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Abstract

Detection of melanocytes serves as a critical prerequi-
site in assessing melanocytic growth patterns when diag-
nosing melanoma and its precursor lesions on skin biopsy
specimens. However, this detection is challenging due to
the visual similarity of melanocytes to other cells in rou-
tine Hematoxylin and Eosin (H&E) stained images, leading
to the failure of current nuclei detection methods. Stains
such as Sox10 can mark melanocytes, but they require
an additional step and expense and thus are not regu-
larly used in clinical practice. To address these limita-
tions, we introduce VSGD-Net, a novel detection network
that learns melanocyte identification through virtual stain-
ing from H&E to Sox10. The method takes only rou-
tine H&E images during inference, resulting in a promis-
ing approach to support pathologists in the diagnosis of
melanoma. To the best of our knowledge, this is the first
study that investigates the detection problem using image
synthesis features between two distinct pathology stain-
ings. Extensive experimental results show that our pro-
posed model outperforms state-of-the-art nuclei detection
methods for melanocyte detection. The source code and
pre-trained model are available at: https://github.
com/kechunl/VSGD-Net

1. Introduction
In biomedical image analysis, the automatic detection

of certain types of cells in microscopy images is of sig-
nificant interest to a broad spectrum of biological research
and clinical practices. Accurate identification of particu-
lar cell types helps to interpret biopsies and to diagnose
the states of different diseases. For example, the diagno-
sis of melanoma, the most serious type of skin cancer in
the United States [41], requires the assessment of the distri-
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bution disorder of melanocytes1 under the microscopic ex-
amination of Hematoxylin and Eosin (H&E)-stained glass
slides of skin biopsies by pathologists. Nevertheless, iden-
tifying melanocytic populations can be challenging on rou-
tine H&E-stained slides given the visual similarity with
other cells. As a solution to this, pathologists may rely on
obtaining special additional immunohistochemistry (IHC)
stains, for example, Sox10 – a transcription factor expressed
in melanocytic nuclei – as a specific immunomarker to high-
light melanocytes (Fig. 2c). Despite this benefit, Sox10 im-
munostaining is not routinely obtained in clinical practice
because of its high cost, especially in some low-resource
regions. Hence, building computer-aided melanocyte detec-
tion methods would support the melanoma diagnosis work-
load and improve diagnostic accuracy.

In the last decade, benefiting from the development of
deep learning techniques, researchers have leveraged deep
convolutional neural networks (CNNs) with various model
designs to tackle many computer vision tasks, including se-
mantic segmentation and instance detection. As a part of
instance detection, a major line of work utilizes deep convo-
lutional neural networks (CNNs) [8, 12], U-Net [3], R-CNN
[43], shape-guided CNN [37], and high-resolution networks
[5] to localize general nuclei on H&E images. Similar CNN
structures can also be found in specific types of cell/nuclei
detection studies, such as mitotic nuclei detection [31, 42]
and tumor nuclei grading [5, 27, 8, 34]. However, un-
like general nuclei/cell detection, the detection of a specific
class of cells is more challenging because of the inter-class
visual similarity on routine H&E-stained slides. Although
IHC staining can highlight certain types of cells, it is not
comparable to H&E staining in terms of generalizability be-
cause of the difficult accessibility issue. Learning from only
H&E-stained slides, the aforementioned CNN-based detec-
tion methods are not capable of incorporating information

1For example, melanoma in situ exhibits confluent growth of single and
nested melanocytes at the epidermal base and/or extension into the mid-to-
upper levels of the epidermis.
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from other modalities/stainings and in this way fail to dif-
ferentiate various classes of cells.

Recently, Generative Adversarial Networks (GANs)
have been used for data augmentation and style transfer.
In the biomedical research community, GANs also attract
growing attention for virtual staining and realistic medical
image synthesis to aid clinical practices. For example, re-
searchers leverage the unsupervised CycleGAN [55] archi-
tecture and the supervised conditional GAN [13] to synthe-
size one modality into another, e.g. MR to CT [49, 11],
H&E to IHC [48, 29]. However, there is still a gap between
synthesizing convincing medical images and boosting the
performance of downstream tasks. In other words, a gen-
erator cannot be trained for a specific downstream task for
lack of direct feedback from another network. To make up
for this issue, some studies [6, 52] cascade a segmentation
net after the generator and train the network in an end-to-
end style. But these methods fail to explore intermediate
features from the image synthesis process, which are em-
pirically important for the downstream tasks.

In order to aid in the pathologists’ decision-making pro-
cess, it is very useful to have either accurate melanocyte
prediction or precise virtual staining. Motivated by the de-
mand, we propose VSGD-Net, a novel virtual-staining-
guided detection architecture that provides a solution to
both the detection and the virtual staining tasks simul-
taneously. VSGD-Net boosts detection and image synthe-
sis performance at the same time by incorporating hidden
correlations between two image modalities. In Fig. 4, we
illustrate our proposed model, which expands a conditional
GAN to an instance detection pipeline. The generator, dis-
criminator, and detection network are jointly trained so that
the image synthesis task and the detection task can benefit
from each other. We validate our approach with a carefully
curated melanocyte dataset that contains biopsy images in
H&E and Sox10 stainings. Moreover, we verify the signif-
icance of the intermediate features with extensive experi-
ments. Our contributions in this work can be summarized
as follows:

1. We propose VSGD-Net for the instance detection task.
To the best of our knowledge, this work is the first to
investigate the detection problem using image synthe-
sis features between two stainings. From an informa-
tion system perspective, the added modality increases
information entropy and facilitates feature learning
through adversarial training.

2. We compare our model with previous nuclei detection
and GAN-based methods in a melanocyte detection
dataset. Extensive experiments show that our model
achieves the state-of-the-art performance.

3. During inference time, the proposed VSGD-Net takes
only an affordable regular H&E stain as input to iden-

tify melanocyte instances. As one of the first deep-
learning-based melanocyte detection methods, the pro-
posed model would provide reliable melanocyte re-
sults to reduce the burden on pathologists and aid in
melanoma diagnosis in the future.

2. Related Work
2.1. Nuclei Detection

In recent years, deep learning-based nuclei detection
methods have been widely studied. As a variant of the fully
convolutional network (FCN) [22], U-Net [36] made a huge
impact on the medical image research community. Many
researchers extended the U-Net structure [36] into more ef-
ficient variants to identify nuclei in histopathological im-
ages, for example, R2U-Net [1], U-Net++[54], Micro-Net
[35], and Triple U-Net [51]. To incorporate nuclei contour-
aware modules, Zhou et al. presented CIA-Net [53] which
contains two task-specific decoders to learn either the nu-
clei or the contours. Similarly, Schmidt et al. proposed
StarDist [37] to localize nuclei via star-convex polygons.
In the task of detecting nuclei of specific cells, Graham et
al. proposed Hover-Net [8] by utilizing three downstream
branches, namely segmentation, classification, and a novel
Hover branch, which used the horizontal and vertical dis-
tance maps to segment attached nuclei. For better distance-
map generation, Gao et al. presented the two-stage CHR-
Net [5], which leveraged the W-Net structure [47] and high-
resolution feature extractors, and achieved the new state-of-
the-art performance.

Another line of approaches, e.g. Mask RCNN [9], have
also achieved promising results in nuclei instance segmen-
tation [21, 43, 44]. The feature pyramid network (FPN)
backbone allows the model to extract features in multiple
scales and feed into the region proposal network (RPN) to
generate reasonable instance candidates in varying sizes for
downstream tasks like segmentation and classification. Our
proposed model, VSGD-Net, also takes advantage of the
FPN and RPN modules to better exploit the intermediate
features for nuclei detection.

2.2. Image-to-Image Translation

First proposed by Goodfellow et al., the Generative Ad-
versarial Network (GAN) [7] introduces the adversarial loss
to optimize the generator and the discriminator in a mini-
max zero-sum game. To incorporate additional constraints
on the generated data, Mirza et al. proposed the conditional
GAN (cGAN) [30], which feeds the condition to both the
generator and the discriminator to guide the generation pro-
cess. Successful variants of the cGAN include the LSGAN
[26], the ACGAN [32], the BigGAN [2], and Pix2Pix [13].
Among these prominent variants, Pix2Pix [13] first brought
the cGAN to the paired image-to-image translation task and
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Figure 1. Preprocessing steps: First, we register raw Sox10 images (b) into aligned Sox10 images (c) using template H&E images (a) with
the Histokat software3[23]. Then, we apply a Random Forest classifier to classify pixels into melanocyte or non-melanocyte. At last, the
pretrained NuSeT [50] separates touching nuclei and refine the masks.

its extension, Pix2PixHD [45] enabled high resolution im-
age generation. To alleviate the need for paired data, Zhu
et al. proposed CycleGAN[55] to learn the mapping be-
tween two image domains X and Y in both directions by
coupling two GANs. The idea behind Cycle GAN is that
ideally if we translate the image from one domain to an-
other and back again, the reconstructed image should be
the same as the input image. The CycleGAN structure has
also been widely applied in stain normalization, modality
conversion, and virtual staining for histopathological im-
ages. For instance, Shaban et al. developed Stain-GAN [39]
based on the CycleGAN structure for biopsy stain normal-
ization. Mahmood et al. leveraged CycleGAN to learn the
mapping between histopathology images and nuclei masks
to improve nuclei segmentation [25]. Xu et al. developed
cCGAN [48] that incorporated CycleGAN with photoreal-
ism and structure similarity losses to learn virtual staining
from H&E to IHC. However, the cycle consistency loss in
CycleGAN only forces the reconstructed image to be simi-
lar to the original image, lacking some constraints between
the two image domains, which weakens its reliability in vir-
tual staining. To solve this, Liu et al. adds a pathology-
consistency constraint to CycleGAN and requires the gener-
ated and source images to have the same pathological prop-
erties in both H&E and IHC stains [20].

To benefit from GANs, some studies utilize the synthe-
sized data to enhance the performance on downstream tasks
such as detection and segmentation. A R-CNN-based detec-
tor is cascaded after the generator to learn nuclei segmen-
tation [18, 6] and disease localization [52, 19]. However,
these models fail to exploit the informative hidden features

during the generation, and the feedback from the down-
stream tasks may only yield minor improvements in the
image synthesis process. To this end, we propose VSGD-
Net that can jointly optimize the image synthesis and cell-
type-of-interest detection via the shared intermediate fea-
tures. The improvements in both the synthesis and the de-
tection tasks are validated through our comprehensive ex-
periments.

3. Methodology
In this section, we explain the data preprocessing

(Fig. 1), the design of our proposed VSGD-Net, and the
training procedure; the following section will examine var-
ious methods and ablate VSGD-Net’s components to show
its performances and design decisions.

3.1. Dataset

The skin biopsy dataset used in this study consists of skin
tissue from paraffin-embedded blocks of 15 cases, which
were chosen at random among historical cases from a pri-
vate dermatopathology laboratory, including three cases for
each MPATH-Dx diagnostic category[4, 33]4. The tissue
from each skin biopsy case is cut into multiple (4-6) thin
slices for microscopic examination, resulting in 75 slices
in 20x magnification. We stain each WSI with H&E first
(see Fig. 2a). We then carefully destain the exact tissue sec-
tions and re-stain them in Sox10. The Sox10 stain high-
lights the nuclei of melanocytes in red, while the nuclei of

3https://histoapp.mevis.fraunhofer.de/
4Classes 1-5: Benign mildly atypical nevi, Moderate dysplastic nevi,

Melanoma in situ, Invasive melanoma T1a, and Invasive melanoma T1b.
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(a) H&E Staining (b) Sox10 Staining – melanocytes are red (c) Crop from Sox10 

Figure 2. Sample H&E stained image and Sox10 stained image. The Sox10 stain highlights the nuclei of melanocytes in red, while the
nuclei of other cells appear in blue.

other cells appear in blue, which provides the ground truth
label of melanocytes and non-melanocytes (see Fig. 2b).

To generate ground truth labels for melanocyte detec-
tion, we introduce a pseudo-automatic procedure. We
trained a Random Forest classifier on 100 manually la-
beled melanocytes in Sox10 to generate coarse melanocyte
masks. Then, we applied a pretrained nuclei detection
model, NuSeT [50], to separate touching nuclei and re-
fine the masks. We find that this procedure yields accurate
melanocyte masks, which can serve as ground truth labels
in this study (see Fig. 3).

H&E

Sox10

Figure 3. Nuclei groundtruth: The top row shows the H&E images
with melanocytes marked with green boundaries. The bottom row
shows their corresponding Sox10-stained images.

To fit images into memory as well as keep adequate in-
formation, we cropped the registered paired images into
256x256 patches with 10x magnification. The background
patches were excluded, leaving a total of 25,314 patches to
use. We reserved 9652 paired image patches from 5 patients
for the testing set and the rest for training and validation,
where data from patients in the testing set never appeared
in the training and validation sets. Both the training and
testing sets contain the full range of MPATH-Dx diagnostic
classes for a fair evaluation.

3.2. Model Architecture

Fig. 4 illustrates the VSGD-Net architecture. We built the
generator G based on an adapted UNet [36] structure with
ResNet-50 [10] being the encoder. The encoder learns the
high-dimensional feature representations of input H&E im-
ages in multiple scales, and the decoder translates them into
target Sox10 stained images. Given the 25x downsampling
in the encoder, the decoder comprises 5 deconvolution lay-
ers. To better focus on melanocytes without expanding the
model architecture, we incorporated attention blocks in the
skip connections between the encoder and the decoder. The
attention blocks leverage the design of CBAM [46], which
contains a 3-layer MLP channel attention block and a con-
volutional spatial attention block to learn the attention maps
in different dimensions (see Fig. 5).

While the generator G learns the virtual staining pro-
cess, the discriminator D attempts to differentiate real and
synthesized Sox10 images. Inspired by Pix2PixHD [45],
we adopted a multi-scale architecture that has 2 identical
CNN networks as discriminators: the two discriminators
work at coarse and fine levels separately, where the input to
the coarse-level discriminator is downsampled by a factor
of 2 from the input to the fine-level discriminator. Similar
to PatchGAN [13], each discriminator evaluates the realism
of every fixed-sized patch in the image instead of directly
evaluating the realism of the whole image. With the min-
imax loss introduced in [7], this multi-scale design guides
G to synthesize images with globally consistent patterns as
well as finer details. The architectural details of the atten-
tion block and the discriminator are explained in the supple-
mentary material.

Similar to Mask R-CNN [9], our detection branch con-
sists of a feature pyramid network (FPN), a region proposal
network (RPN), and the downstream heads. Learning to
generate Sox10 images, the decoder layers have higher cor-
relations with the Sox10 images than the encoder layers;
moreover, Sox10 staining can highlight melanocytes in a
red chromogenic color, which is consistent with the detec-
tion goal. In light of this, we place the detection branch in

1921



1282x64

642x256

322x512

162x1024

82x2048

Coarse 
level

Fine 
level

Real?
Synthesized?

Real?
Synthesized?

FPN

Generator

Discriminator

RPN

Detection 
Head

Detection Branch

A

ResNet Block

Deconvolution Layer

Concatenate

Discriminator

A Attention Block

A

A

A

A

Figure 4. Our VSGD-Net framework: H&E images are virtually stained to Sox10. The jointly trained detection branch utilizes the
intermediate features in the generator to detect melanocytes and provides feedback to the generator to enhance synthesis quality. The
inference phase only uses the upper part of the architecture.

the decoder of G instead of the encoder, which is proven to
be effective in the ablation study.

Channel Attention Spatial Attention

Avgpool

Maxpool

[Avgpool, Maxpool]

Attention Block

Figure 5. Attention block: Channel attention and spatial attention
are consecutively computed to refine the features.

3.3. Training Process

In our end-to-end model, the virtually stained images and
the detected instances are predicted from the shared inter-
mediate features. To incorporate the feedback from both
the image synthesis and the instance detection, we train G,
D, and the detection branch jointly to learn from both the
GAN loss LGAN and the detection loss LDET .

3.3.1 GAN Loss

The generator G and the multi-scale discrimator D are op-
timized following the minimax loss [7]:

min
G

max
D

∑
i=1,2

(
log(Di(Xs)) + log(1−Di(G(Xh)))

)
where D1 and D2 are the coarse- and fine-level discrimina-
tors, and Xs and Xh are the Sox10 and H&E images.

Besides the minimax loss, we add a feature similarity
loss Lfeat to improve the similarity between the generated
and the real images. The calculation of Lfeat involves mul-
tiple layers in D and a pretrained VGG19 model, and is
given by the following equation:

Lfeat =

N∑
i=1

||Di(Xs)−Di(G(Xh))||1+

M∑
j=1

||V GGj(Xs)− V GGj(G(Xh))||1

where N and M denote the layers to extract features. The
details of feature similarity loss is provided in the supple-
mentary material.

3.3.2 Detection Loss

The detection loss LDET is separated into Lrpn, Lboxc
,

Lboxr
, and Lseg . Lrpn the total loss of the candidate classi-

fication and the coarse bounding box regression in the RPN,
given by the summation of binary cross entropy of the can-
didate classification and L1 loss on the coarse bounding box
regression in the RPN. It forces the RPN to learn the loca-
tion of anchor boxes and whether the anchor boxes contain
objects. Lboxc

, Lboxr
, and Lseg are the losses for the in-

stance classification, the final bounding box regression, and
the segmentation in the downstream heads, which are given
by the binary cross entropy of the instance classification, the
binary cross entropy of the mask prediction, and the L1 loss
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of bounding box coordinates. The total loss is defined as:

LDET = Lrpn + Lboxc
+ Lboxr

+ Lseg

3.3.3 Overall Losses and Training

In our VSGD-Net, the shared intermediate features are
learned to characterize features of melanocytes and boost
the Sox10 image synthesis at the same time. To facilitate
such multi-task learning, we combine LGAN with LDET

and backpropagate them to the encoder inside G. The final
total loss is defined below,

min
G

(
max
D

∑
i=1,2

(
log(Di(Xs)) + log(1−Di(G(Xh)))

)
+ λ ∗ Lfeat + LDET

)
(1)

4. Experiments and Results

4.1. Experimental Design and Baseline Methods

To comprehensively evaluate the performance of our
proposed VSGD-Net, we compared VSGD-Net with two
lines of methods. The first group is specialized in nu-
clei detection, including Radial Line Scanning (RLS)[24],
Mask R-CNN[9], U-Net[36], StarDist[37], HoverNet[8],
the new state-of-the-art CHR-Net[5], and a “nuclei classi-
fication” method we designed. RLS was specifically pro-
posed to study melanocyte detection. It leverages a feature-
based approach based on the “halo region” assumption that
melanocytes appear with a brighter region surrounding the
nuclei under H&E staining. Furthermore, to investigate the
local texture around nuclei, we designed the “nuclei classi-
fication” method, which first applies a fine-tuned ensemble
model [38] to detect nuclei and then trains the open-source
ESPNetv2[28] to classify cropped nuclei patches.

The second group of methods consists of GAN-based
approaches, including StainGAN [39], PC-StainGAN [20],
and a self-implemented GAN-based segmentation model
similar to [6]. The segmentation model, whose G and D are
the same as VSGD-Net, directly feeds the synthesized image
to the segmentation net and is trained end-to-end. For the
other GAN models that do not incorporate any downstream
modules, we tested their performances in a two-stage man-
ner, using the random forest and the NuSeT model in our
groundtruth-generating step (Section 3.1).

In our experiments, the ResNet-50 backbone in Mask
R-CNN and the ResNet-34 backbone in CHR-Net are pre-
trained with ImageNet for fair comparisons. We empirically
set λ = 10 in Eq. 1. We report precision (P), recall (R),
F1-score, and Jaccard index on the test set in our experi-
ments. More training details are explained in the supple-
mentary material.

4.2. Main Results

In clinical practice, pathologists diagnose and grade
melanoma based on the distribution of melanocytes, hence
it is important to have both high precision and recall. With
high precision but low recall, malignant melanocytes may
be missed, leading to under-diagnosis of melanoma. On the
other hand, a case may be over-diagnosed with high recall
but low precision. Thus the F1-score and Jaccard index are
the most significant metrics. More detailed analyses, such
as precision-recall curve and P@R metrics, are included in
the Appendix for reference.

Table 1. Comparison with nuclei detection methods.

Method P R F1 Jaccard

RLS [24] 0.443 0.570 0.499 0.332
Nuclei Classification 0.693 0.506 0.585 0.413
Mask R-CNN [9] 0.735 0.514 0.605 0.434
U-Net [36] 0.630 0.639 0.635 0.465
StarDist[37] 0.745 0.426 0.542 0.372
HoverNet[8] 0.729 0.499 0.592 0.421
CHR-Net [5] 0.607 0.688 0.645 0.476

Ours 0.660 0.710 0.684 0.520

Table 2. Comparison with GAN-based methods.

Method P R F1 Jaccard

StainGAN [39] 0.476 0.299 0.367 0.225
PC-StainGAN [20] 0.591 0.343 0.434 0.277
GAN-based
Segmentation 0.569 0.719 0.636 0.466

Ours 0.660 0.710 0.684 0.520

As shown in Table 1, VSGD-Net achieves the best F1-
score and Jaccard index. RLS, although it heuristically
utilizes the “halo region” characteristics of melanocytes,
demands a huge workload in hyperparameter tuning and
lacks generalizability in this way. Both “Nuclei Classifica-
tion” and Mask R-CNN show high precision but low recall,
because they only predict instances with high confidence
scores under the instance-level learning schema. Given
the shape similarity between melanocytes and other cells,
StarDist and HoverNet fail to utilize the shape representa-
tion and the distance map of nuclei. Benefiting from the
skip connections, U-Net reaches a decent result. Further-
more, the CHR-Net leverages a double U-Net structure and
high-resolution feature extractors to achieve a 1% improve-
ment over U-Net, which is consistent with the previous
findings[5]. However, without learning from Sox10 stain-
ing, U-Net and CHR-Net still underperform VSGD-Net.

Figure 6 shows the qualitative comparisons of VSGD-
Net, CHR-Net, and GAN-based segmentation. The pre-
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dictions in VSGD-Net have a high coincidence with the
ground truth, while CHR-Net over-predicts the melanocytes
on the bottom-left of the image, and GAN-based segmenta-
tion over-predicts the melanocytes on the top of the image.
More qualitative visualizations are provided in the supple-
mentary material.

VSGD-Net CHR-Net GAN-based Seg

Figure 6. The green and red bounding boxes denote the
groundtruth and the predicted instances. (Zoom in for best view)

Table 2 and Figure 7 demonstrate the performance of
GAN-based methods. StainGAN [39] and PC-StainGAN
[20] were designed based on unsupervised CycleGAN [55].
Without any additional supervision, StainGAN fails to learn
the distribution gap between the two stainings. Although
PC-StainGAN adds a pathology constraint to the Cycle-
GAN, it still lacks supervision on the conversion between
H&E and Sox10. On the other hand, the GAN-based seg-
mentation method has supervision on the synthesized im-
ages, but its detection performance is bounded by the image
synthesis quality due to its architecture.

4.3. Image Synthesis Evaluation

Although image synthesis is only auxiliary in our VSGD-
Net framework, we still evaluate its quality to show that the
virtual staining is improved by the shared intermediate fea-
tures. To measure the reliability of the virtual staining, we
calculate the average Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM). Larger numbers in PSNR
and SSIM indicate better image quality and higher similar-
ity with the groundtruth. As Table 3 shows, our VSGD-
Net achieves the highest PSNR and a comparable SSIM to
PC-StainGAN. By assessing the mean squared error of the
synthesized images, higher PSNR indicates more reliable
results with regard to the virtual staining task.

Table 3. Synthesized image quality assessment.

Method PSNR(dB) SSIM

StainGAN [39] 19.010 0.577
PC-StainGAN [20] 19.344 0.618
GAN-based Segmentation 19.583 0.569

Ours 19.815 0.611

H&E StainGAN PC-StainGAN

GAN-based Seg VSGD-Net Sox10

Figure 7. Synthesized Sox10 images.

4.4. Ablation Study

In Table 4, we ablated each key component in VSGD-
Net, namely the image synthesis features, the location of
the detection branch and the attention module’s presence.
To verify the efficacy of the image synthesis features, we
replaced the generator of VSGD-Net with the generator in
Pix2PixHD[45], which has fewer convolution layers, no
skip connections, and no attention module. As Row 1 of
Table 4 shows, despite the weakness of the Pix2PixHD gen-
erator, it still achieves comparable results and outperforms
other baselines with the key component of boosting detec-
tion with image synthesis features. We assumed the features
in the decoders have higher correlations with Sox10 stain-
ing and melanocytes, and the attention module refines the
intermediate features. Such assumptions are verified by the
notable performance gains in Table 4 row 5.

Table 4. Ablation results.
Generator Features From Atten. F1 Jaccard

Pix2pixHD Decoder - 0.654 0.486
Ours Encoder ✗ 0.641 0.472
Ours Decoder ✗ 0.674 0.508
Ours Encoder ✓ 0.660 0.492
Ours Decoder ✓ 0.684 0.520

4.5. Discussion

The VSGD-Net successfully detects melanocytes using
the features from image synthesis between H&E and Sox10
stainings. Considering the large quantity of melanocytes
(e.g. total number range from 3,780 to 830,750 per WSI)
on a single segment of a skin biopsy, it is not feasible to
label melanocytes manually for training. While the pseudo
ground truth labels are not perfect, it is sufficient to pro-
vide highly accurate annotation given how Sox10 staining
works in skin biopsies. One limitation is that we utilize a
simple U-Net with a ResNet-50 backbone as our generator.
With more recent works studying GANs on histopathology
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images [17, 40], we believe the synthesis features can be
further improved by state-of-the-art GAN models. Another
consideration is that we only evaluate VSGD-Net on the
melanocyte dataset. Although researchers have publicized
some multi-modality medical imaging datasets for image
synthesis study, such as CT-MRI [14], PET-MRI [15], and
H&E-Trichrome staining [16], these datasets do not have
any annotations on lesions or cell-type-of-interest. In the fu-
ture, researchers can add pathologists’ annotations or lever-
age self-supervised learning to overcome these issues.

5. Conclusion

In this study, we introduce a novel virtual staining guided
detection network, VSGD-Net, and investigate cell-type-of-
interest detection with the boost of image synthesis features
between two distinct stainings on the skin biopsy specimen.
During inference, the model can produce promising results
from only the routine H&E staining. Extensive experiments
validate the effectiveness of our method on a corresponding
dataset of melanocytes in H&E and Sox10 stained images.
We anticipate that the proposed method can adapt to a broad
category of different tissue types and diseases.
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[12] Henning Höfener, André Homeyer, Nick Weiss, Jesper
Molin, Claes F. Lundström, and Horst K. Hahn. Deep learn-
ing nuclei detection: A simple approach can deliver state-of-
the-art results. Computerized Medical Imaging and Graph-
ics, 70:43–52, Dec. 2018.

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017.

[14] Cheng-Bin Jin, Hakil Kim, Mingjie Liu, Wonmo Jung,
Seongsu Joo, Eunsik Park, Young Saem Ahn, In Ho Han,
Jae Il Lee, and Xuenan Cui. Deep ct to mr synthesis using
paired and unpaired data. Sensors, 19(10):2361, 2019.

[15] Florian Knoll, Martin Holler, Thomas Koesters, Ricardo
Otazo, Kristian Bredies, and Daniel K Sodickson. Joint mr-
pet reconstruction using a multi-channel image regularizer.
IEEE transactions on medical imaging, 36(1):1–16, 2016.

1925



[16] Joshua J Levy, Nasim Azizgolshani, Michael J Andersen,
Arief Suriawinata, Xiaoying Liu, Mikhail Lisovsky, Bing
Ren, Carly A Bobak, Brock C Christensen, and Louis J
Vaickus. A large-scale internal validation study of unsu-
pervised virtual trichrome staining technologies on nonal-
coholic steatohepatitis liver biopsies. Modern Pathology,
34(4):808–822, 2021.

[17] Hanwen Liang, Konstantinos N Plataniotis, and Xingyu Li.
Stain style transfer of histopathology images via structure-
preserved generative learning. In International Workshop on
Machine Learning for Medical Image Reconstruction, pages
153–162. Springer, 2020.

[18] Dongnan Liu, Donghao Zhang, Yang Song, Fan Zhang, Lau-
ren O’Donnell, Heng Huang, Mei Chen, and Weidong Cai.
Unsupervised instance segmentation in microscopy images
via panoptic domain adaptation and task re-weighting. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4243–4252, 2020.

[19] Lanlan Liu, Michael Muelly, Jia Deng, Tomas Pfister, and Li-
Jia Li. Generative modeling for small-data object detection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6073–6081, 2019.

[20] Shuting Liu, Baochang Zhang, Yiqing Liu, Anjia Han, Hui-
juan Shi, Tian Guan, and Yonghong He. Unpaired stain
transfer using pathology-consistent constrained generative
adversarial networks. IEEE Transactions on Medical Imag-
ing, 40(8):1977–1989, 2021.

[21] Yiming Liu, Pengcheng Zhang, Qingche Song, Andi Li,
Peng Zhang, and Zhiguo Gui. Automatic segmentation of
cervical nuclei based on deep learning and a conditional ran-
dom field. IEEE Access, 6:53709–53721, 2018.

[22] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015.

[23] Johannes Lotz, Nick Weiss, Jeroen van der Laak, and
StefanHeldmann. High-resolution Image Registration of
Consecutive and Re-stained Sections in Histopathology.
arXiv:2106.13150 [cs, eess], June 2021. arXiv: 2106.13150.

[24] Cheng Lu, Muhammad Mahmood, Naresh Jha, and Mrinal
Mandal. Detection of melanocytes in skin histopathologi-
cal images using radial line scanning. Pattern Recognition,
46(2):509–518, Feb. 2013.

[25] Faisal Mahmood, Daniel Borders, Richard J Chen, Gre-
gory N McKay, Kevan J Salimian, Alexander Baras, and
Nicholas J Durr. Deep adversarial training for multi-organ
nuclei segmentation in histopathology images. IEEE trans-
actions on medical imaging, 39(11):3257–3267, 2019.

[26] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen
Wang, and Stephen Paul Smolley. Least squares genera-
tive adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2794–2802,
2017.
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