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Abstract

We consider a new problem of future depth prediction in
videos. Given a sequence of observed frames in a video, the
goal is to predict the depth map of a future frame that has
not been observed yet. Depth estimation plays a vital role
for scene understanding and decision-making in intelligent
systems. Predicting future depth maps can be valuable for
autonomous vehicles to anticipate the behaviours of their
surrounding objects. Our proposed model for this problem
has a two-branch architecture. One branch is for the pri-
mary task of future depth prediction. The other branch is
for an auxiliary task of image reconstruction. The auxiliary
branch can act as a regularization. Inspired by some re-
cent work on test-time adaption, we use the auxiliary task
during testing to adapt the model to a specific test video.
We also propose a novel meta-auxiliary learning that learns
the model specifically for the purpose of effective test-time
adaptation. Experimental results demonstrate that our pro-
posed approach outperforms other alternative methods.

1. Introduction

We consider the problem of future depth prediction in
videos. Given a sequence of consecutive frames in a video,
the goal is to predict the depth map of a future frame that
has not been observed yet (Fig. 1). Depth estimation from
images or videos has been widely studied in computer vi-
sion. Recently, we have witnessed the tremendous success
of monocular depth estimation [13,14,27,32,55]. However,
current methods mainly focus on estimating depth on data
that have been observed. However, in many real-world ap-
plications, we actually need to predict depth maps of future
frames for decision-making. For example, if an autonomous
vehicle can correctly anticipate the future depth of other ve-
hicles in the scene, it can use this information to take proac-
tive actions to avoid possible damage.

There has been a line of work on predicting future infor-
mation in videos, such as future RGB frame [21,33,43], fu-
ture semantic segmentation [20,31,40], future trajectory [6],
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Figure 1: Illustration of the future depth prediction problem.
Each column corresponds to a video. Given a few observed
frames (e.g. at time steps t� 3, ... t), the goal is to predict
the depth map of a future frame (e.g. at time t + 1) that
has not been observed yet. Future depth prediction can be
used by autonomous systems for better planning and deci-
sion making.

future actions [12], etc. However, future depth prediction
has not been studied before. This paper represents the first
work on this topic.

A naive solution of future depth prediction is to treat it
as a purely supervised learning problem. The limitation of
this approach is that the learned model tends to overfit to
videos used for training and do not generalize well to un-
seen videos, especially when there is a large domain gap
between training and testing videos. In this paper, we pro-
pose a meta-auxiliary learning approach [3, 28] for future
depth prediction. Our method has the following character-
istics. First of all, instead of treating future depth prediction
as a purely supervised problem, we add an auxiliary task
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that is complementary to the primary task of future depth
prediction. These two tasks share the backbone for fea-
ture extractions and are learned together. The auxiliary task
acts as a regularization that helps learn feature representa-
tions that are useful for the primary task. In this paper, we
choose image reconstruction as the auxiliary task. Second,
since our auxiliary task is self-supervised and does not re-
quire any manual labels, we can use it to perform test-time
adaptation [45] to adapt the model for a specific test video.
Finally, we propose a meta-auxiliary learning approach for
training the model to facilitate effective test-time adapta-
tion. Our proposed method significantly outperforms other
alternatives on several benchmark datasets.

The contributions of this paper are manifold. First, we
introduce a new problem called the future depth prediction
in a video. Instead of predicting the depth maps of observed
frames, the goal is to predict the depth map of a future frame
that has not been observed yet. A reliable solution to this
problem can be used in many real-world applications, such
as autonomous driving. Second, instead of directly solving
the future depth prediction as a purely supervised problem,
we propose to use image reconstruction as an auxiliary task
in the model. This auxiliary learning acts as a regularization
and improves the performance of the primary task. In addi-
tion, since the auxiliary task is self-supervised and does not
require any manual labels, we can use the auxiliary task to
perform test-time adaptation. Finally, we propose a novel
meta-auxiliary learning approach to learn the model in a
way that enables effective test-time adaptation. Experimen-
tal results demonstrate that our proposed approach outper-
forms other alternative methods.

2. Related Work

2.1. Depth Estimation

There has been extensively worked on estimating depth
maps from monocular images. Most current state-of-the-
art depth estimation methods use the deep learning frame-
work. Eigen et al. [8] propose a two-scale structure for
global depth estimation and local depth refinement. Al-
hashim et al. [1] show that better depth estimation results
can be achieved with a more powerful design based on
DenseNet [19]. Some works also explore the possibility
of boosting the mapping ability of neural networks using
statistical learning techniques. For example, Fu et al. [11]
leverages ordinal regression to learn the ordinal relations
of the scene. In addition, Ma et al. [32] achieves depth
estimation and object detection by a unified framework.
Video-based depth estimation methods often integrate cam-
era motion and multi-view reconstruction from video se-
quences [49, 54].

2.2. Future Prediction

There has been a line of research on predicting infor-
mation of future frames in videos. Early work [21, 33, 43]
focuses on predicting the raw RGB values of future frames
without explicitly modeling scene dynamic or low-level de-
tails. In recent years, to disentangle the variation from video
representations, a number of works have focused on care-
fully designing loss functions and neural network struc-
tures. For example, [47, 50] separate motion and content
from video by two-stream architecture. Some works [4, 35]
predict future frames conditioned on the extra variables,
such as odometry or robot state.

Another line of research reformulates the video predic-
tion task as predicting other semantic information instead
of raw pixels. Examples include future semantic segmen-
tation [5, 31, 40], future human poses [46, 50], etc. The
work in [18] proposes to predict future ego-motion, seman-
tic map, depth map and optical flow jointly in a probabilistic
manner.

2.3. Meta Learning

Meta-learning, also known as learning to learn, has been
shown to be effective for solving various problems [7, 42,
53], especially the few-shot learning problem [2, 16, 25,
30, 44]. There have been many different meta-learning
paradigms [15, 51] in the literature. Optimization-based
approaches [23, 38], in particular MAML [9], have been
widely used for fast model adaptation. MAML uses nested
optimization to learn a good initialization of model param-
eters for fast adaptation to new tasks.

In addition to few-shot classification, meta-learning has
also been successfully applied for dense prediction tasks,
such as super-resolution [36, 42], video interpolation [7],
image dehazing [26], etc. The goal is to perform inter-
nal learning on every test image/video to utilize the unique
statistical information to improve the generalization. The
test-time adaptation requires supervision from the test data,
which can be easily obtained by further downsampling the
input image or frame rate in videos for those tasks. How-
ever, for future depth prediction, such surrogate training
pairs do not exist at test time. So our problem is more chal-
lenging.

Our work closely relates to meta-auxiliary learning in
[3, 28]. The work in [28] aims to generate optimal aux-
iliary labels to improve the primary image classification
branch. In contrast, our proposed framework achieves test-
time adaptation via the auxiliary reconstruction task. Re-
cently, [3] propose to use meta-auxiliary learning for the
dynamic scene blurring with test-time adaptation. In this
paper, we further explore the possibility of using meta-
auxiliary learning in dealing with the rarely researched
problem, i.e., future depth prediction. Besides the notice-
able difference between [3] and ours in the treated problem,
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Figure 2: Overview of our proposed meta-auxiliary learning framework for future depth prediction. During the meta-training
state (left), we have a collection of paired training data. Each pair consists of a sequence of frames as the input and the depth
map of a future frame as the output. The meta-training process involves a nested-loop. In the inner loop, we sample a batch
of training data. For each instance in the batch, we update the model parameter via the auxiliary task branch to obtain a
model adapted to this instance. We then evaluate the adapted model using the loss for the primary branch. In the outer loop,
we update the global model in a way that minimize the primary losses in the batch. After meta-training, we have obtained
a model has been learned specifically for effective adaption to a new video. During meta-testing, we are given a new video.
We use the auxiliary branch to obtain the adapted model for this test video, then use the adapted model for predictions in the
remaining frames of this test video.

our results also provide evidence that meta-auxiliary learn-
ing can be used in dealing with sequential data.

3. Proposed Method

In this section, we present our approach for future depth
prediction. We first introduce the architecture of our model.
Our model has a two-branch architecture that jointly solves
two related tasks. These two tasks share the backbone fea-
tures. Given a sequence of observed frames, the primary
task aims to predict the depth map of a future frame. In ad-
dition to the primary branch, our model has another branch
that solves an auxiliary task complementary to the primary
task. These two tasks can be jointly learned. The auxil-
iary task can act as a regularization. We choose to use im-
age reconstruction as the auxiliary task. Given a test im-
age, we can update the model parameters using the aux-
iliary task since it is self-supervised and does not require
manual labels. To avoid catastrophic forgetting, we then
propose a meta-auxiliary learning scheme for effective test-
time model adaptation. See Fig. 2 for an overview of our
approach.

3.1. Model Architecture

Our model has a two-branch architecture (see Fig. 3).
The input to the network consists of several consecutive

frames in a video. In this paper, we assumption that the in-
put consists of four frames denoted as (It�3, It�2, It�1, It).
Given the observed four consecutive frames, the primary
branch is used to predict the future depth map Dt+1 at
the next time step t + 1. The auxiliary branch is a
self-supervised task that reconstructs the observed frames.
These two branches share a backbone network for feature
extraction. In the following, we describe the details of these
two branches.

Primary Task Learning: Given the input frames
(It�3, It�2, It�1, It), we first use a 2DCNN backbone to
extract spatial features from each frame. The 2DCNN back-
bone can be selected from any off-the-shelf image clas-
sification network, such as VGG [41], ResNet [17] and
DenseNet [19]. In our implementation, we adopt VGG19
as our backbone network. The last three fully convolutional
layers in VGG19 are removed. We then use a 3DCNN mod-
ule to encode the features of these four frames from the last
convolutional layer of our 2DCNN backbone. For computa-
tional reasons, we use a single 3D convolution layer with a
kernel size of 4 along the temporal dimension. The 3DCNN
module allows us to capture temporal information among
the sequence of frames. Lastly, we follow U-NET architec-
ture [39] to construct our decoder. As the decoder upsam-
ples features from low scales to original input resolution, we
add an additional convolution layer to output depth maps at
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Figure 3: Illustration of our model architecture. Our model has a two-branch architecture. Given a sequence of observed
frames, a 3DCNN-based backbone network (with parameters ✓b) is used to extract features. The primary branch (with
parameters ✓depth) is used to predict the depth map of a future frame. The auxiliary branch (with parameters ✓aux) is used to
reconstruct the original observed frames from the features extracted by the backbone network. The auxiliary branch can act
as a regularization. Note that the auxiliary branch is self-supervised since it does not require any labels.

three different scales. Inspired by the method in [14] that
improves the multi-scale formulation, we upsample all the
lower resolution depth maps to the input resolution.

We then apply L1 loss and SSIM loss [52] to supervise
the primary task branch as:

Ldepth =
1

3

3X

s=1

⇣
L1(D̂

s, Ds) + ↵SSIM(D̂s, Ds)
⌘

(1)

where D̂s and Ds denote the predicted future depth of the
network and the ground-truth depth map at scale s for the
frame at t+1, respectively. Here ↵ is a hyperparameter that
controls the relative weighting of these two losses.
Self-supervised Auxiliary Learning: Learning a primary
task alongside a proper auxiliary task can force the model to
capture more meaningful representations and refrain from
learning spurious correlation that jeopardizes its general-
ization ability [34]. However, the auxiliary task should be
carefully chosen to complement the primary task. Other-
wise, the performance of the primary task would suffer from
degradation. In our case, we require an auxiliary task to
help the network learn features useful for future depth pre-
diction. In addition, we would like the auxiliary task to be
self-supervised so that we can use it for test-time adapta-
tion [45].

In this paper, we propose to use image reconstruction
[3, 29] as the auxiliary task. Image reconstruction is self-
supervised and does not require any manual labels. In or-
der to perform well in image reconstruction, the model will
likely need to learn feature representations that capture the
geometric and semantic information of the scene. Intu-

itively, these features will be useful for future depth pre-
diction as well.

We design an image reconstruction branch similar to the
depth prediction decoder based on the shared feature en-
coder. In the reconstruction branch, we only produce out-
put images at the full resolution scale. The auxiliary task
branch can be supervised by the L1 loss:

Laux =
1

4

3X

i=0

���Ît�i � It�i

���
1

(2)

where Ît�i denotes the reconstructed frame at time t� i.
The overall loss function for our entire network is the lin-

ear combination of Ldepth and LAux with hyperparameter
� 2 (0, 1):

Ltotal = Ldepth + �Laux (3)

3.2. Meta-Auxiliary Learning

Although auxiliary learning can improve the perfor-
mance of the primary task, we argue that the model jointly
trained with Eq. 3 is sub-optimal for unseen data. In-
tuitively, a test-time adaptation strategy [45] would fur-
ther improve the performance of the model. Inspired by
[3, 28], we propose a test-time adaption approach using
meta-auxiliary learning. The idea of test-time adaptation
is to update the model parameters using the loss of the self-
supervised auxiliary task during testing, so that the model
fits better to the specific characteristic of the test data. How-
ever, we have found that naively applying the test-time
adaption can sometimes cause catastrophic forgetting [10]
that jeopardizes the performance of the primary task. We
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propose using a meta-auxiliary learning scheme to learn the
model parameters specifically for effective test-time adap-
tation.
Meta-auxiliary Training: The goal of meta-auxiliary
training is to learn the model parameters so that they can
be effectively used for test-time adaptation. We consider
a pretrained baseline model parameterized by ✓, where
✓ = {✓b, ✓depth, ✓aux}. Here ✓b, ✓depth and ✓aux denote
the parameters of the backbone network, the future depth
prediction branch and the image reconstruction branch, re-
spectively. For example, the pretrained baseline can be
obtained by solving Eq. 3. Then we perform adapta-
tion on the image reconstruction task given a training pair
{(In

t�3, I
n
t�2, I

n
t�1, I

n
t ), Dn

t+1}, where n 2 [1 : N ] and N
represents the batch size. For simplicity, we use V n

t to de-
note (In

t�3, I
n
t�2, I

n
t�1, I

n
t ). The update can be written as:

✓̂n = ✓ � �innerr✓Laux(V̂ n
t , V n

t ; ✓) (4)

where �inner denotes the learning rate. Intuitively, ✓̂n =
{✓̂n

b , ✓̂n
depth, ✓̂n

aux} contains the adapted model parameters
for the n-th training pair in the batch via the auxiliary task.
Note that since the primary branch is not involved in Laux,
the update in Eq. 4 will not change parameters of the pri-
mary branch, i.e. ✓̂n

depth = ✓depth.
We would like the adapted parameters ✓̂n to help en-

hance the prediction of future depth. Thus, we validate the
“goodness” of the adapted parameters ✓̂n using the loss of
the primary task. Therefore, the meta-objective is defined
as:

min
✓

NX

n=1

Ldepth(D̂n
t+1, D

n
t+1; ✓̂

n) (5)

Note that Ldepth is computed based on the adapted param-
eters ✓̂n, but the optimization is performed with respect to
the original parameters ✓. This is sensible because Ldepth

is also a function of ✓, since ✓̂n is obtained via ✓ in Eq. 4.
Accordingly, the meta-objective in Eq. 5 can be minimized
by the gradient descent as:

✓  ✓ � �outer

NX

n=1

r✓Ldepth(D̂n
t+1, D

n
t+1; ✓̂

n) (6)

where �outer denotes the learning rate of this update. The
full algorithm is outlined in Alg. 1.
Meta-auxiliary Testing: After the auxiliary meta-training,
we have obtained the final model ✓. During meta-testing,
we have an unseen video. We firstly collect a few RGB
frames from the unseen data and use Eq. 4 to conduct test-
time training to obtain the adapted model parameters ✓̂. Fi-
nally, we use the adapted model parameters ✓̂ to perform
predictions on the remaining frames in the test video. Since
✓̂ is adapted to each test video, it can better fit the specific
characteristic of the video.

Algorithm 1: Meta-Auxiliary Learning
Require: learning rate �inner and �outer

Output : meta-auxiliary learned model parameter ✓

Initialize ✓ = {✓b, ✓depth, ✓aux} with pretrained
model parameter using auxiliary learning.

while not converge do

Sample a batch of training data {V n
t , Dn

t+1}N
n=1;

for each V n
t do

Evaluate r✓Laux(V̂ n
t , V n

t ; ✓) in Eq. 4.
Compute adapted parameters ✓̂n:
✓̂n = ✓ � �innerr✓Laux(V̂ n

t , V n
t ; ✓)

Update:
✓  ✓ � �outer

PN
n=1r✓Ldepth(D̂n

t+1, D
n
t+1; ✓̂

n)

4. Experiments

In this section, we first introduce the dataset used in the
experiments in Sec. 4.1. We then describe the details of our
implementation in Sec. 4.2, introduce the evaluation met-
rics in Sec. 4.3, introduce several baseline methods used for
comparison in Sec. 4.4, and present quantitative results in
Sec. 4.5. Finally, we perform extensive ablation studies in
Sec. 4.6 to gain further insights into our method.

4.1. Dataset

We use the KITTI Depth Prediction dataset [48] for eval-
uation. This dataset contains over 93k annotated depth
maps with a resolution around 1241 ⇥ 376. Our proposed
method is trained on the official training split and evaluated
on the validation set. There are 138 videos in the train-
ing set and 13 videos in the validation set, respectively. In
our implementation, we construct about 40k video clips for
training and 3k video clips for evaluation. Each video clip
contains 20 frames.

4.2. Implementation Details

Our method is implemented using the Pytorch library
[37]. All experiments are conducted on Nvidia V100 GPUs.
The Adam optimizer [22] is used during pre-training, meta-
training and test-time adaptation. The input frames are re-
sized to 512 ⇥ 256. Missing depth values are interpolated
using the inpainting method in [24]. The upper bound of the
depth values is 80 meters.

We first adopt Eq. 3 to pre-train the network. For both
primary learning and auxiliary learning, the training is con-
ducted on KITTI training set for 25 epochs. The learning
rate is initially set to be 1e-4 and then reduced by a factor
of 2 at epochs 15 and 20. The hyperparameter ↵ is set to be
0.1 for balancing the L1 loss and SSIM loss. We let � equal
to 0.001 in order to avoid auxiliary learning dominating the
primary learning, since the image reconstruction task is eas-
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Method Error (lower is better) Accuracy (higher is better)
Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

Current depth estimation

DORN [11](Current) 0.091 0.532 3.872 0.151 0.891 0.981 0.993

DenseDepth [1] (Current) 0.109 0.648 4.414 0.169 0.868 0.969 0.990

Future depth prediction for one time step t + 1

DORN [11](Direct copy) 0.109 0.652 4.163 0.169 0.874 0.969 0.987
DenseDepth [1] (Direct copy) 0.122 0.849 4.702 0.193 0.848 0.954 0.982

Ours 0.094 0.561 4.060 0.156 0.886 0.972 0.991

Future depth prediction for three time steps t + 3

DORN [11](Direct copy) 0.129 1.089 5.102 0.214 0.838 0.936 0.979
DenseDepth [1] (Direct copy) 0.145 1.129 5.270 0.235 0.810 0.933 0.971

Ours 0.121 0.720 4.958 0.199 0.844 0.951 0.982

Table 1: Quantitative results of future depth prediction on the KITTI Depth Prediction dataset. We show the results of
baselines, one time step (t+1) and three time steps (t+3) predictions. We compare with two state-of-the-art depth estimation
methods (DORN [11] and [1]). We first report the current estimation results of the two baselines. Then we compare the two
baselines by directly using the estimated depth of the last observed frame as the future depth prediction. Our proposed method
outperforms all baselines for future depth prediction. Not surprisingly, the results show that three-time-step prediction is more
challenging than the one-time-step prediction.

ier to converge. After pre-training, we then conduct meta-
auxiliary training. During the meta-auxiliary training, we
fix the learning rates �1 and �2 to be 2.5e-5. We perform
five gradient updates in the inner update step.

4.3. Evaluation Metrics

The evaluation metrics used in this work are the same as
those in [13]. Let di, d̂i and N denote the ground truth dis-
parity map, our estimate, and the total number of pixels in
each image, respectively. The metrics are defined as: mean
relative error (Abs Rel): 1

N

PN
i=1

kd̂i�dik
di

; square relative

error (Sq Rel): 1
N

PN
i=1

kd̂i�dik2

di
; root mean square error

(RMSE):
q

1
N

PN
i=1(d̂i � di)2; mean log 10 square error

(RMSE log):
q

1
N

PN
i=1klog d̂i � log dik2; accuracy with

threshold � < 1.25, � < 1.252, � < 1.253: the percentage
of d̂i such that � = max(di

d̂i
, d̂i

di
) < 1.25, 1.252 or 1.253.

4.4. Baselines

Since this paper is the first work on future depth pre-
diction, there is no previous work that we can directly com-
pare with. Nevertheless, we define several baseline methods
for comparison as follows. To illustrate the effectiveness of
our proposed future depth estimation, we compare with two
state-of-the-art approaches for depth estimation, including
DORN [11] and DenseDepth [1].

• Current estimation: In view of the fact that both

DORN and DenseDepth are proposed for predicting
the depths of observed images, we follow their origi-
nal setting to train the two methods on the training set
and perform the evaluation on the test set for current
depth estimation. Specifically, given an image at time
t, the two methods also predict the depth map at time
t.

• Direct copy: However, these methods can only pre-
dict the depths of observed images. Therefore, for a
fair comparison, the evaluation protocol is that we first
predict the depth for the observed frame at time t, then
directly copy it as the prediction at time t + 1.

4.5. Experimental Results

We first show the experimental results of current depth es-
timation in Table 1 (top). Ideally, this experiment would
provide the unachievable upper limit for future depth esti-
mation, such as the performance of DORN. However, the
experimental results also illustrate that not all the current
depth estimation methods can be adopted to form this upper
limit. For example, the performance of DenseDepth on cur-
rent depth estimation is worse than that of ours in the case
of predicting depth maps one time step into the future.

We then show quantitative results in Table 1 (middle
rows) to compare our proposed method with baselines for
one time step. From Table 1, we can observe that DORN
and DenseDpeth perform worse than ours. This is because

5761



Method Error (lower is better) Accuracy (higher is better)
Abs Rel Sq Rel RMSE RMSE log � < 1.25 � < 1.252 � < 1.253

Impact of each component for one time step t + 1

Primary only 0.101 0.634 4.160 0.164 0.878 0.970 0.989
Multi-task 0.098 0.584 4.110 0.161 0.882 0.971 0.991

Multi-task + adaptation 0.112 0.593 4.154 0.164 0.876 0.969 0.988
Ours 0.094 0.561 4.060 0.156 0.886 0.972 0.991

Impact of each component for one time steps t + 3

Primary only 0.125 0.732 4.973 0.203 0.832 0.942 0.978
Multi-task 0.123 0.724 4.962 0.202 0.842 0.949 0.981

Multi-task + adaptation 0.126 0.745 4.993 0.203 0.828 0.939 0.977
Ours 0.121 0.720 4.958 0.199 0.844 0.951 0.982

Impact of batch size

Batch size N = 1 0.097 0.578 4.095 0.160 0.883 0.971 0.991
Batch size N = 3 0.095 0.568 4.071 0.157 0.885 0.971 0.991
Batch size N = 5 0.094 0.561 4.060 0.156 0.886 0.972 0.991

Table 2: Ablation studies of our proposed method: (1) We compare with methods by removing various components of our
proposed method (see Sec. 4.6 for details). We report the experimental results in both cases of predicting depth maps one
and three time-step into the future. (2) The performance of our method when using different batch size N . Overall, a larger
batch size gives better performance.

these methods are designed to predict depth maps of ob-
served frames, not future frames. This shows that future
depth prediction cannot be solved simply by copying the
prediction from observed frames. Instead, we need to de-
sign algorithms specifically for the future depth prediction
task.

We finally consider a more challenging scenario to pre-
dict future depth maps with three time steps ahead. Fol-
lowing the setting in future semantic segmentation predic-
tion [31], we input four frames at time {t�9, t�6, t�3, t}
and predict future depth map at time t + 3. The quantita-
tive results are shown in Table 1 (bottom). Although the
problem is harder, our proposed method still outperforms
the two baselines.

4.6. Ablation Study

We perform ablation studies on the impact of the various
factors in our method.

4.6.1 Impact of Each Component

We first study the influence of each component in our pro-
posed method. To achieve this, we construct three methods
as follows:

• Primary only: This method is the 3DCNN introduced
in Section 3.1. There is no auxiliary branch in this
method. After training, we directly evaluate the per-

formance of the 3DCNN-based future depth prediction
model on the test dataset.

• Multi-task: This method uses the two-branch architec-
ture, but does not use meta-training or test-time adap-
tation. Instead, the model parameters are trained using
the multi-task loss defined in Eq. 3. After training, we
directly use the primary branch on test videos without
adaptation. In this method, the auxiliary task is used
only as regularization during training.

• Multi-task + adaptation: This method is similar to the
previous one. The difference is that during testing, it
applies the test-time adaptation using Eq. 4. The key
difference between this method and our proposed one
is that this method uses the multi-task loss in Eq. 3
during training, while our method uses meta-auxiliary
learning.

Quantitative Results: From Table 2, we can make several
observations. First, we can see that “Multi-task” performs
better than “Primary only”. This result shows the benefit of
using the auxiliary task as regularization during training.

Second, “Multi-task + adaptation” actually performs
worse than “Multi-task”. This can be explained as a form of
catastrophic forgetting. Although the test-time adaptation
can improve the auxiliary task, it causes the performance
of the primary task to drop. This is because the multi-task
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One time-step ahead prediction

Three time-steps ahead prediction

Frame Primary only Multi-task OursMulti-task+ adaptation

Figure 4: Qualitative examples: (top) one time step future depth prediction; (bottom) three time steps future depth prediction.
Our model better captures the object boundaries highlighted by the bounding boxes. This is because the auxiliary task in our
model implicitly captures geometric and semantic information specific to the test video since it tries to reconstruct frames in
the video. By performing test-time adaption, the backbone network in our model is specifically tuned to the current video.

loss in Eq. 3 does not optimize the model to be effective for
test-time adaptation.

Finally, our approach outperforms all other methods.
The meta-auxiliary learning in our approach is specifically
designed to learn a model that is ready for effective test-time
adaptation.

Qualitative Results: To further illustrate the effectiveness
of our meta-auxiliary learning approach for future depth es-
timation, we show some qualitative results in Figure 4. The
top and bottom rows in Figure 4 show the results of one
time step and three time steps predictions, respectively. It
is interesting to note that the depth maps produced by the
vanilla 3DCNN suffer from several problems (e.g., failure
to estimate accurate depth values on the leaves and object
boundaries). In contrast, our method shows better qualita-
tive results. We believe this is because the auxiliary task in
our model implicitly captures geometric and semantic infor-
mation specific to the test video since it tries to reconstruct
frames in the video. By performing test-time adaption, the
backbone network in our model is specifically tuned to the
current video.

4.6.2 Impact of Batch Size

We then study the impact of the batch size N in Alg. 1.
We use N = 1, 3 and 5 during the meta-auxiliary training.
We demonstrate the quantitative results in Table 2 (bottom).
Overall, we observe a large batch size can boost perfor-
mance. One possible explanation is that a large batch size
helps the model avoid overfitting to a particular video.

5. Conclusion

We first introduce the problem of future depth predic-
tion in videos. We then propose a meta-auxiliary learning
approach for addressing this problem. In addition to solv-
ing the primary task of future depth prediction, our model
uses an additional branch to solve an auxiliary task of im-
age reconstruction. The auxiliary task can be considered as
regularization. The meta-auxiliary learning is used to learn
a model so that it can be effectively adapted to new scenes.
Experimental results show that our proposed method out-
performs other alternatives both quantitatively and qualita-
tively.
Limitation and future works. The optimization at the test-
time can potentially create difficulties for deploying on edge
devices. As future work, we would like to explore a non-
optimization based method for efficient test-time adaption.
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