predicts the refined lane segment
shapes and the shape embeddings that encode the approx-
imate lane instance shapes, the other branch detects the
coarse-grained structures of the lane instances. In the train-
ing stage, two-level shape matching loss functions are intro-
duced to jointly optimize the shape parameters of the two-
branch outputs, which are simple yet effective for precision
enhancement. Furthermore, a shape-guided segments ag-
gregator is proposed to help local lane segments aggregate
into complete lane instances, according to the differences of
instance shapes predicted at different levels. Experiments
conducted on our BEV-3DLanes dataset demonstrate that
our method outperforms previous methods.

1. Introduction
3D lane detection based on LiDAR point clouds is an

essential visual-perception task for autonomous driving,
which provides centimeter-level locations, exact geometric
shapes, and instance-level information of ego and neighbor-
ing lanes. Great attention has been attracted due to its nu-
merous real-world applications such as lane departure warn-
ing [19], lane keeping assistance, vehicle navigation, and
high definition (HD) map construction [9].

Recently, high-precision 3D lane detection remains chal-
lenging. Most previous studies are conducted on RGB im-
ages [22, 10, 14, 4, 12], typically based on the front view.
However, the camera’s inherent optical sensitivity and dis-
tortion limit the precision of detection and the alignment
from images to 3D space. Besides, lanes exist in various

slender shapes (straight lines, polylines, curves, etc.) and
complex topologies (forks, merges, etc.), making occlu-
sions from the front view common circumstances. In con-
trast to images, point clouds can fully preserve the accurate
raw geometric information of 3D scenarios, therefore, the
sparse and irregular point clouds are encoded to the struc-
tured bird’s-eye view feature maps for 3D lane detection,
following [2, 1, 8, 9].

Existing studies have achieved significant developments
through deep learning techniques. Segmentation-based
methods [22, 30, 17, 21] infer pixel-wise segmentation
maps, requiring dense annotations and cumbersome post-
processings. Anchor-based [13, 5, 26, 24] methods predict
lane shapes with reference to predefined anchors, which
makes the predictions away from the anchors inaccurate.
Parametric-based [15, 27, 4] methods design holistic lane
shape models, with swift inference and no post-processing,
but with less superiority in precision. As an alternative,
grid-based methods [23, 18, 14, 10] eliminate redundant
predictions by flexible sparse point regression. Such meth-
ods cluster lane points by measuring the similarity of em-
bedding features [10] or the features with the highest spa-
tial correlation [24]. However, the random initial clustering
centers have a significant impact on the clustering results.

In this work, we design a dual-level shape attention net-
work (DSANet) with two branches, which focuses on both
the local structures of the lane and the global lane shapes.
One branch detects the lane segment shapes, and predicts
the corresponding shape embeddings that encode the ap-
proximate shapes of the lanes. The other branch focuses
on the global information of the lanes and predicts the
lane instance shapes. Besides, shape matching and em-
bedding loss functions are proposed, which can jointly op-
timize shape parameters and effectively improve training
speed and lane fitting accuracy. More significantly, a lo-
cal lane segments clustering method guided by global in-
stance shapes (i.e., shape-guided segments aggregator) is
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proposed to utilize the outputs of our DSANet to effectively
aggregate the segment shapes and determine the number of
lane instances.

We validate the effectiveness of our method by conduct-
ing comparative experiments and ablation studies on the
self-collected 3D point cloud dataset BEV-3DLanes, under
stricter centimeter-level distance thresholds. Experiments
on our dataset demonstrate that our method outperforms
previous state-of-the-art methods with excellent accuracy,
especially under higher precision criteria. The main contri-
butions of our work can be summarized as follows:

• We develop a novel dual-level shape attention network
(DSANet) with two branches that fuses the contex-
tual information at the local and global levels to detect
high-precision 3D lanes.

• Simple and effective dual-level representations of lane
shapes and the corresponding shape matching con-
straints are proposed to separately predict the fine-
grained segment shapes and the coarse-grained in-
stance shapes.

• A shape-guided segments aggregator is designed to
cluster the flexible segments into instances, with the
instance shapes serving as the explicit clustering cen-
ters.

2. Related Work
This section discusses existing LiDAR-based and image-

based lane detection methods. Traditional methods mostly
depend on hand-crafted features (based on color [3], inten-
sity value [7], edge [11], etc.) and strong prior assump-
tions [16], lacking robustness to variable scenarios. Re-
cently, deep-learning-based methods have shown superior
performances in terms of both accuracy and speed, which
can be roughly classified into the following paradigms.

Segmentation-based methods. These methods for im-
ages [2, 22, 20, 30] and point clouds [17, 21] consider lane
detection as pixel-wise semantic segmentation tasks, which
assigns each pixel a label of lane or non-lane. LoDNN [2]
leverages FCNs to enlarge the receptive field and predicts a
road confidence map for the top-view images. SCNN [22]
and LLDN-GFC [21] consider lane detection as multi-class
segmentation problems, predicting a probability map for
each lane category, and using heuristic techniques for clus-
tering and lane fitting. Segmentation-based methods require
dense annotations, redundant predictions and cumbersome
post-processings, with considerable time and computational
costs. In comparison, our method simplifies the architecture
to a lightweight yet efficient form with grid-level predic-
tions and accurate shape matching.

Grid-based methods. Such methods follow a grid-wise
manner in analogy to semantic segmentation, combined

with fine-grained localization regression inside each grid.
The predictions are flexible due to the weak inter-grid con-
straints. UFAST [23] formulates lane detection to a row-
based selecting method with global features, achieving a
swift speed. CondLaneNet [14] proposes a top-to-down
framework that utilizes proposal head and conditional con-
volution to acquire instance discrimination. Inspired by hu-
man pose estimation, PINet [10] utilizes stacked hourglass
networks to predict grid-wise key points and embedding
features, and clusters points into instances by measuring the
similarities between embedding features. HRAN [8] itera-
tively predicts the initial regions and the vertex sequences
of lane boundaries from a top-to-down BEV LiDAR im-
age, exploiting a hierarchical recurrent network. Most grid-
based methods cannot avoid post-processings. To cluster
sparse points into individual instances, they measure the
similarity of implicit embedding features without physical
meanings or iteratively search the neighbors by features
with the highest spatial correlation. As an improvement, the
abundant local geometry information of our method is inte-
grated to predict a precise lane segment shape for each grid,
and a low-dimension feature that embeds the corresponding
instance shape is designed for grouping.

Other methods. Some methods like Line-CNN [13],
3D-LaneNet [5] and LaneATT [26] regress the offsets to
optimize lane shape with pre-designed anchors. Other
methods like PolyLaneNet [27] and LSTR [15] model the
lane shape by a polynomial representation, and predict pa-
rameters for the reformulated polynomial regression prob-
lem. Besides, DAGMapper [9] formulates a directed acyclic
graphical model (DAG) to recurrently infer the localization,
topology and state of lane within the rotated region of inter-
est. Some of these methods are post-processing free, but the
strong shape priori assumptions prevent them from fitting
complex scenarios well. Our DSANet flexibly regresses an
accurate segment shape for each grid, which is applicable
for complex topologies and lanes with high curvatures.

3. Methodology
This section defines the lane detection problem follow-

ing parts-to-whole strategies: detecting small segments and
grouping them into complete instances, where both local
and global contexts are considered. Concretely, we propose
a bottom-up method that concentrates on lane shapes at two
levels, and we introduce shape matching and embedding
loss functions for joint optimization. Besides, the shape-
guided segments aggregator that clusters segments into in-
stances is illustrated.

3.1. Dual-level Lane Shape Representations

The dual-level lane shape representations describe the
local fine-grained segment shapes and the global coarse-
grained instance shapes, respectively.
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Figure 1. Dual-level lane shape representations, marked in red. (a):
Segment shape representation is the straight line segment that ap-
proximates the local lane inside the grid, defined in the grid co-
ordinate system xg-og-yg . (b): Instance shape representation is
the straight line segment that connects the start and the end of the
complete lane, defined in the image coordinate system xi-oi-yi.

Segment shape representation. The local lane seg-
ment shape is defined with a flexible grid-wise represen-
tation. Given a pseudo-BEV image I ∈ RH×W×4 pro-
jected from aggregated LiDAR point clouds, I is divided
into grids with the size of r × r, generating a total of
H
r × W

r non-overlapping grids. For each grid, there may
exist a small lane segment, represented by a vector s =
(xs, ys, zs, ls, θs), where xs and ys are the offsets to the
origin of grid, ls and θs are the length and radian, and
zs is the elevation in 3D space, as shown in Figure 1 (a),
marked in red. Specifically, the lane segment is approxi-
mated as a straight line segment passing through (xs, ys),
which is obtained by sampling the point closest to the grid
center. ls and θs are the properties of the red tangent line.
Compared to the common grid-based methods that directly
detect sparse points, the segment shape representation can
supplement more local lane shape details.

Shape embedding representation. For each grid, 4-
channel shape embeddings e = (xe, ye, le, θe) associ-
ated with the segment shape are introduced to encode the
shape appearances of distinguishable instances into a low-
dimension feature space with physical meaning, which
specifies the instance that the segment may belong to.
(xe, ye) localizes the center point of the straight line seg-
ment that approximates the lane instance, and le and θe are
the length and radian. Compared with the frequently used
embedding features [10, 24], e is more rational due to the
joint constraints on the physical instance shapes.

Instance shape representation. Since a coarse descrip-
tion is sufficient to distinguish the lane instances, the lane
instance shape is approximated as a straight line segment
that connects its start and end, as shown in Figure 1 (b),
marked in red. A global lane instance can be represented as

l = (xl, yl, ll, θl), where (xl, yl) are the center coordinates
of the straight line segment w.r.t. the image coordinate sys-
tem, and ll and θl are its length and radian.

3.2. Dual-Level Shape Attention Architecture

The overall architecture of our proposed DSANet is il-
lustrated in Figure 2, which contains a shared backbone
composed of CNNs and self-attention (SA) [15] modules,
and two branches for the two-grained lane shapes.

Backbone. Our backbone consists of CNNs and self-
attention modules. Given I , ResNet18 [6] is used to extract
low-resolution features Fc that encode high-dimension spa-
tial information. Since lanes require global contextual in-
formation due to their slender shapes and long ranges, self-
attention modules are stacked after CNNs to better capture
global correlation. Fc is transmitted to self-attention mod-
ules to supplement the fused features with positional infor-
mation, and the output sequence of the self-attention mod-
ules is reshaped as Fs for the two branches.

Segment shape branch. The segment shape branch re-
gresses the grid-level segment shapes and shape embed-
dings by two decoupled heads using a refined feature map.
On the one hand, the lane segment (LS) head predicts ac-
curate intra-grid lane locations and segment shapes. More
specifically, the LS head outputs a grid-level map of size
H
r × W

r ×6, where the first channel is a set of segment exis-
tence confidences Cs to indicate whether there exists a lane
segment in each grid, and the rest channels separately cor-
respond to the 5 shape parameters of the segment s, whose
set is written as S. On the other hand, the shape embedding
(SE) head predicts shape parameter estimations of the lane
instances that the segments may belong to, denoted as E.

Instance shape branch. The instance shape branch pre-
dicts the global instance shapes through several CNNs and
a feed-forward network (FFN) with a simple 2-layer per-
ception. To predict a variable number (< N ) of lane in-
stances, the output of the instance shape branch is fixed as
(1 + 4)N , where 1N indicates the instance existence con-
fidences of N lane instances, written as Cl. And 4N sep-
arately corresponds to the shape parameters of the possible
lane instances, denoted as L.

3.3. Training with Shape Matching and Embedding
Constraints

DSANet is trained with shape matching and embedding
loss functions, which separately supervise segment shapes,
shape embeddings and instance shapes between predictions
and ground truths. The total loss function is formulated as:

Ltotal = Lseg sm + Lembed + Lins sm. (1)

Segment shape matching loss. Segment shape match-
ing loss Lseg sm imposes constraints on existence confi-
dences, fine-grained locations and geometry shapes of the
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Figure 2. Network architecture. The raw point clouds are rasterized and projected into a pseudo-BEV image I , serving as the input to
our DSANet. The shared backbone consisting of CNNs and self-attention (SA) modules is used for feature extraction. Fs is fed to both
segment shape branch and instance shape branch, which are made of convolution, batch normalization and ReLU (CBR), as well as fully
connected (FC) layers. The segment shape branch outputs the segment existence confidences (Cs) and high-precision segment shapes
(S) by the LS head, and the SE head outputs grid-level shape embeddings (E). The instance shape branch outputs instance existence
confidences (Cl) and instance shapes (L). Lseg sm, Lembed and Lins sm respectively supervise the above outputs.

local segments as follows:

Lseg sm = γcLlconf + γoLoffset + γsmLlsm, (2)

where Llconf , Loffset, and Llsm serve as segment exis-
tence confidence loss, offset loss and local shape matching
loss, respectively. The weights γc, γo and γsm are used
to balance the effects of loss terms. Segment existence
confidence loss Llconf separately constrains grids with and
without segments, following [10]. Offset loss Loffset min-
imizes the differences between the ground truths and the
predictions of the positive samples by measuring the rela-
tive elevation offsets, implemented by smooth-L1.

Llsm constrains the segment shapes inside the same
grids, following [29]. Instead of constraining the parame-
ters independently, the arbitrary-oriented lane segment s is
converted into a 2D Gaussian distribution Ns(µs,Σs) for
supervision. µs and Σs are the mean and covariance of Ns,
written as:

µs = (xs, ys)
T , (3)

Σ
1
2
s =RΛRT =

(
cos θs − sin θs
sin θs cos θs

)
·(

ws 0

0 ls
2

)
·
(

cos θs sin θs
− sin θs cos θs

)
,

(4)

where R represents the rotation matrix, Λ is the diagonal
matrix, xs, ys, ls and θs are properties of s, and ws = ls

6 is
regarded as the width of the lane segment.

Given the positive samples of lane segments S+ ⊆ S,
the prediction Ns and the ground truth N̄s are forced to

close to each other by Llsm:

Llsm =
1

|S+|
∑
s∈S+

ξ
(
N̄s,Ns

)
, (5)

where | · | denotes the cardinality of the set, and the ground
truth N̄s is constructed following Eq. 3 and Eq. 4. It has
been mathematically proven in [29] that a larger aspect ra-
tio will result in more attention on the angle, making Llsm

better meet the prediction demands of lane direction.
ξ
(
N̄s,Ns

)
is implemented by the symmetric Kullback-

Leibler divergence (KLD), which constructs a chain cou-
pling relationship composed of all parameters, making the
joint optimization a self-modulated mechanism. The sym-
metric KLD between the two 2D Gaussian distributions is
denoted as:

ξ(N̄s,Ns) =
1

2

(
KLD

(
N̄s,Ns

)
+

KLD
(
Ns, N̄s

))
.

(6)

Shape embedding loss. Shape embedding loss Lembed

constrains the lane instance shapes detected from the local
feature map, written as:

Lembed =
1

|E+|
∑

e∈E+

ξ
(
N̄e,Ne

)
, (7)

where E+ ⊆ E is the set of positive samples, and e is the
shape embeddings. Similar to the definition introduced be-
fore, the 2D Gaussian distributions of the prediction Ne and
the ground truth N̄e are constructed using the 4 properties
of the shape embeddings.
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Instance shape matching loss. Instance shape matching
loss Lins sm is for the instance shape branch, which super-
vises coarse-grained shape information of instances, written
as:

Lins sm = γcLgconf + γoLgsm, (8)

where instance confidence loss Lgconf supervises the exis-
tence confidences of the instances, and global shape match-
ing loss Lgsm constrains the shape parameters of the in-
stances. Given the positive samples of lane instances L+ ⊆
L, Lgsm is written as:

Lgsm =
1

|L+|
∑

Φ̂(l)∈L+

ξ
(
N̄l,NΦ̂(l)

)
, (9)

where l is the ground-truth lane instance, and Φ̂ (l) is the
predicted lane instance associated with l by solving a bipar-
tite matching problem. N̄l and NΦ̂(l) are their respective
2D Gaussian distributions.

Bipartite matching. The optimal assignment Φ̂ for the
bipartite matching problem can be obtained by Hungarian
algorithm [25, 15]. To construct the problem with N pre-
dictions and M ground truths (M ≤ N ), the ground truths
are extended to N dimensions, with the last N − M di-
mensions padded with zeros. Given the ground-truth lane
instance set L̄, the problem can be equivalently regarded
as a cost minimization problem by searching a one-to-one
mapping function Φ : L̄ → L:

Φ̂ = argmin
Φ

∑
l∈L̄

C (l,Φ(l)), (10)

where C is the cost function that measures the spatial dis-
tance between the ground truth and the prediction.

3.4. Shape-guided Segments Aggregator

The outputs of the network, if the corresponding ex-
istence confidences are greater than the preset thresholds,
are regarded as the positive predictions of segment shapes,
shape embeddings E+, and instance shapes L+. E+ and
L+ are fed to our proposed shape-guided segments aggrega-
tor, with L+ serving as explicit clustering centers. Besides,
each segment decides the instance it belongs to by indepen-
dently voting for the instance shape L+

i closest to its shape
embeddings E+

j , where i and j are the respective indexes.
The correspondence between the indexes of E+ and L+

is defined as ϵ, and the similarity D between the j-th shape
embeddings E+

j and the i-th instance shape L+
i is defined

as D
(
E+

j , L+
i

)
, implemented by L1 norm. By minimizing

D, the j-th segment is associated with the ϵ̂ (j)-th instance,
written as:

ϵ̂ (j) = argmin
i

D
(
E+

j , L+
i

)
, (11)

which is performed on all the elements of E+ to obtain
the final aggregation results ϵ̂. In contrast to the frequently
used post-clustering methods, our proposed shape-guided
segments aggregator ensures a relatively correct number
of lanes by exploiting the detection results of the instance
shape branch, and efficiently prevents the incorrect shift of
cluster centers caused by randomly initialization.

4. Experiments
Dataset. Experiments are conducted on a self-collected

BEV-3DLanes dataset due to the unavailability of existing
large-scale public datasets. BEV-3DLanes is a large-scale
real-world 3D lane dataset, which contains 200 km of roads
in multiple cities with various traffic, lighting, and weather
conditions. The 3D scenes are collected by LiDAR sensors
and aggregated into high-density point clouds. For a single
data frame, the number of points is around 400k, covering
a length of around 4 m. The ground-truth labels are anno-
tated in a local coordinate system in 3D space, including
the localization and instance information. The adjacent 7
frames are spliced to obtain sufficient information about the
slender lane structure, and the center of the spliced data is
defined as the track information of 4th frame. Points be-
yond the fixed-size 3D window around the center are fil-
tered out, where x ∈ {−12.5, 12.5}, y ∈ {−12.5, 12.5},
and z ∈ {−2, 1}, in meters. The point clouds within the
window are rasterized and then projected onto a bird’s-eye
view (BEV) to generate a 4-channel (mean intensity, den-
sity, elevation difference, and minimum elevation) pseudo-
BEV image dataset. There are in total 35277 data frames
with a resolution of 800×800, split into 29874 for the train-
ing set and 5403 for the testing set.

Evaluation Metrics. We follow [28] to redefine the met-
rics precision (%), recall (%), and F1 score (%) in more
rigorous manners, applicable for the evaluations of lane de-
tection tasks based on point clouds. To be concrete, the
predicted and the ground-truth lane points are interpolated
to denser ones with the same number of outputs. The num-
ber of predicted points that fall within a threshold of the
ground-truth points is leveraged to compute the evaluation
metrics. Our experiments focus on the thresholds of 5 cm,
10 cm and 20 cm at physical distances, corresponding to
images with 1.6 pixels, 3.2 pixels and 6.4 pixels.

Implementation details. All the images are centered
crop to size 775×775 and resized to 512×512 as the input
to the network. The height and width of the grid cell are set
as 32 to balance the accuracy and costs. Besides, the inputs
are augmented by scaling, rotating, and flipping. To avoid
overfitting, the output channel of each block of ResNet18 is
reduced to ”32, 64, 128, 256”. Then 6 self-attention mod-
ules are stacked after CNNs to obtain the shared feature map
Fs. In the training stage, loss coefficients γc, γo, and γsm
are set to 2.0, 5.0, and 0.6. The fixed number of lane in-
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Methods
Results (5 cm) Results (10 cm) Results (20 cm)

Precision Recall F1 Precision Recall F1 Precision Recall F1

CondLaneNet [14] 68.72 70.25 69.48 84.67 86.35 85.50 89.64 92.43 91.01
PINet [10] 61.08 59.07 60.06 85.14 83.41 84.27 91.29 89.83 90.55
PolyLaneNet [27] 50.71 49.93 50.32 72.92 72.43 72.67 86.30 86.07 86.18
LSTR [15] 57.42 57.24 57.33 79.70 80.07 79.88 90.18 90.82 90.50
Lane-ATT [26] 62.51 63.68 63.09 79.81 81.98 80.88 88.12 91.08 89.58
DSANet (Ours) 74.24 71.40 72.79 87.41 85.14 86.26 92.10 91.09 91.59

Table 1. Comparisons of precision (%), recall (%) and F1 score (%) on BEV-3DLanes testing set.

Figure 3. Visualizations of comparisons on BEV-3DLanes. (a): general cases. (b): polylines. (c): curves. (d): forks.

stances N is set as 10. For optimization, Adam algorithm is
adopted with the initial learning rate set to be 0.0001, and
a decay factor of 0.5 per 30 epochs starting from the 80th
epoch. Batch size and training epochs are set to 64 and 150,
respectively.

4.1. Comparisons with State-of-the-Art methods

Baselines. Since few baselines with open-sourced codes
and datasets are available for the 3D lane detection task
based on BEV, we transform several methods designed for
the analogous front-view lane detection tasks into work-
able forms, with the elevations directly set as ground
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truths. CondLaneNet [14], PINet [10], PolyLaneNet [27],
LSTR [15] and Lane-ATT [26] are treated as our com-
petitors, where LSTR requires polynomial curve modeling
adaption from front view to BEV, and LaneATT requires
setting for pre-designed anchors in experiments. During the
evaluation, DSANet outputs 3D lanes instead of the 2D pre-
dictions of other methods. That is to say, our method is es-
timated under more rigorous criteria. Besides, DSANet can
be applied in any orientation and with an arbitrary number
of lanes, meeting the demands of various task scenarios.

Table 1 shows the comparative performances on BEV-
3DLanes testing set. Our DSANet achieves the state-of-
the-art results on F1 scores by a clear margin, especially
in circumstances with tighter thresholds. To be specific,
DSANet beats CondLaneNet with 3.3%, 0.8% and 0.6%
F1 score boosts under 5 cm, 10 cm and 20 cm. Besides,
DSANet achieves 12.7% and 9.7% higher F1 scores than
PINet and LaneATT under 5 cm, and achieves 2.0% and
5.4% higher F1 scores under 10 cm. Furthermore, we ob-
serve that our DSANet attains a significant improvement
over PolyLaneNet and LSTR for high precision demands.
The improvement might be attributed to the segment shape
matching constraints, which ensure the predictions simul-
taneously satisfy the inter-grid flexibility and the intra-grid
precision. Besides, the shape-guided segments aggregator
may cause a precision boost, confirmed by ablation studies.

Figure 3 illustrates the visualizations of some detection
results in different scenarios on 2D images, including (a)
general cases, (b) polylines, (c) curves, as well as (d) forks.
The rightmost column substantiates that our method per-
forms complete lane results with the highest precision. For
the general cases and lanes with curves, our DSANet re-
gresses flexible and accurate offsets for each grid with con-
straints on segment shapes. By contrast, CondLaneNet and
PINet are inadequately precise, caused by the point out-
puts lacking shape constraints. Meanwhile, PolyLaneNet
and LaneATT have no advantages in predicting accurate lo-
calization due to the limitations of the strong lane shape as-
sumptions. As for situations with polylines and forks, our
DSANet overwhelms other methods thanks to the correct
number predictions of the lane instance shapes, which are
realized by adjusting the proportion of positive and nega-
tive samples. In comparison, false positives (PolyLaneNet
(b), (d) and LaneATT (b)) and false negatives (LaneATT(d))
are caused by incorrect predictions of the numbers of lane
instances.

4.2. Ablation studies

Extensive ablation studies are conducted to analyze the
contributions of each part, including segment shape match-
ing (Seg) constraints, instance shape matching (Ins) and
shape embedding (SE) constraints, and shape-guided seg-
ments aggregator (Shape-guided) for grouping. The results

Figure 4. Visualizations of predictions based on PT and our Seg.
The ellipses within grids are the visualizations of the 2D Gaussian
distributions Ns as introduced in Section 3.3. It is worth noting
that the ellipses are practically indistinguishable, and the colors in
the figure are for better visual discrimination.

Figure 5. Visualizations of our proposed shape embeddings. The
triangles and the red stars are e and l, respectively. The colors and
the sizes of the triangles are decided by xe and θe, respectively.

are shown in Table 2.
Efficacy of segment shape matching constraints. To

substantiate the contribution of Seg, the Seg constraints on
lane segments s are replaced by smooth-L1 constraints on
lane points (PT). The ablation results are listed in Table 2. It
can be clearly observed that Seg improves the performances
by 7.43% and 0.80% on F1 score over PT under 5 cm and 10
cm. This owes to the Llsm coupling the parameters of the
segments for supervision, by which more geometric infor-
mation within the local grid can be provided, consequently
yielding higher localization precision and more complete
lane predictions. The visualizations of predictions based on
PT and Seg are shown in Figure 4.

Importance of instance shape matching and shape
embedding constraints. In this part, the importance of Ins
and SE constraints is validated. Table 2 shows that remov-
ing Ins and SE results in a decrease in F1 score by 2.84%
and 0.59% under 5 cm and 10 cm, respectively. The visu-
alizations of the predicted shape embeddings are shown in
Figure 5. The color of the triangle is given by its xe, we can
find that the shape embeddings of predicted segments be-
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Grid Instance Aggregation strategies Results (5 cm) Results (10 cm)

Seg PT Ins SE Mean-shift Shape-guided Precision Recall F1 Precision Recall F1

✓ ✓ ✓ ✓ 74.24 71.40 72.79 87.41 85.14 86.26
✓ ✓ 71.92 68.09 69.95(-2.84) 86.90 84.48 85.67(-0.59)
✓ ✓ 68.39 63.24 65.71(-7.08) 87.83 83.31 85.51(-0.75)

✓ ✓ ✓ ✓ 67.39 63.45 65.36(-7.43) 86.87 84.10 85.46(-0.80)
✓ ✓ 66.02 61.52 63.69(-9.10) 86.79 82.71 84.70(-1.56)
✓ ✓ 60.82 60.74 60.78(-12.01) 84.13 84.90 84.51(-1.75)

Table 2. Ablation results. The constraints on the grid (Grid) include segment shape matching (Seg) and smooth-L1 loss on points (PT),
the constraints on the instance (Instance) include instance shape matching (Ins) and shape embedding (SE), and the aggregation strategies
include the widely used mean-shift and our shape-guided strategies.

Figure 6. Aggregation strategies based on mean-shift and our pro-
posed shape-guided segments aggregator.

longing to the same instances are distributed close to each
other, while those belonging to different instances are far
apart.

Contribution of shape-guided segments aggregator.
To verify the effectiveness of our proposed shape-guided
segments aggregator, the widely used post-clustering strat-
egy mean-shift is taken as a competitor. The results in Ta-
ble 2 illustrates decreases of 4.24% and 0.16% under 5 cm
and 10 cm distance thresholds. The visualized comparison
results are shown in Figure 6. We notice that mean-shift
aggregates the two close lanes into the same instance. The
reason is that the quite similar shape embeddings make the
mean value shift to an incorrect direction. In contrast to
clustering without centers, DSANet leverages the instance
shape branch to predict a set of lane instances, efficiently
avoiding an inaccurate aggregating number of instances and
providing explicit guidance for lane segments aggregation.

To summarize the ablation studies, we attribute preci-
sion enhancement to the shape-guided segments aggrega-
tor (7.08% under 5cm) jointly supported by instance shapes
and shape embeddings, and the coupled shape matching
constraints on segments (7.43% under 5cm). More inter-
mediate and final results of comparative experiments and
ablation studies can be visualized in the Supp..

5. Conclusion
In this work, we propose a 3D lane detector with two-

level lane shape predictions. The shape matching and em-
bedding loss functions are introduced to improve the accu-
racy of unified shape representations, and the shape-guided
segments aggregator effectively enhances the discrimina-
tion of lane instances. The whole framework is validated on
the self-collected dataset, surpasses the previous methods
in terms of high precision, and achieves clustering boosts.
However, the correlation between the inter-frame results
and the smoothness of the predictions have not been fully
studied. It would be worthwhile to introduce multi-frame
data for long-range 3D lane detection and tracking in future
works.

6. Acknowledgement
This work was supported by the National Natural Sci-

ence Foundation of China (61976170, 91648121), and Ten-
cent Joint Research Program.

References
[1] Min Bai, Gellert Mattyus, Namdar Homayounfar, Shenlong

Wang, Shrinidhi Kowshika Lakshmikanth, and Raquel Urta-
sun. Deep multi-sensor lane detection. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 3102–3109. IEEE, 2018.

[2] Luca Caltagirone, Samuel Scheidegger, Lennart Svensson,
and Mattias Wahde. Fast lidar-based road detection using
fully convolutional neural networks. In 2017 ieee intelligent
vehicles symposium (iv), pages 1019–1024. IEEE, 2017.

[3] Kuo-Yu Chiu and Sheng-Fuu Lin. Lane detection using
color-based segmentation. In IEEE Proceedings. Intelligent
Vehicles Symposium, 2005., pages 706–711. IEEE, 2005.

[4] Zhengyang Feng, Shaohua Guo, Xin Tan, Ke Xu, Min Wang,
and Lizhuang Ma. Rethinking efficient lane detection via
curve modeling. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
17062–17070, 2022.

[5] Noa Garnett, Rafi Cohen, Tomer Pe’er, Roee Lahav, and Dan
Levi. 3d-lanenet: end-to-end 3d multiple lane detection. In

4298



Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2921–2930, 2019.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[7] Danilo Caceres Hernandez, Van-Dung Hoang, and Kang-
Hyun Jo. Lane surface identification based on reflectance
using laser range finder. In 2014 IEEE/SICE International
Symposium on System Integration, pages 621–625. IEEE,
2014.

[8] Namdar Homayounfar, Wei-Chiu Ma, Shrinidhi Kowshika
Lakshmikanth, and Raquel Urtasun. Hierarchical recurrent
attention networks for structured online maps. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3417–3426, 2018.

[9] Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu
Wu, Jack Fan, and Raquel Urtasun. Dagmapper: Learn-
ing to map by discovering lane topology. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 2911–2920, 2019.

[10] Yeongmin Ko, Younkwan Lee, Shoaib Azam, Farzeen Mu-
nir, Moongu Jeon, and Witold Pedrycz. Key points esti-
mation and point instance segmentation approach for lane
detection. IEEE Transactions on Intelligent Transportation
Systems, 2021.

[11] Chanho Lee and Ji-Hyun Moon. Robust lane detection and
tracking for real-time applications. IEEE Transactions on In-
telligent Transportation Systems, 19(12):4043–4048, 2018.

[12] Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim,
Sangwon Hwang, and Sangyoun Lee. Robust lane detec-
tion via expanded self attention. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 533–542, 2022.

[13] Xiang Li, Jun Li, Xiaolin Hu, and Jian Yang. Line-cnn:
End-to-end traffic line detection with line proposal unit.
IEEE Transactions on Intelligent Transportation Systems,
21(1):248–258, 2019.

[14] Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Cond-
lanenet: a top-to-down lane detection framework based on
conditional convolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3773–
3782, 2021.

[15] Ruijin Liu, Zejian Yuan, Tie Liu, and Zhiliang Xiong. End-
to-end lane shape prediction with transformers. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 3694–3702, 2021.

[16] Sheng Luo, Xiaoqin Zhang, Jie Hu, and Jinghua Xu. Mul-
tiple lane detection via combining complementary structural
constraints. IEEE Transactions on Intelligent Transportation
Systems, 22(12):7597–7606, 2020.

[17] Philipp Martinek, Gheorghe Pucea, Qing Rao, and Udha-
yaraj Sivalingam. Lidar-based deep neural network for ref-
erence lane generation. In 2020 IEEE Intelligent Vehicles
Symposium (IV), pages 89–94. IEEE, 2020.

[18] Annika Meyer, Philipp Skudlik, Jan-Hendrik Pauls, and
Christoph Stiller. Yolino: Generic single shot polyline de-

tection in real time. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 2916–2925,
2021.

[19] Sandipann P Narote, Pradnya N Bhujbal, Abbhilasha S
Narote, and Dhiraj M Dhane. A review of recent advances in
lane detection and departure warning system. Pattern Recog-
nition, 73:216–234, 2018.

[20] Davy Neven, Bert De Brabandere, Stamatios Georgoulis,
Marc Proesmans, and Luc Van Gool. Towards end-to-end
lane detection: an instance segmentation approach. In 2018
IEEE intelligent vehicles symposium (IV), pages 286–291.
IEEE, 2018.

[21] Dong-Hee Paek, Seung-Hyung Kong, and Kevin Tirta Wi-
jaya. K-lane: Lidar lane dataset and benchmark for urban
roads and highways. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4450–4459, 2022.

[22] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang, and
Xiaoou Tang. Spatial as deep: Spatial cnn for traffic scene
understanding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

[23] Zequn Qin, Huanyu Wang, and Xi Li. Ultra fast structure-
aware deep lane detection. In European Conference on Com-
puter Vision, pages 276–291. Springer, 2020.

[24] Zhan Qu, Huan Jin, Yang Zhou, Zhen Yang, and Wei Zhang.
Focus on local: Detecting lane marker from bottom up via
key point. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14122–
14130, 2021.

[25] Russell Stewart, Mykhaylo Andriluka, and Andrew Y Ng.
End-to-end people detection in crowded scenes. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2325–2333, 2016.

[26] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Keep your eyes on the lane: Real-time attention-guided lane
detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 294–302,
2021.

[27] Lucas Tabelini, Rodrigo Berriel, Thiago M Paixao, Claudine
Badue, Alberto F De Souza, and Thiago Oliveira-Santos.
Polylanenet: Lane estimation via deep polynomial regres-
sion. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 6150–6156. IEEE, 2021.

[28] Shenlong Wang, Min Bai, Gellert Mattyus, Hang Chu, Wen-
jie Luo, Bin Yang, Justin Liang, Joel Cheverie, Sanja Fidler,
and Raquel Urtasun. Torontocity: Seeing the world with a
million eyes. arXiv preprint arXiv:1612.00423, 2016.

[29] Xue Yang, Xiaojiang Yang, Jirui Yang, Qi Ming, Wentao
Wang, Qi Tian, and Junchi Yan. Learning high-precision
bounding box for rotated object detection via kullback-
leibler divergence. Advances in Neural Information Process-
ing Systems, 34:18381–18394, 2021.

[30] Tu Zheng, Hao Fang, Yi Zhang, Wenjian Tang, Zheng Yang,
Haifeng Liu, and Deng Cai. Resa: Recurrent feature-shift ag-
gregator for lane detection. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3547–
3554, 2021.

4299


