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Abstract

Vision transformers have demonstrated the potential to

outperform CNNs in a variety of vision tasks. But the com-

putational and memory requirements of these models pro-

hibit their use in many applications, especially those that

depend on high-resolution images, such as medical image

classification. Efforts to train ViTs more efficiently are

overly complicated, necessitating architectural changes or

intricate training schemes. In this work, we show that stan-

dard ViT models can be efficiently trained at high resolu-

tion by randomly dropping input image patches. This sim-

ple approach, PatchDropout, reduces FLOPs and memory

by at least 50% in standard natural image datasets such

as IMAGENET, and those savings only increase with im-

age size. On CSAW, a high-resolution medical dataset,

we observe a 5⇥ savings in computation and memory us-

ing PatchDropout, along with a boost in performance. For

practitioners with a fixed computational or memory budget,

PatchDropout makes it possible to choose image resolution,

hyperparameters, or model size to get the most performance

out of their model.

1. Introduction
Vision Transformers (ViTs) [5] have been recently intro-

duced as a viable alternative to CNNs [5, 12, 13, 23]. How-
ever, promises of better performance have not yet been real-
ized in many settings due to computational bottlenecks. For
instance, ViTs require large datasets to train on [5], though
this issue has been partially solved using pre-training on
large datasets [5, 1]. Memory and compute requirements
add to this, since the self-attention mechanism introduces
an element with quadratic complexity w.r.t. the number of
tokens. These bottlenecks can result in long training times,
and for large images such as those encountered in medi-
cal image analysis, the computational and memory demands
render off-the-shelf ViTs unsuitable.

*Corresponding author: Yue Liu <yue3@kth.se>

Figure 1: PatchDropout can be used to efficiently train off-

the-shelf ViTs on high-resolution images. A tiny proportion
of the input patches is often enough for accurate prediction,
and if larger resolution images are used performance can
increase, despite the lost information. Here, training with
different ratios of input patches affects the model’s perfor-
mance on CSAW, a real-world medical dataset with high
resolution images. PatchDropout results in increased pre-
dictive performance under the same computational budget.
Using a 16⇥ larger image but keeping 5% of the patches
saves computation and memory, and improves performance.
Further improvements can be achieved by increasing the
keep rate, at the expense of computation. A similar trend
is observed across standard image classification datasets.
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These computational issues are acute in other domains as
well, e.g. microscopy and remote sensing, especially when
native resolution is not only a desired property but a require-
ment for accurate predictions. Accordingly, several works
focus on making vision transformers more efficient using
a plethora of different approaches, which usually involve
some kind of post-processing or architectural modifications
[19, 31, 32, 26, 33]. These methods prioritize efficiency
during inference, e.g. for embedding in mobile devices, and
have been shown to reduce run-time by 30 to 50% with-
out compromising performance. However, the bottleneck
in network training can not be overlooked. Few works
have addressed this topic, and those that do require archi-
tecture modifications or complex training schemes which
limits their use [29, 12, 30, 20, 22]. Efficient ViT training
remains an important problem, especially for applications
requiring large images, as all but the largest institutions are
limited by computational resources to train ViTs.

In this work, we ask a fundamental question. Are all

input patches necessary during training, or can we ran-

domly disregard a large proportion of them? An affirma-
tive response entails a simple, yet efficient approach that re-
duces compute and memory footprint. Our method, Patch-
Dropout, randomly drops input tokens and results in up
to 5⇥ reduction in memory and compute during training
when using high-resolution images, without compromising
the model accuracy (Figure 1). This can be achieved with
off-the-shelf vision transformers and a minimal implemen-
tation, owing to the nature of ViTs. Furthermore, we show
that given a fixed memory and computational budget, Patch-
Dropout makes it possible to choose image resolution, hy-
perparameters, or model size to get the most performance
out of the model. We conduct experiments on CSAW,
a real-world medical dataset with high resolution images,
and further validate our proposed method using three main-
stream datasets: IMAGENET, CIFAR100 and PLACES365.
Through these experiments we show that:

• We can randomly discard image patches during train-
ing without compromising performance and improve
efficiency from 2⇥ up to 5.6⇥, depending on image
size (see Figures 1 and 5).

• Given the same computational budget, up-scaling the
images and/or utilising a larger ViT variant while dis-
carding a fraction of input tokens can improve the
model’s accuracy (see Table 3 and Table 4).

• PatchDropout can act as a regularization technique
during training, resulting in increased model robust-
ness (see Figure 6).

These findings along with additional ablation stud-
ies suggest that PatchDropout can economize ViTs,

allowing their utilization on high-resolution im-
ages, with potential gains in accuracy and robust-
ness. Code to reproduce our work is available at
https://github.com/yueliukth/PatchDropout.

2. Related Work
Several studies have examined how to obtain a lighter vi-

sion transformer model using an existing well-trained one to
improve inference efficiency using e.g. pruning or a teacher
for distillation. DynamicViT [19] adds a prediction module
for estimating the importance score of each patch progres-
sively. The training is assisted by knowledge distillation
and the patches whose contribution are minimal to the fi-
nal prediction are pruned during inference. Another prun-
ing method, PatchSlimming [26] identifies less important
patches from the last layer and removes them from previ-
ous ones. DVT [31] dynamically determines the number
of patches by training a cascade of transformers using an
increasing number of patches and then interrupts inference
once the prediction is confident.

Another line of research focuses on making the train-
ing more efficient. Several studies attempt optimization of
network architectures through artificially designed modules
[29, 12, 30], among which PatchMerger [20] and Token-
Learner [22] are designed specifically for reducing the num-
ber of tokens. EViT [10] learns to gradually preserve the at-
tentive tokens and fuse the inattentive ones during training
which results in a 0.3% decrease in accuracy on IMAGENET
with a 50% increase in speed of inference. Compared to
EViT, the proposed method of this study is complementary
but with a much simpler mechanism that does not require
substantial modifications.

A few recent works explore the possibility of learn-
ing expressive representations by selecting a subset of
patches. MAE [6], which is designed for more efficient
self-supervised pre-training, proposes dropping a high pro-
portion of patches and subsequently inferring the missing
patches through an autoencoder setup. Our work takes some
inspiration from MAE, however, PatchDropout can be ap-
plied to target tasks directly using standard ViTs (unlike
MAE). In [8], the authors augment standard ViTs with ad-
ditional patches that selectively attend to a subset of patches
to improve transferability of ViTs. Finally, [17] shows that
ViTs are robust to random occlusions. However, it should
be noted that occlusion does not result in efficiency im-
provement.

3. Methods
Transformer models were originally developed for

language-related tasks [28], but their self-attention mech-
anism has been proven useful for vision tasks as well
[5, 27, 12]. An important difference between the two tasks
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Figure 2: Redundancy in mammographic images. (Left) An
example image from CSAW. (Right) 2D projection of the
extracted patches of the left image using UMAP [16]. The
red squares represent the randomly kept patches after Patch-
Dropout with a keep rate of 0.25. The patches are clustered
into 2 distinct groups: the air and the breast regions. Sur-
prisingly, by simply sampling uniformly, the information
needed for accurate classification is retained.

is that visual data, often, contains considerable redundancy
or correlation in appearance [6] (see Figure 2). This obser-
vation leads to the following question: Can we randomly

omit input image patches during training? If yes, what are

the benefits of doing so? Here, we aim to answer these
questions, showing that vision transformers can indeed be
trained using a fraction of the input data and perform well,
while at the same time saving a significant amount of mem-
ory and compute. Additionally, our simple training scheme
may offer some desirable regularization effects.

3.1. PatchDropout
Our core idea relies on the fact that the spatial redun-

dancy encountered in image data can be leveraged to econ-
omize vision transformers. If we randomly deny a fraction
of the information to the model during training, we expect a
diminished impact on the model’s predictive performance.
PatchDropout implements this by randomly dropping a per-
centage of image tokens at the input level (see Figure 3).
More specifically, before the patch embeddings are sent to
transformer blocks, a subset of tokens is randomly sam-
pled without replacement. Positional embeddings are added
prior to the random sampling so that the corresponding posi-
tion information is retained. The [CLS] token is retained if
it exists. The sampled token sequence is sent to transformer
blocks in the standard manner. The proposed method is
straightforward and trivial to implement, which makes it
viable to be incorporated in most ViT models without sub-
stantial modifications.

3.2. Complexity Analysis
Vision transformers operate on a series of tokens, where

each token corresponds to a non-overlapping image patch
and is represented by a linear projection of the patch
summed with a positional embedding. In practice, an im-
age of size H ⇥ W is tiled into N = HW/P

2 patches,
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Figure 3: PatchDropout during training and inference.

(Left) PatchDropout is easy to implement. Patchify the
image and add positional embeddings to each patch. Uni-
formly sample a subset of them and use them to train the
model. (Right) At test time, all patches are retained.

where P is the patch size and it is typically defined by
the user (often 8 or 16). The resulting token sequence is
fed into a series of consecutive transformer blocks that up-
date the d-dimensional embedding of tokens and consist of
a Multi-head Self-Attention (MSA) and Multi-Layer Per-
ceptron modules (MLP). The MSA itself includes a series
of MLP layers that model the interactions between the to-
kens through attention. A final MLP layer is responsible
for projecting the output to have the same dimensions as its
input, ready to be processed by the next transformer block.
Given this information, we can discuss the theoretical and
empirical computational complexity of vision transformers.

Theoretical complexity Given L transformer blocks with
N tokens and d-dimensional embeddings, the computa-
tional cost of the self-attention within the MSA module is
O(LN2

d), while the other MLP layers introduce a com-
plexity of O(LNd

2). In total, the computational complex-
ity of a series of L transformer blocks is:

2LN2
d+ 4LNd

2
. (1)

The compute is always linear to the depth L. When N �

d the complexity reduces to the first term, when N ⌧ d it
reduces to the second term.

For high resolution images with small patch sizes, which
is the focus of this work, the first term prevails. This leads to
a quadratic complexity with respect to the sequence length
N . Accordingly, removing a non-trivial portion of the input
tokens can result in significant savings in compute.

Empirical complexity In practice, the observed compu-
tation cost may not exactly reflect the theoretical predic-
tion. A few factors can make the computational saving of
PatchDropout less advantageous than the complexity analy-
sis might suggest. For instance, the patchifier, i.e. the layer
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responsible for tokenizing and projecting the input image
into a series of embedded tokens adds computational over-
head. The same is true for the classification head. Nonethe-
less, as image size increases (and thus the input sequence
length N increases), the gap between the theoretical and
empirical relative computation should lessen. This necessi-
tates an empirical analysis of the savings in computation to
confirm the theoretical predictions.

In Figure 4 we illustrate the relative drop in computa-
tions, both according to Eq. 1 and empirically according to
the number of FLOPs. We compare for different sequence
lengths N when using two keep rates of 0.5 and 0.25. As
discussed above, the computational saving of PatchDropout
increases with increasing number of tokens N . It can be
seen that the drop in computation is similar to the keep rate
for small N , but gradually converges to a quadratic sav-
ings with increasing N . While the theoretical and empirical
trends are similar, the empirical saving converges slower
due to the additional computations discussed above. Note
that N varies with image size H ⇥ W and patch size P .
The default image size across multiple vision benchmark
datasets is 224⇥224. At this scale, the relative computation
stays close to the value of its keep rate – the images are not
large enough to benefit much from the quadratic savings.
However, many real-world tasks demand high-resolution
images, like the ones typically encountered in the medical
domain. Here, we observe large computational savings as
the sequence length increases.

Finally, an important factor to note is that the embed-
ding dimensions d varies between different ViT variants,
affecting their computational savings. In general, the rel-
ative computation of PatchDropout on smaller ViTs (with
smaller d) decreases faster compared to larger ones.

4. Experimental Setup
We evaluate PatchDropout across a number of different

ViT variants and datasets. As representative ViT models,
we selected DEITs [27] of different capacity and SWINs
[12], which are ViT variants that scale linearly with re-
spect to the input sequence length by design. For datasets,
we selected three standard benchmark image classification
datasets and a real-world medical dataset of high-resolution
images. Below, we describe the experimental settings in
detail, and in Section 5 we report our findings.

Data selection In this work we attempt to economize vi-
sion transformers such that they can be utilized for tasks
where high-resolution images are necessary for accurate
predictions. To this end, we select a subset of 190,094 high-
resolution images from CSAW, a population based cohort
which consists of millions of mammography scans primar-
ily developed for breast cancer tasks [2, 15, 24]. Here,
we focus on the breast cancer risk prediction, a sensitive

Keep rate 0.5 (Theoretical) Keep rate 0.5 (Empirical)

Keep rate 0.25 (Theoretical) Keep rate 0.25 (Empirical)

Figure 4: Computational savings with PatchDropout in-

crease for larger sequence length N . We illustrate the the-
oretical (left) and empirical (right) relative savings in com-
putation when using PatchDropout with keep rates 0.5 and
0.25 for different input sequence lengths and ViT models.
Different sized images with a fixed patch size 16 result in
different numbers of tokens (vertical dashed lines). As dis-
cussed in Section 3.2, empirical savings do not always cor-
respond to the theoretical analysis due to various factors.
However, the trend remains consistent: as the image size,
and thus the number of input tokens N increases, the ob-
served computational savings approach the theoretical min-
imum limN!1.

classification task. The data is split at the patient-level
and the validation set contains balanced classes, resulting
in 152,922 training images, 3,256 validation images, and
33,916 testing images. Furthermore, to validate the appli-
cability of PatchDropout in other domains and on conven-
tional image sizes, we run experiments on 3 standard image
classification datasets: IMAGENET [3], CIFAR100 [9] and
PLACES365 [34]. Adhering to standard practice, we report
our results on the official validation splits of IMAGENET
and PLACES365 and we use 1% of the training data for
validation. On CIFAR100, 2% of the training images com-
prise the validation set and the results are reported on the
official test set.

Preprocessing Images from CSAW are in DICOM for-
mat, and require several pre-processing steps which are de-
tailed below. Using the DICOM metadata, we re-scale the
intensity values and correct any images with inverted con-
trast. Following [11], certain images are excluded accord-
ing to a set of exclusion criteria. The purpose is to filter
out noisy images, images with implants, biopsies and mam-
mograms with aborted exposure. The mammograms with
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Input Keep rate Memory (GB) GFLOPs AUC

224 1 1.46 17.58 64.71%

896 0.05 1.50 15.65 65.27%
896 0.10 1.65 30.37 65.59%
896 0.25 2.51 79.96 66.63%
896 0.50 5.15 180.64 67.03%
896 1 14.86 449.98 66.47%

Table 1: Performance (AUC), memory and compute savings

using PatchDropout on CSAW. The memory is computed
with a batch size of 1 on a single GPU.

cancer signs are separated from those intended for risk esti-
mation. More specifically, cases with examination 60 days
in advance of diagnosis are excluded in order to avoid risk
conflation. For the other datasets we only resize their im-
ages to meet the needs of our experiments, no additional
pre-processing was performed. Further details are provided
in Supplementary A.

Models and training protocols In this study, we primar-
ily use DEITs [27] which are similar in spirit and computa-
tional complexity to the original ViTs [5]. Unless otherwise
specified, the model choice is DEIT-B trained on 16 ⇥ 16
patches (denoted as DEIT-B/16), and it is trained on input
size 224⇥ 224. Additionally, to show that PatchDropout is
agnostic to architectural selections, we run ablations using
SWINs [12]. SWINs designed to reduce the computational
complexity of the original ViTs. They scale linearly with re-
spect to the input size and they inherit some of the CNN’s
inductive biases by design. Additional implementation de-
tails can be found in Supplementary B.

5. Results and Discussion
We begin this section by demonstrating that not all in-

put patches are necessary during training – hence, we can
randomly discard a large proportion of them. Then, we
show how PatchDropout can be used not only to save mem-
ory and compute but also to improve the model’s predic-
tive performance. Finally, we analyze the regularization
effects of PatchDropout and its role as an augmentation
method. Unless otherwise stated, each experiment is re-
peated 3 times and we report the mean value of the appro-
priate metric for each dataset. For IMAGENET, CIFAR100
and PLACES365, we report top-1 accuracy and for CSAW
the exam-level AUC, where the predictions take the average
score of each mammogram in an examination.

Are all input patches necessary during training? To as-
sess the impact of PatchDropout and determine whether all
tokens are necessary for training ViTs, we conduct exper-
iments where different percentages of the tokens are pre-
sented to the model. As illustrated in Figure 1 and Table 1,
25% of the tokens are enough to train an accurate model on

IMAGENET CIFAR100

PLACES365 CSAW

Figure 5: Not all input patches are necessary to be present.

50% of the input patches are sufficient to preserve model
performance for image size 224 ⇥ 224: it improves effi-
ciency 2⇥ while the performance drop is contained at only
0.17% on IMAGENET, 0.07% on CIFAR100 and 0.38% on
PLACES365. On CSAW, keeping around half of the input
patches results in 0.25% - 0.60% increase in AUC compared
with keeping all tokens.

Keep
rate

Memory
(GB) GFLOPs IMAGENET CIFAR100 PLACES365 CSAW

1 20.96 17.58 83.17% 93.33% 58.05% 64.71%

0.9 0.89⇥ 0.90⇥ �0.03% +0.07% �0.09% �0.30%
0.8 0.78⇥ 0.79⇥ +0.09% +0.11% �0.17% �0.13%
0.7 0.68⇥ 0.69⇥ +0.09% �0.10% �0.12% �0.37%
0.6 0.57⇥ 0.59⇥ +0.03% �0.07% �0.16% +0.60%
0.5 0.48⇥ 0.50⇥ �0.17% �0.07% �0.38% +0.29%
0.4 0.39⇥ 0.40⇥ �0.59% �0.27% �0.68% +0.25%
0.3 0.30⇥ 0.40⇥ �1.41% �0.58% �1.21% �0.04%
0.2 0.22⇥ 0.20⇥ �3.04% �1.23% �2.19% �0.82%
0.1 0.14⇥ 0.10⇥ �7.28% �4.22% �4.60% �5.41%

Table 2: Performance, memory and compute savings using

PatchDropout on various datasets with 224⇥ 224 images.

high-resolution CSAW images of 896 ⇥ 896 pixels, while
consuming more than 80% less memory and compute. In-
terestingly, models trained with 25% or 50% of the tokens
outperform a model that uses all tokens. This hints at a
regularization effect for PatchDropOut that we will discuss
later.

In Figure 5 and Table 2 we explore how this trend trans-
lates to standard image classification benchmark datasets
using 224 ⇥ 224 images. We observe that performance
varies as a function of the keep rate. In all cases, a keep rate
of 50% or larger is sufficient to maintain good performance.
When using exactly 50% of the tokens, the performance
drop is contained to only 0.17% on IMAGENET, 0.07% on
CIFAR100 and 0.38% on PLACES365. The reduction in
memory and computation are significant and similar to the
keep rate.
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Input Patch Keep rate GFLOPs IMAGENET CIFAR100 CSAW

64 16 1 1.46 66.78% 87.27% -
64 8 0.25 1.46 70.57% 89.77% -
128 16 0.25 1.49 76.25% 91.30% -

112 16 1 4.33 77.65% 91.98% 63.07%
112 8 0.25 4.33 79.11% 92.38% 60.08%
224 16 0.25 4.41 81.02% 92.50% 64.87%

224 16 1 17.58 83.17% 93.33% 64.71%
224 8 0.25 17.58 83.43% 92.71% 64.28%
448 16 0.25 17.93 83.26% 92.20% 65.59%

448 16 1 78.57 - - 66.31%
448 8 0.25 78.57 - - 66.13%
896 16 0.25 79.96 - - 66.63%

Table 3: Effect of varying image size and patch size. The
impact in terms of FLOPS and performance of changing the
image size and patch size is measured using PatchDropout
over multiple datasets.

Can we trade the savings in memory and compute in-
troduced by PatchDropout for more accurate predic-
tions? In the previous analysis we saw that PatchDropout
allows for significant memory and computational savings
without compromising the model’s performance. This sav-
ing can enable a more elaborate model selection (e.g. finer
grid search) or a wider range of training choices (e.g. larger
batch size) or a more accurate but computationally-heavy
architecture. Therefore, the next question we ask is whether
we could utilize the saved memory and compute to improve
the model’s predictive performance while keeping the com-
putational budget similar to the one used for the full token
sequence. Our experiments show that this can be easily
achieved with two simple design choices:
(1) Increasing the total token sequence by (a) using higher

resolution images, or (b) decreasing the patch size.
(2) Employing models with greater capacity.

– Larger images or smaller patch size It has been
proven that ViTs perform better on larger images and
smaller patch sizes [5, 27, 1]. However, this comes with
a large memory and computational overhead due to the in-
creased input sequence length, as described in Section 3.
PatchDropout mitigates this cost by reducing the sequence
length, allowing for the utilization of larger images and
smaller patches. Table 3 illustrates the trade-off between
the model’s performance and the input sequence length for
different settings on various datasets.

Trading the saved compute from PatchDropout for larger
images yields a large performance boost for almost all se-
tups (compare the 1

st and 3
rd row of each group). For ex-

ample, comparing IMAGENET for images of size 128⇥128
with keep rate of 0.25 with the 64 ⇥ 64 images with all to-
kens retained, we find that this simple trade-off results in
a nearly 10% absolute increase in accuracy for similar cost.
The performance gains lessen, however, for larger computa-
tional budgets. This trend is observed across all the datasets.

Model Keep
rate

Memory
(GB) GFLOPS IMAGENET CIFAR100 CSAW

DEIT-T 1 5.06 1.26 75.22% 86.94% 63.45%
DEIT-S 0.25 2.46 1.15 78.09% 90.30% 63.76%

DEIT-S 1 10.20 4.61 80.69% 91.08% 64.62%
DEIT-B 0.25 5.46 4.41 81.02% 92.50% 64.87%

DEIT-B 1 20.96 17.58 83.17% 93.33% 64.71%
DEIT-L 0.25 15.34 15.39 83.81% 93.97% 65.31%

Table 4: Impact of training larger ViT variants with Patch-

Dropout using 224⇥ 224 images.

Model Depth Keep
rate

Memory
(GB) GFLOPS IMAGENET CIFAR100 CSAW

DEIT-B 12 1 20.96 17.58 83.17% 93.33% 64.71%
DEIT-B 24 0.5 19.73 17.31 83.06% 93.40% 65.42%
DEIT-B 48 0.25 20.95 17.31 81.46% 92.71% 65.31%

Table 5: Impact of training deeper models with Patch-

Dropout using 224⇥ 224 images.

Trading the savings obtained using PatchDropout for
smaller patch sizes also yields significant performance
gains. However, the gains are not as consistent as for reso-
lution (compare the 1

st and 2
nd row of each group). For the

natural domain, smaller patch sizes improve model perfor-
mance, as expected from [5, 27]. On CSAW, smaller patch
size seems to negatively affect performance, but the effect
diminishes as we move to higher resolutions.

Note that, in some cases, images are up-sampled in our
experiments. In general, we notice that higher resolution
and smaller patch size is usually beneficial, but not always.
We speculate that as we move away from a dataset’s native
resolution, larger input size and smaller patch sizes might
have a negative impact on model performance due to signif-
icant information loss. Nevertheless, PatchDropout allows
for the exploration of hyperparameter settings unfeasible to
reach with the full token sequence.

– Models with larger capacity Increasing the model
capacity is another way to attain better predictions. The
memory and compute saved from PatchDropout can be
spent on training larger ViT variants. In Table 4, we ex-
plore this trade-off. Interestingly, the trend is that larger
models using PatchDropout are consistently better than the
smaller variants of equivalent cost that use all tokens. This
trend follows across all data domains, with memory effi-
ciency improving up to 2.1⇥. Natural datasets win bigger
gains with PatchDropout using larger models, as compared
to increased image size or reducing token size.

An alternative way to increase the model capacity is to
stack more transformer blocks to a particular ViT variant.
We explore this trade-off for a fixed computational bud-
get by increasing the model’s depth and varying the keep
rate. We report the results in table 5. When doubling the
model’s transformer blocks with PatchDropout we observe
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#Networks Keep rate GFLOPs IMAGENET CIFAR100 CSAW

1 1 17.58 83.17% 93.33% 64.71%
2 0.5 17.44 83.48% 93.74% 65.26%
4 0.25 17.66 82.20% 93.45% 64.92%

Table 6: Using PatchDropout compute savings to train an

ensemble.

performance boosts for CIFAR100 and CSAW. However,
we note worse performance on IMAGENET when the model
becomes too deep. We attribute this to the fact that ViT ar-
chitectures are optimized for IMAGENET.

Ensembles of models are yet another alternative to obtain
more accurate predictions. We explore how computational
savings from PatchDropout can be spent training additional
models for use in an ensemble. In Table 6, we show that an
ensemble of two networks trained with 50% keep rate con-
sistently outperforms a single model without PatchDropout.
However, the gains diminish when lower keep rates (25%)
are traded for an ensemble for four networks.

Can PatchDropout be used as a regularisation method?
Previously, we noticed that PatchDropout can result in in-
creased performance compared to the same settings but with
all tokens, e.g. in Figure 5. This has some implications
about its regularization effects. Thus we ask: (i) Can Patch-
Dropout be used as a regularizer? and (ii) Does Patch-
Dropout provide robustness against information removal?

To answer the first question we run experiments treat-
ing PatchDropout as an augmentation method. In detail,
at each iteration we uniformly sample a keep rate between
0.5 and 1 which we use to randomly select a subset of im-
age patches. We report the results in Table 7 and we con-
clude that PatchDropout is a useful augmentation method.
It provides regularization in the sense that generalization is
improved across all the datasets. This is not entirely sur-
prising, as PatchDropout behaves similarly to known CNN
regularization methods, like cutout [4].

If PatchDropout has some regularization benefits, a fur-
ther question is: can it provide robustness against informa-

tion loss? To address this question, we evaluate models that
have been trained with all image patches and models that
have been trained using PatchDropout with different keep
rates. During test time, we randomly remove image con-
tent using different keep rates. Our results are presented
in Figure 6. We find that, in all cases, models that have
been trained with PatchDropout exhibit increased robust-
ness against information removal (the green curve is con-
sistently above the blue curve). For completeness, we also
report the curves when using all tokens at test time for mod-
els that have been trained with PatchDropout (purple curve
in Figure 6). These results further validates the regulariza-
tion effects of our method.

Keep rate IMAGENET CIFAR100 CSAW

1 83.17% 93.33% 64.71%
{0.5,1} 83.32% 93.57% 65.04%

Table 7: PatchDropout has regularization properties.
Rather than using all tokens, training ViTs with Patch-
Dropout using random keep rates improves generalization.

IMAGENET CSAW

Figure 6: PatchDropout improves model robustness. We
deny information to the model during inference by ran-
domly dropping input patches and measuring the change in
performance. The green curve shows the model’s perfor-
mance when training with a percentage of the input patches
and evaluating using the same keep rate. The blue curve
represents the model’s performance when training using all
patches but evaluating on a subset of the input patches. For
completeness, the purple curve shows training with Patch-
Dropout and inference with all patches. When 50% or more
of the patches are kept, this results in a minimal perfor-
mance drop on IMAGENET and increased predictive per-
formance on CSAW. The trends show that models trained
with PatchDropout are more robust to missing information
during inference.

Is PatchDropout constrained by the architectural
choice? Throughout our work we used the DEIT model
family as they are the most suitable for the purpose of
our analysis. This however, raises the question of whether
PatchDropout is effective for other architectural choices. To
answer this question we run experiments using SWINs [12]
which are models purposely designed to reduce the com-
putational complexity of DEITs. SWINs operate using a
window shifting approach and re-assignment of positional
embeddings at each block. This, necessitates a slightly
different implementation of PatchDropout. Instead of ran-
domly sampling image patches, we apply structured sam-
pling where we randomly sample column and row indices
for each window to obtain the intersection tokens. This
maintains the spatial relationships between tokens and en-
ables smooth window shifting for SWINs. The correspond-
ing relative positional biases are sampled accordingly.

We report our findings in Figure 7 when using 224⇥224
images for both IMAGENET and CSAW. We discern sim-
ilar patterns with the ones in Figure 5. CSAW exhibits
small performance gains when using PatchDropout with
keep rates larger than 50% while IMAGENET displays a 1%
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IMAGENET CSAW

Figure 7: PatchDropout also works for SWINs. Despite
their linear scaling via the reintroduction of CNN inductive
biases, PatchDropout can be applied to SWINs with a keep
rate of 0.5 or higher without lowering performance.

Original Uniform Structured Cropping Random

93.33% 91.84% 92.94% 92.46% 92.50%

Figure 8: Impact of different patch sampling strategies.
Accuracy on CIFAR100 is reported for keep rate 0.25 at
224⇥ 224 resolution for various patch sampling strategies.

drop at 50% keep rate. The applicability of PatchDropout
however is still valid, even for this architecture which has
been developed to economize DEITs by design.

Other ablation studies We conclude our analysis with
two ablation studies aiming to assess the effectiveness of
random sampling and the role of large scale pretraining.

– How important is the sampling strategy in Patch-
Dropout? To assess the efficacy of random sampling,
which we use in our method, compared to other sampling
methods, we conduct a small ablation study on CIFAR100
where we train models using a fixed keep rate of 0.25 but
we change the sampling method. In Figure 8 we illustrate
the sampling methods we used and we report the top-1 accu-
racy. The results show that the effectiveness of the proposed
method is not heavily dependent on the choice of sampling
strategy. This, along with the results from SWINs where
we used structured sampling (see previous paragraph) indi-
cates that PatchDropout is a general approach which can be
easily incorporated into other types of ViT models.

– Is PatchDropout sensitive to the initialization strat-
egy? Throughout this work we utilized models pretrained
on IMAGENET-21K as vision transformers rely on large-
scale pretraining, especially when working with small
datasets [5, 27, 13, 14]. But, is PatchDropout useful when

random initialization [7] is used? To answer this question
we train randomly initialized models on CSAW and we re-
port the results in Table 8. Indeed, PatchDropout works
with randomly initialized models on CSAW, although with

Keep rate IMAGENET-21K init. Random init.

1 64.71% 59.32%
0.50 +0.29% +0.16%
0.25 +0.16% �0.90%

Table 8: Impact of IMAGENET-21K initialization for

PatchDropout on CSAW.

diminishing performance gains, suggesting that the pro-
posed method is agnostic to the initialization strategy.

6. Conclusion
In this work, we rely on the fact that the spatial redun-

dancy encountered in image data can be leveraged to econ-
omize vision transformers and we propose a simple yet ef-
ficient method, PatchDropout. By dropping input tokens at
random, our method results in significant memory and com-
putation reduction, especially on high-resolution images.
In addition, we demonstrate how the saved compute intro-
duced by PatchDropout can be exchanged for better pre-
dictive performance under the same memory and computa-
tional budget. Finally, we show that PatchDropout can act
as a regularization technique during training, resulting in in-
creased model robustness. PatchDropout requires minimal
implementation and works with off-the-shelf vision trans-
formers. We believe that PatchDropout should be an essen-
tial tool in every practitioner’s toolkit to reduce the memory
and computational demands in transformer training.

Broader Impact Reducing computational requirements
can help to democratize deep learning by making it cheaper
to train models. Achieving an equitable outcome for vul-
nerable and disadvantaged groups, who might lack access
to sufficient funding and resources – including but not lim-
ited to small academic groups, hospitals, and companies,
necessitates a multitude of solutions. Apart from social
benefits, one might consider the positive impacts with re-
gards to climate as well. Data centers worldwide account
for a substantial portion of energy consumption and GHG
emissions which can be mitigated by shrinking computa-
tion during model development if applied widely. Despite
our efforts, training state-of-the-art networks such as ViTs
is still computationally expensive and thus has significant
carbon footprints.
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Söderberg, and Kevin Smith. Is it time to replace cnns

with transformers for medical images? arXiv preprint

arXiv:2108.09038, 2021.
[14] Christos Matsoukas, Johan Fredin Haslum, Moein Sorkhei,
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