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Abstract

In this paper, we propose the Temporal Identity
Inconsistency Network (TI*>Net), a Deepfake detector that
focuses on temporal identity inconsistency. Specifically,
TI?Net recognizes fake videos by capturing the dissimilar-
ities of human faces among video frames of the same iden-
tity. Therefore, TI?Net is a reference-agnostic detector and
can be used on unseen datasets. For a video clip of a given
identity, identity information in all frames will first be en-
coded to identity vectors. TI?Net learns the temporal iden-
tity embedding from the temporal difference of the identity
vectors. The temporal embedding, representing the identity
inconsistency in the video clip, is finally used to determine
the authenticity of the video clip. During training, TI*Net
incorporates triplet loss to learn more discriminative tem-
poral embeddings. We conduct comprehensive experiments
to evaluate the performance of the proposed TI?Net. Exper-
imental results indicate that TI?Net generalizes well to un-
seen manipulations and datasets with unseen identities. Be-
sides, TI?Net also shows robust performance against com-
pression and additive noise.

1. Introduction

Recent developments in Deep Neural Networks (DNNs),
especially Generative Neural Networks (GANs), have en-
abled Deepfake to generate realistic images and videos and
confuse the public. Therefore, Deepfake detection has be-
come an urgent topic to protect people from misinformation
caused by Deepfake.

Existing Deepfake detectors can be categorized into
image-level (frame-level) detectors and video-level detec-
tors. Image-level detectors rely on spatial artifacts such
as texture inconsistency [26], [S] and color distortion [12],
[11]. Some detectors also transform spatial information to
the frequency domain and capture artifacts in frequency do-
main [8], [9], [14]. Furthermore, with the help of pow-
erful DNNs, many detectors analyze artifacts in the latent
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Figure 1: Pair-wise identity similarities between real video
frames (lower triangle) and fake video frames (upper trian-
gle). Each value in the lower triangle represents the simi-
larity between the face at the left of the row and the face at
the bottom of the column (in green boxes). Each value in
the upper triangle represents the similarity between the face
at the right of the row and the face at the top of the column
(in red boxes). The diagonal represents self-similarity and
is left blank.

space to identify fake images [23], [25], [24]. Especially, as
face swapping operation blends faces of different identities,
identity inconsistency artifacts have recently been found to
be an effective clue for fake detection. For example, Dong
et al. [5] [6] detect the spatial identity inconsistencies be-
tween the inner face region and the outer face region. Al-
though such identity-based detectors can be used to detect
video frame-by-frame, they do not perform well on fake
videos, since they do not account for temporal inconsisten-
cies, which are more intuitive and important artifacts to de-
tect Deepfake videos.

In order to detect fake videos, some detectors have uti-
lized temporal artifacts such as inter-frame variation [7],
temporal frequency artifacts [15] and general inconsisten-
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cies among frames [27], [22]. In particular, the works in
[2] and [3] studied the temporal inconsistency of identi-
ties in fake videos and proposed detectors to discriminate
fake videos from real ones. However, the proposed mod-
els are only for close-set scenes, which means they require
reference sets of identities to provide candidate identities.
Therefore, their methods do not generalize well and per-
form poorly in open-set scenes, where detectors are used to
find out Deepfake of unseen identities.

In this paper, we propose a new Deepfake detection
framework called Temporal Identity Inconsistency Network
(TI?Net). The key idea is to detect temporal identity incon-
sistencies in suspect videos, i.e., the low similarity of iden-
tity features captured from the same video with the given
identity. Therefore, An intuitive solution would be to mea-
sure the similarities between identity features captured from
the frames containing the same identity. Fig. 1 is an exam-
ple of temporal identity inconsistency measured by the sim-
ilarity of identity features in frames of the same video. In
detail, we randomly select one real video and one fake video
from FaceForensics++ (FF++) dataset [18] and randomly
sample five frames from each video. For selected frames,
we extract the identity vectors of faces by arcface [4]. We
then calculate the pair-wise similarities of identity vectors
between frames in each video. The results are shown in
the matrix in Fig. 1. It can be observed that although the
fake frames look visually realistic, the inter-frame simi-
larity values are significantly lower than those of the real
frames, which indicates that temporal inconsistency can be
exploited to expose Deepfake. Unlike spatial inconsistency-
based detectors that need identity labels for inner face iden-
tities and outer face identities during generation, temporal
identity inconsistency is based on the dissimilarity of the
same identity among video frames and does not request ex-
ternal information about identity. Besides, detectors based
on temporal identity inconsistency do not need a reference
set to provide candidate identities.

Based on the above discussion, our proposed TI2Net
captures temporal identity inconsistency to detect fake
videos. Real and fake sequences are first generated from
video sets during pre-processing. Identity vectors are then
extracted by an identity encoder. TI?Net captures iden-
tity inconsistency among frames rather than the identity
itself. Thus, we calculate the difference between succes-
sive frames to generate the temporal difference of identity
vectors. RNNs are then adopted to learn the temporal em-
bedding of the temporal difference, and the information of
identity inconsistency is represented by the temporal em-
bedding. The embedding is applied to construct triplet loss
to optimize temporal modeling. Besides, the temporal em-
bedding is also fed to the classification head for binary clas-
sification.

The contributions of our work are as follows:

* We propose Temporal Identity Inconsistency Network
(TI?Net), a new Deepfake video detection framework
based on temporal identity inconsistencies. TI?Net
calculates temporal difference to capture inconsis-
tency among frames and avoid over-fitting to identities.
Thus, TI2Net does not need a reference set with can-
didate identities so that TI2Net can work in open-set
scenes.

» TI?Net adopts RNNs to learn embeddings of tempo-
ral identity inconsistency and incorporate triplet loss
to optimize the extraction of temporal embeddings.

* We conduct comprehensive experiments to evaluate
the performance of the proposed framework. The re-
sults demonstrate that our framework makes an im-
provement in terms of cross-manipulation general-
ization, cross-dataset generalization, and robustness
against image degradation.

2. Related Work
2.1. Deepfake Generation

Deepfake generation task has branched into two main
categories: face swapping and face reenactment. Face
swapping [28] [17] manipulation aims to replace the face
of the source identity in an image with the face of another
identity. Face swapping manipulation usually includes the
combination of two faces, color and texture transfer and
processing of edges of combination. However, imperfect
generations easily leave artifacts like visible edges or in-
consistency of color and texture patterns between the source
face and target face.

Manipulations like face reenactment and facial attribute
manipulation [21] [20] apply alteration to facial parts to
customize human faces. Different from face swapping that
harms the identity feature of the source, face reenactment
only applies manipulations to facial attributes, thus the iden-
tity features could be preserved to ensure the face can be
recognized as the same person before and after the manipu-
lation.

2.2. Identity-based Deepfake Detection

The work in [2] is based on the idea that the biometric
measures, such as appearance and behavior patterns, of the
same identity should be consistent. Thus, they proposed a
two-branch framework, where one branch extracts appear-
ance features, and the other branch captures behavior fea-
tures. Then the cosine similarity between the two-branch
features is compared with the reference set to select the best
matching reference videos. If the identities of the two best
matching videos are consistent, the video is considered au-
thentic.
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LRNet[19] represents identity with facial landmarks and
applies such identity features to detect Deepfakes. In de-
tail, LRNet mines temporal identity features of videos to tell
Deepfake videos from real ones. To extract more accurate
and precise features, LRNet adopts a calibration module to
fine-tune the extracted landmarks, and the fine-tuned land-
marks are then fed to a two-branch RNN to analyze tempo-
ral patterns of identity landmarks. Though LRNet provides
solid pre-processing and achieves promising detection per-
formance, it performs poor generalization ability.

ID-reveal [3] captures temporal identity feature by the
adoption of 3DMM model. Then a temporal ID network an-
alyzes the temporal pattern of 3DMM models. The model
is trained in an adversarial manner leveraging a set of refer-
ence videos.

Identity Inconsistency Transformer (ICT) [5] is based on
the inconsistency of the inner face region and outer face re-
gion in face-swapped images. Specially, ICT adopts a pow-
erful Transformer to capture the inconsistent information
from patch sequences of images, the outputs of the inner
token and outer token of the last block are regarded as the
identity information. ICT is designed for face-swapped im-
ages and requests a reference video set during evaluation.

3. Temporal Identity Inconsistency Network

We propose the Temporal Identity Inconsistency Net-
work TI?Net (as illustrated in Fig. 2) to detect Deepfake
videos by capturing the temporal inconsistency of the same
identities in a video.

Given an input video clip or a series of frames with the
same identity, TI?Net first extracts identity vectors from all
frames with an identity encoder. Then the temporal differ-
ence of identity vectors is generated by differencing oper-
ation to transform identity features into temporal inconsis-
tency among video frames. An RNN is then adopted to ex-
tract the temporal embedding of the identity inconsistency.
The embedding was finally fed to the classification head to
predict the sequence into the right class. During training,
a triplet loss is adopted to benefit the temporal modeling.
Firstly, the anchor sequence and the positive sequence are
sampled from real videos, and a negative sequence is sam-
pled from fake videos. These three sequences all go through
the above-mentioned processing, and then we get the anchor
embedding, positive embedding and negative embedding.
The distance between anchor embedding and positive em-
bedding (anchor-positive distance) indicates the similarity
between the same class sequences, while the distance be-
tween anchor embedding and negative embedding (anchor-
negative distance) indicates the similarity between the se-
quences of different classes. Thus, the triplet loss can be
constructed to optimize the temporal modeling by mini-
mizing the anchor-positive distance and maximizing the
anchor-negative distance.

3.1. Pre-processing and Differencing

Pre-processing: Pre-processing includes frame extrac-
tion, face cropping and identity encoding. Sequences of
identical lengths [ are generated from videos firstly. All
sequences are categorized into the real set and fake set ac-
cording to the labels of their original videos. For the con-
struction of triplet loss, the anchor sample and the positive
sample are sampled from the real set, the negative sample is
sampled from the fake set.

The identity features in a sample sequence can be en-
coded by the identity encoder. Therefore, the anchor sam-
ple, positive sample and negative sample are then trans-
formed into anchor identity vectors I, positive identity vec-
tors [, and negative identity vectors I,, respectively. The
identity encoder is pretrained and is not updated during joint
training, so that the whole framework will focus on tempo-
ral information extraction.

Differencing: To make our model focus on identity in-
consistency among frames rather than identities themselves,
we first apply differencing to identity vectors and get the
temporal difference of the identity vectors. Differenc-
ing aims to better explore the temporal patterns in identity
vectors by calculating the difference between consecutive
frames.

For identity vectors I:

Is = {is1,0s,2, 05,1} (1)

where 74, € RP is the k*" identity vector, k € [1,1], [ is the
sequence length of identity vectors.
The corresponding temporal difference D; is:

D, ={ds1,ds2,...,ds -1}

- {13,2 —15,1,%5,3 — 15,2y -

2

s Z‘s,l - is,(l—l)}v

Different from identity vectors that indicate identity in-
formation within frames, the temporal difference empha-
sizes the features among video frames, especially the iden-
tity inconsistency among frames. Therefore, The temporal
difference sequences of I, I, and I, are D,, D), and D,,.

3.2. Temporal Identity Inconsistency Learning

Temporal difference contains rich information on
among-frame inconsistencies, especially temporal identity
inconsistency. We then adopt RNNs to learn the tempo-
ral embedding of identity inconsistencies from the temporal
difference. For the given temporal difference Dy, RNN, i.e.,
Gated Recurrent Unit (GRU) in our framework, processes
D, in a sequential manner. As shown in Fig. 3, at time step
t, RNN processes component d ¢, the tth component of Dy.
The memory of the GRU is controlled by the reset gate and
the update gate. Both gates are based on the hidden status
of last time step h;—1 and current input d ¢:
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Figure 2: Framework of the proposed Temporal Identity Inconsistent Network (TI%Net). The raw sequence of video frames is
transformed into identity vectors through the identity encoder. Differencing operation is then adopted to generate the temporal
difference, which better captures the temporal inconsistency of the identity. From the temporal difference, RNN then learns
the temporal embedding, which represents temporal identity inconsistency. Temporal embeddings of anchor, positive and
negative samples are used to construct triplet loss to benefit the temporal embedding learning and binary classification.

3)
“4)

where z; and r; are update gate and reset gate respectively.
W, and W,. are weight matrix of update gate and reset gate,
b, and b, are corresponding bias. o is the Sigmoid activa-
tion function.

Then r; updates the h;_1:

2t = U(Wz . [ht—lads,t] + bz)a
Ty = U(Wr . [htfla ds,t] + bT)7

hi_y = tanh(Wy, - [re @ he_1, 24] + by,), )

where tanh is the tanh activation function and ® is the
point-wise multiply operation.
Then the hidden status gets updated as:

he=(1—2) O ht_1 4 2 @ hy_. (6)

The temporal embedding 7 is the output of the last
time step. Therefore, for temporal difference D,, D, and
D,,, RNN learns embeddings T,, T, and 7, that represents
the temporal identity inconsistency of anchor, positive and
negative samples, respectively.

Triplet loss: To make the RNNs learn more discrimina-
tive temporal embeddings, we adopt a triplet loss that mea-
sures the distance between temporal embeddings. As the

positive sample is from the same set as the anchor sam-
ple (real sequence set) and the negative sample is from
the fake sequence set, T;, and 7T;, should be more simi-
lar than 7, and T,,. Therefore, we adopt a triplet loss
Lii(T(a),T(p),T(n)) to minimize the anchor-positive
distance and maximize the anchor-negative distance. In de-
tail, the L2-norm is adopted to measure the distance be-
tween embeddings. The triplet loss of temporal represen-
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Figure 3: Temporal embedding leaning with RNN.
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tation T}, T}, and 715, is:

Liri(T(a), T(p), T(n)) = max(|[T(a) — T(p)||?

, %

—IT(a) = T()[|" + «,0),

where || -||? is the L2-norm and o is the triplet loss margin.

To help the convergence of triplet loss by avoiding the

situation in which both anchor-positive distance and anchor-

negative distance increase, we also adopt anchor-positive
distance as a regularization item:

Lap = ||T(a) = T(p)II*. ®)

3.3. Fake Video Classification

The temporal embeddings T, T}, and T, are also fed to
classification head for the prediction of binary labels. The
binary classification loss is as follows:

Leis(yis p(yi)) = CE(yi, p(yi))

N
- % Z(yi log(p(yi))) + (1 —wi) - log(1 — p(ys)),
- )

where CE(,) is cross-entropy loss, y; is the label of a sample
1 and p(y;) is the possibility of the sample ¢ being classified
as the positive class.

The overall loss of TI%Net is:

L = Leg + A Ltri + A2Lap, (10)

where L is the binary classification loss, L;; is the triplet
loss and L, is the regularization item. Besides, A\; and A;
are hyperparameters to control the importance of loss items.

4. Experiments
4.1. Experiment Settings

Datasets: In our experiments, we train our model with
FaceForensics++ (FF++) dataset [18], which contains 1000
real videos and 4000 fake videos. Specially, the fake dataset
consists of 4 subsets corresponding to four Deepfake ma-
nipulations, two of which (Deepfakes and FaceSwap) are
for the face-swapping task and the other two (Face2Face
and NeuralTextures) are for of face reenactment task.

We also use benchmark datasets to test the performance
of the proposed methods:

(1) DeepFake Detection (DFD) [16]: A dataset released
by google, containing hundreds of real videos of some paid
actors and thousands of fake videos generated with the iden-
tities of the real videos.

(2) DeeperForensics-1.0 (Deeper) [10] : A large-scale
forgery detection dataset. The adoption of the more recent
generation makes videos of high quality.

(3) Celeb-DeepFake vl (CDF1) [13]: A Deepfake detec-
tion dataset that contains 408 real videos and 795 Deepfake
videos.

(4) Celeb-DFv2 (CDF2) [13]: An extended version
of CelebDF1, containing 590 real videos and 5639 fake
videos.

Implementation details: Real and fake sequences are
generated by randomly sampling 64 frames (sequence
length [=64) from original videos. We generate 20 differ-
ent sequences from each video to form the fake sequence
set and real sequence set. The identity encoder is arcface
[4] pretrained using ResNet-18 without se. During encod-
ing identities with arcface, we adopt flipping and concate-
nation operations to improve encoding performance. Each
sequence sample is transformed to identity vectors of di-
mension D=1024. More details of training implementation
can be seen in supplementary materials.

Baselines: We compare our TI?Net with the following
open-set baselines:

(1) MesoNet [1]: A Deepfake detector based on meso-
scopic properties of images.

(2) Xception [18]: A Deepfake detector with Xception.
According to the different datasets used for training, we
compared our method with Xception-c0, which is trained
on FF++ raw set and Xception-c23, which is trained on
FF++-c23 set.

(3) LRNet [19]: A Deepfake detector that processes
landmarks sequences with RNN.

Besides, we also compare our method with two close-set
baselines:

(4) A&B [2]: A Deepfake detector that integrates be-
haviour and appearance of identities.

(5) ICT [5]: A Deepfake detector based on spatial iden-
tity inconsistency.

Evaluation Metrics: We use classification accuracy
(ACC) and area under the Receiver Operating Character-
istic curve (AUC) for evaluation.

4.2. Comparison with State-of-the-art Works

To compare the predictive performance and the gener-
alization ability of T1 2Net with other baselines, We con-
duct in-set evaluation (train and test on FF++) and cross-
set evaluation (train on FF++ and test on other datasets).
We train our model on the FF++ dataset and test the trained
models on other datasets. For fair comparisons, base-
lines MesoNet, Xception-c0, Xception-c23 and LRNet are
also trained and tested in the same manner, i.e., train on
FF++ and test on both FF++ for in-set evaluation and other
datasets for cross-set evaluation. The results are shown in
Table 1. We mark the best results on each dataset. As for
close-set baselines A&B and ICT, they detect fake videos
with reference sets, which makes detection much easier.
Therefore, it is hard to make a fair comparison to T1 2Net
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Table 1: Comparison of TI?Net with state-of-art works in terms of video-level
AUC (%). In-set evaluation refers to training and testing models on FF++. Cross-
set refers to training models on FF++ and testing on unseen datasets.

Methods in-set cross-set
FF++ | DFD | Deeper | CDF1 | CDF2 | Avg
MesoNet [1] 99.91 | 56.55 | 52.36 | 54.69 | 53.97 | 54.39
Xception-cO [18] | 99.94 | 61.23 | 60.03 | 58.82 | 58.23 | 59.58
Xception-c23 [18] | 99.92 | 63.33 | 62.58 | 60.03 | 62.16 | 62.0
LRNet [19] 99.89 | 52.29 | 56.77 | 52.84 | 53.2 | 53.78
TI?Net(Ours) 99.95 | 72.03 | 76.08 | 66.65 | 68.22 | 70.75

Table 2: Cross-manipulation evaluation results in terms of
sequence-level AUC(%). The model is trained with one
subset of FaceForensics++ and tested on the other three sub-
sets of the datasets. The grey values are AUC trained and
tested on the same manipulation. The bold values are the
best cross-manipulation metrics.

Testing set
Training set FS FR
a | fs ff [ nt
FS df 100.0 | 89.45 | 0.7003 | 85.82
fs 95.02 | 100.0 | 74.23 | 81.27
FR ff 90.73 | 90.64 | 100.0 | 95.47
nt 98.56 | 93.07 | 98.45 | 99.99

*Note: the abbreviation FS represents the face swapping category includ-
ing Deepfakes (df) and FaceSwap (fs). FR represents the face reenactment
category including Face2Face (ff) and NeuralTextures (nt).

with close-set baselines. Thus the results are roughly com-
pared, which can be found in our supplementary material.
Compared with open-set baselines, our T/?Net achieves
the best classification performance on all test datasets. On
the Deeper dataset, our method achieves 76.08% AUC,
higher than other datasets because the Deeper dataset is con-
structed based on the training set FF++ and some identities
in the training set are also in the Deeper dataset. On most
datasets, our method achieves over 70% AUC except CDF1
and CDF2, which are usually considered challenging. Our
framework achieve close performance on CDF1 and CDF2
because the CDF2 is the extension of the CDF1 dataset.

4.3. Cross-manipulation Evaluation

To test the performance of our model on unseen manip-
ulation, we train and test our model on the FF++ dataset.
In detail, we train the model on one of four subsets (df for
Deepfakes, fs for FaceSwap, ff for Face2Face and nt for
NeuralTextures) and test the model on the other three sub-
sets. The results are shown in Table 2.

Our model achieves almost perfect AUC when detecting

videos from the same subset. Even on cross-manipulation
settings, the minimum detection AUC is over 0.7 when
trained on df subset and tested on ff subset. When trained
on nt subset, our model achieves AUC as high as 0.9856 and
0.9845 on df and ff subsets, respectively.

In terms of FS and FR categories, it can be observed that
when trained on data in the FR category, the model achieves
AUC over 0.9 on FS category subsets, which is significantly
higher than training on FS but testing on FR. Because the
FR category subset contains modules to preserve the iden-
tity of source videos, FR category subsets are more chal-
lenging for identity-based detectors. When trained on more
challenging datasets, the model is more likely to be gener-
alized to subsets that contain obvious identity-related arti-
facts.

4.4. Ablation Study

Differencing: We first evaluate the effect of differencing
operation by comparing the performance when the input to
RNN are identity vectors and temporal difference, respec-
tively. The results are shown in Table 3.

Compared with feeding RNN with I without differenc-
ing, feeding 7T’ slightly harms the performance of prediction
on the seen dataset but significantly improves the general-
ization. Feeding I, to RNN makes RNN learn the tempo-
ral information of identity vectors, thus, the whole frame-
work is more likely to be over-fitted to identities, harming
the generalization to unseen datasets. Temporal difference
T, contains more information about identity inconsistency
among video frames, which is more general in different
datasets.

Table 3: Ablation study of differencing operation in terms
of AUC (%). Identity vectors are fed to RNNs without dif-
ferencing when sequence type is /.

Sequence \ FF++ \ DFD \ Deeper \ CDF1 \ CDF2

I 99.99 | 5298 | 6932 | 5945 | 534
T, 99.95 | 72.03 | 76.08 | 66.65 | 68.22
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Table 4: Ablation study of loss items in terms of AUC (%).
Full loss refers to loss function with items L, L and
Lep.

Loss | FF++ | DFD [ Deeper | CDF1 | CDF2
Loy [99.20 [ 60.09 | 63.62 [ 52.01 [ 42.35
Leig, Leri | 99.82 [ 68.54 | 74.96 [ 65.65 | 64.67
Full 99957203 ] 76.08 | 66.65 | 6822

With/without Triplet Loss: To evaluate the impact of
items in the loss function of our framework, we train our
model with different loss settings, the results can be seen in
Table 4.

Comparing the results of L. setting and L p+Lyy, it
is notable that L,,.; significantly improves the generalization
ability of the model to unseen datasets, since L;,; pull the
temporal representations of real sequences closer and push
the temporal representations further apart if two sequences
are from different classes, the model with L;,; loss item
learns more discriminative temporal embeddings of tempo-
ral identity inconsistency. Besides, L, improves the per-
formance of the model on both seen and unseen datasets,
which owes to the contribution of L, to the convergence
of anchor-positive distance. We normalized the anchor-
positive distance, negative distance and triple loss during
training epochs and visualized them to indicate the contri-
bution of L, in Fig. 4.

In Fig. 4 (a) it can be observed that without L, although
the triplet loss decreases until converges to 0, both anchor-
positive and anchor-negative distances keep rising until they
are no longer updated after triplet loss becomes converged,
which means the anchor-positive and the anchor-negative
distance will not be optimized after the convergence of
triplet loss. While in Fig. 4(b), although triplet loss con-
verged and anchor-negative is no longer optimized after
that, anchor-positive distance keeps decreasing until the
anchor-positive margin, which makes the temporal embed-
dings of real and fake more discriminative to improve the
predictive performance.

Sequence length: We also test the performance of the
model with different sequence lengths. The length candi-
dates are selected from 16 to 128 with a step of 16. The
results are shown in Table 5.

It can be observed that when sequence length is no more
than 64, both AUC and Acc increase as sequence length
increases, which indicates that short sequences may con-
tain insufficient temporal patterns information for RNN to
learn. Then when sequences are longer than 64, the per-
formance drops gradually with the increase of length since
long sequences lead to complex patterns to learn and also
bring difficulties to model training convergence. Hence, a
careful choice of the sequence length is vital to ensuring the
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Figure 4: Anchor-positive distance, anchor-negative dis-
tance and triplet loss during training epochs.

effectiveness of the proposed method.

Sampling Strategy: During the generation of sequences
from videos, we evaluate two strategies and compare their
performances. The first strategy is random sampling, which
is to randomly select frames in temporal order to gener-
ate sequences. The second strategy is sliding window sam-
pling, which is to apply a sliding window of sequence length
and sample a short clip from videos. The performance un-
der both sampling strategies is in Table 6.

While random sampling captures global identity incon-
sistency in a video, sliding window sampling is more fo-
cused on local identity inconsistency. Table 6 indicates that,
compared with sliding window sampling, random sampling
significantly outperforms sliding window sampling. This is
because our model applies differencing before feeding se-
quences to RNNs. The coherence of videos makes consec-
utive video frames highly similar, making a large portion
of temporal difference tensors zero and eliminating much
information on temporal patterns.

4.5. Robustness Analysis

To evaluate the robustness of our methods, We challenge
models with compressed images and images added with
noise. Our model is compared with Xception and LRNet
in robustness evaluation. We generate 20 groups and com-
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Table 5: Evaluation of models with different sequence lengths in terms of prediction Acc (%) and AUC (%).

Length [ 16 | 32 [ 48 | 64 [ 80 | 96 [ 112 | 128
Acc [ 83.02 ] 85.51 [ 89.88 | 98.33 [ 94.85 | 93.5. [ 90.01 | 88.00
AUC [89.97 [ 9835 | 98.53 [ 99.77 | 99.65 | 98.99 [ 97.59 | 97.15

Table 6: Evaluation of models with different sampling
strategies to generate sequences in terms of AUC (%).

[ FF++ | DFD | Deeper | CDFI | CDF2

99.95 | 72.03 | 76.08 | 66.65 | 68.22
9691 | 67.05 | 65.22 | 51.05 | 5091

Random
Sliding

pressed samples and 20 groups of samples with noise ac-
cording to the intensity (degree) of compression and noise
respectively. For both compression and noise, a lower de-
gree indicates lower degradation intensity. More details and
samples can be found in supplementary materials. The re-
sults of degradation evaluation can be seen in Fig. 5.

As can be seen from Fig. 5(a) and Fig. 5(b), our model
significantly outperforms the other two methods. In terms
of both metrics, Xception suffers a large performance drop
even when images are slightly compressed, and then it ex-
hibits a stable performance until a high compression degree
kicks in, causing the second quick decline of performance.
LRNet, as a landmarks-based method, shows a similar per-
formance trend as Xception, but its prediction performance
is significantly higher than that of Xception at the relatively
stable stage. Different from baselines, our T/ 2Net shows
high robustness against slight compression, i.e., the AUC
hovers over 0.99 until the compression degree reaches 16.
After the compression degree hits 17, the performance of
TI?Net in terms of both AUC and ACC starts to drop sig-
nificantly. Nevertheless, it still remains better than the base-
lines.

In Fig. 5(c) and Fig. 5(d), we can see that the per-
formance of Xception keeps decreasing as the noise de-
gree grows. The classifier reaches a random-guessing stage
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when the noise degree climbs over 10. Both LRNet and
TI%Net show promising robustness against noise, especially
in terms of AUC, they are both higher than 0.8 even when
the noise degree is over 15. But in terms of ACC, TI?Net
performs better than LRNet, especially at the low and mid-
dle noise degrees.

5. Conclusion

In this work, we propose TI2Net, a reference-agnostic
Deepfake detector based on temporal identity inconsistency.
We transform the identity vectors to temporal difference
by differencing and learn temporal embeddings of iden-
tity inconsistency with RNN. Extensive experiments are
conducted to evaluate the effectiveness of our framework.
Our framework shows promising generalization ability to
unseen datasets, especially to unseen manipulations. Our
framework is also very robust to image compression and
additive noise. We also notice that although we adopt dif-
ferencing to avoid over-fitting to identities, our model per-
forms better on seen identities, such as the high predic-
tive performance in cross-manipulation evaluation and bet-
ter cross-dataset performance on the Deeper dataset, which
is constructed based on our training dataset. Therefore, we
hope our work can inspire more future works on temporal
identity inconsistency to make improvements.
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