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Abstract

We propose a novel domain adaptive action detection
approach and a new adaptation protocol that leverages
the recent advancements in image-level unsupervised do-
main adaptation (UDA) techniques and handle vagaries
of instance-level video data. Self-training combined with
cross-domain mixed sampling has shown remarkable per-
formance gain in semantic segmentation in UDA (unsu-
pervised domain adaptation) context. Motivated by this
fact, we propose an approach for human action detection
in videos that transfers knowledge from the source do-
main (annotated dataset) to the target domain (unannotated
dataset) using mixed sampling and pseudo-label-based self-
training. The existing UDA techniques follow a Class-
Mix algorithm for semantic segmentation. However, sim-
ply adopting ClassMix for action detection does not work,
mainly because these are two entirely different problems,
i.e., pixel-label classification vs. instance-label detection.
To tackle this, we propose a novel action instance mixed
sampling technique that combines information across do-
mains based on action instances instead of action classes.
Moreover, we propose a new UDA training protocol that ad-
dresses the long-tail sample distribution and domain shift
problem by using supervision from an auxiliary source do-
main (ASD). For the ASD, we propose a new action de-
tection dataset with dense frame-level annotations. We
name our proposed framework as domain-adaptive action
instance mixing (DA-AIM). We demonstrate that DA-AIM
consistently outperforms prior works on challenging do-
main adaptation benchmarks. The source code is available
at https://github.com/wwwfan628/DA-AIM .

1. Introduction
Over the past few years, we have witnessed tremendous

progress in vision-based action detection[36, 55, 83, 17,
39, 2, 66, 67, 59, 4, 29, 33, 60, 79, 88, 54]. This suc-
cess is largely attributed to the deep neural networks, which
demonstrates superior performance in several computer vi-
sion tasks. However, these networks require expensive
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Figure 1: The above diagram illustrates the two main contribu-
tions of this work. Firstly, We propose a novel instance-based
cross-domain mixed sampling technique designed explicitly for
video-based action detection. Unlike the prior UDA method [74],
which follows a class-based mixed sampling to generate aug-
mented mixed images, our mixed sampling algorithm randomly
samples image patches based on the number of action instances
present in the source frames. The output is a set of mixed frames
containing instances of the source and target domains. Secondly,
we propose to mix auxiliary source domain samples with the pri-
mary source domain to create a new extended source domain. This
is done to address various problems such as long-tail distribution
of the primary source domain, large variability in action instances
across domains.

ground truth annotations to be trained appropriately under
a supervised-learning setup. Particularly, for action detec-
tion, it is highly time-consuming and labor-intensive to gen-
erate such a large amount of annotated data [38, 25, 40, 71].
The main reason is that ground truth labels for both ac-
tion categories and instances are required, i.e. all the ac-
tion instances in a video frame need to be spatially local-
ized using bounding boxes and these boxes are to be labeled

4145



with their respective action categories. As the video dura-
tion, the number of videos and action instances increase,
the annotation cost rises rapidly, making the labeling pro-
cess highly impractical and expensive. One standard ap-
proach to circumvent this issue is to rely on unsupervised
domain adaptation (UDA) [74, 46, 47, 21, 22, 42, 41, 62] in
which knowledge transfer is performed by adapting the net-
work trained with the source domain to the target domain.
The source domain refers to either synthetic data [56, 57]
or publicly available real data [57, 38] for which the ground
truth annotations are available. The target domain refers to
real data for which ground truths are not accessible.

Prior works [16, 90, 45, 53, 69, 87, 82, 9, 52, 15, 7]
mostly focus on domain-adaptive (DA) action recognition
which is a simpler problem than DA action detection as the
former requires only to solve the action classification with-
out considering the much harder instance localization prob-
lem. Agarwal et al. [1] propose a DA action detection ap-
proach in which domain alignments of spatial and temporal
features are performed using GRLs [21]. They introduce
two UDA benchmarks which are limited to only three/four
sports actions. Since there is no standard UDA benchmark
available for action detection, they rely on the sports-related
action classes, which are common across different datasets
(or domains). Moreover, the datasets used in [1] have low
video resolution and are outdated.

In this work, we propose a generic UDA framework that
is not limited to certain action categories and can be used
for a larger set of action classes, e.g. AVA [25]. First, we
consider the train set from the AVA-Kinetics [38] dataset as
our primary source domain. Since AVA-Kinetics is a large-
scale and diversified action detection dataset from YouTube
videos, using it as the source domain would allow the model
to learn meaningful spatiotemporal representation and bet-
ter adaption to the target domain. However, it imposes two
main challenges. Firstly, AVA-Kinetics has a long-tailed
label distribution which biases the model towards certain
action categories, resulting in a poor adaptation of under-
represented classes. Secondly, there is a large variability in
actions (belonging to same action classes) across domains
due to factors like differences in capturing devices, back-
grounds, temporal motion patterns, appearance. To tackle
these problems, we propose to supervise the network using
labeled training samples from an auxiliary source domain
(ASD) (Fig. 1). ASD alleviates the aforementioned prob-
lems by: (a) injecting training samples of under-represented
or missing classes into the source domain, and (b) recreating
the action scenes to resemble the target domain scenes. For
ASD, we create a new action detection dataset with dense
ground truth annotations.

We empirically found that the GRL-based approach
(similar to [1]) does not show any noticeable improvements
in either of our UDA settings (§4.6). Recently, Tranheden

et al. [74] proposed a UDA method for semantic segmenta-
tion, which exhibits superior performance in semantic seg-
mentation task. Their method generates augmented training
images following a cross-domain mixed sampling (CDMS)
technique. CDMS is suitable for pixel-level prediction
(or segmentation) tasks. However, for instance-level (or
bounding-box) prediction like action detection, CDMS fails
to generate meaningful training samples since these two are
entirely different problems, i.e., pixel-label classification
vs. instance-label detection. To tackle this issue, we pro-
pose a novel action-instance-based mixed sampling tech-
nique that combines information across domains based on
action instances present in the source domain. For source-
to-target knowledge transfer, we adapt the Mean Teacher
based self-training [73]. We name our proposed UDA
framework as DA-AIM (domain-adaptive action instance
mixing) (Fig. 1). We are the first to propose a DA action de-
tection framework based on cross-domain mixed sampling
and self-training. We implement and compare with three
state-of-the-art approaches and achieve best results on dif-
ferent UDA benchmarks. We will publish our code and re-
lease two new (In-house) dataset used in this work.

2. Related Works
Action Detection is a more challenging problem [19, 88,
67] compared to action recognition [65, 6] problem due
to the additional requirement for localisation of actions
in a large spatial-temporal search space. Supervised ac-
tion detection methods [79, 67, 33, 43, 88, 54] has made
large strides thanks to large scale datasets like UCF24 [71],
AVA [25] and MultiSports [40]. Most of current ap-
proaches follow key-frame based approach popularised by
SlowFast [19]. There has been more sophisticated ap-
proaches, e.g. based on actor-context modelling [10, 54],
on long-term feature banks [80, 72], and on transformer
heads [88, 44]. We will make use of key-frame based
SlowFast [19] network as our default action detector be-
cause of it’s simplicity, competitive performance, and re-
producible code base provided on pySlowFast [18], which
can be easily extended to include transformer architectures,
such as MViTv2 [44]. Apart from fully-supervised meth-
ods, there has also been works on pointly-supervised [49]
or semi-supervised [36] settings.
Unsupervised Domain Adaptation. The effectiveness of
UDA techniques has been studied in different vision tasks
including image classification, object detection, seman-
tic segmentation, action recognition and detection. [21,
26, 46, 51, 58, 64, 76] propose methods to tackle DA
image classification. DA object detection is studied by
[61, 12]. Most DA semantic segmentation methods are
based on either adversarial training or self-training. Adver-
sarial training follows a GAN framework [22, 24] to aligns
the source and target domains feature distributions at in-
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Figure 2: Overview of the proposed DA-AIM framework. The basic building blocks of DA-AIM are (a) training sample mixing, (b) frame
mixing, (c) label mixing, and (d) self-training. (a) We first generate an extended (extd.) source domain by mixing training examples of
the primary and auxiliary source domains. (b) Next, the frame mixing module generates augmented video frames (or mixed frames) by
mixing action instances of the source frame with the target frames. During mixing, spatial and temporal information are considered due
to the inherent spatiotemporal nature of actions. The source and mixed frames are then fed to a deep neural network (called the student
network). The student network is optimized with action classification losses. Ground truth labels are used to penalize wrong predictions on
source frames, and pseudo-labels are used to provide supervision on the mixed frames. (c) Since the mixed frames contain image patches
from both source and target domains, the label mixing module generates pseudo-labels based on the inputs from ground truth labels and
the teacher network predictions. (d) The teacher network is initialized with the parameters of the student network. Its parameters are
non-trainable and updated as the exponential moving average of the parameters of the student network.

Source domain video clip

Target domain video clip

Source domain mask
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Mixed video clip

Figure 3: The above diagram illustrates the proposed action-
instance-based (AIM) cross-domain mixed sampling.

put [23, 27], output [75, 77], patch [13], or feature level
[28, 75]. In self-training, the supervision for target domain
comes from pseudo-labels [37] which can be computed of-
fline [63, 84, 91, 92] or online [74, 78, 30]. Consistency
regularization [68, 73] or label prototypes [86] formulated
on CDMS [74, 89] or data augmentation [3, 14, 48] are used
to address training instabilities. In this work, we use on-
line self-training and consistency regularization based on
CDMS. Unlike [74, 78, 30, 89], which tackle image-based
DA semantic segmentation, we address a video-based DA
action detection. [74, 78, 30, 89] use semantic class based
CDMS which show poor results in action detection. We
propose a novel action instance-based CDMS specifically
designed to facilitate video-based action detection.

Mixed sampling. Within-domain and cross-domain mix-
ing have been widely studied for image-based problems
[85, 5, 20, 11, 74]. Despite the effectiveness of these algo-
rithms on the image-based problems, mixed sampling has
not been studied for video understating tasks. We are the
first to propose a novel instance-based CDMS for video ac-
tion detection.
DA action recognition and detection. There are several
methods proposed for single-modal (RGB) [7, 15, 31, 53]
or multi-modal (RGB, flow) [52, 70, 35] DA action recog-
nition. [9, 8] propose methods for DA action segmentation.
We found only one work [1] that addresses DA action detec-
tion using GRL-based adversarial training. [1] propose two
UDA benchmarks limited to sports actions. This work has
two major limitations. Their proposed UDA setup does not
address the long-tail and large variability problems (see §1),
and the proposed GRL-based adaptation shows a poor gen-
eralization in a UDA setting where the source domain has a
long-tailed distribution, and the class-specific actions have
large variations across domains. In contrast, our approach
addresses these limitations by proposing a new UDA frame-
work in which these problems are alleviated using an aux-
iliary source domain and a more effective instance-based
CDMS and pseudo-labeling techniques.

3. Methodology
In this section, we will introduce the proposed DA-AIM

framework. DA-AIM (Fig. 2) can be decomposed into two
main steps, namely action-instance-based CDMS (cross-
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Figure 4: Frames need to be downscaled if source domain’s ac-
tion instance area takes up more than half of the entire frame area.
Bounding boxes and the mask are correspondingly adjusted to fit
into the resized frames. White represents 1 and black represents 0.

domain mixed sampling) and self-training.

3.1. Action-instance-based CDMS

Fig. 3 illustrates the proposed Action-Instance-based
cross-domain Mixed sampling (AIM). Given video clips
from the source and target domains, and the correspond-
ing ground truth annotations (i.e., the bounding boxes and
their class labels) of the source frames, we randomly sam-
ple half of the action instances from the source frame. Since
the bounding boxes are created only for the key-frames lo-
cated in the middle of the clips, considering fast moving
actions such as running, we expand each bounding box by
20% when creating the source domain mask. The 3D source
domain mask M ∈ {0, 1}T×W×H is constructed by repli-
cating the 2D mask of the key-frame Mk ∈ {0, 1}W×H in
the temporal axis, where Mk is a binary matrix containing
1 for regions where the selected source instance is present
and 0 otherwise. only at the places Our mixed video clips
can be obtained through:

xM = M ⊙ xS + (1−M)⊙ xT , (1)

where xM , xS , xT ∈ RT×W×H represent the mixed video
clip, input source and target video clips respectively.

Note that often the videos from the source domain (Ki-
netics) contain action instances which take most of the im-
age regions, i.e., the instance bounding box has a large spa-
tial overlap with the entire image region. If such a video clip
is used for CDMS without action instance resizing, it might
lead to imbalance in information across domains. That is,
the mixed frames might mostly be occupied with source do-
main action regions, and there would be too little target re-

gions visible. To address this imbalance issue, we propose
to first resize the large action instance in the source frame
and then paste it onto the target frame (Fig. 4). More specif-
ically, if the source action instance area takes up more than
half of the entire area of the mixed frame, we will down-
scale the source domain frames by factor 0.5 before mix-
ing. Bounding boxes and the mask are correspondingly ad-
justed to align with the resized video clip. Given bounding
boxes as a tuple (x1, y1, x2, y2), where (x1, y1) corresponds
to the top left corner and (x2, y2) corresponds to the bot-
tom right corner, and H , W are the height and width of the
video frames, coordinates of bounding boxes after resizing
(x′

1, y
′
1, x

′
2, y

′
2) can be expressed as:

x′
1 = [W4 ] + [x1

2 ], y′1 = [H4 ] + [y1

2 ] (2)

x′
2 = [W4 ] + [x2

2 ], y′2 = [H4 ] + [y2

2 ] (3)

where [·] indicates the rounding function to find the near-
est integer. The empty borders after resizing are filled with
0. Since target domain action instances might be covered
by source domain action instances after mixing, bounding
boxes and labels can not be simply concatenated. Due to
the possibility of lacking important information to identify
the action, if a bounding box from target domain overlaps
with any pasted bounding boxes from source domain more
than 40% of its area, it is discarded and not included in the
loss computation.

3.2. Self-training for UDA

We follow Mean Teacher [73] method for self-training.
More formally, the weights of the student network at train-
ing step t is defined as θt and the weights of the teacher net-
work as θ′t. At each training step t, weights of the teacher
network θ′t are updated according to Eq.4

θ′t = αθ′t−1 + (1− α)θt, (4)

where α is a smoothing coefficient. In this work, we fo-
cus on exclusive actions, which means those actions can not
be done at the same time. Consequently, the problem is a
single-label classification problem. Hence, the pseudo-label
of an action instance is the action class obtaining highest
confidence score from the current teacher model.

3.3. Training Optimization

In DA-AIM, the student network parameters θ are
trained by minimizing the following loss:

argmin
θ
L(θ) = argmin

θ
E
[
H
(
fθ(XS , BS), YS

)
+

λH
(
fθ(XM , BM ), YM

)] (5)

where the expectation is over batches of random variables
XS , BS , YS , XM , BM and YM . Video clips in XS are
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sampled uniformly from the source domain distribution, BS

and YS are the corresponding bounding boxes and labels.
Furthermore, XM is the new mixed video clips, BM and
YM are mixed bounding boxes and mixed labels. As we
focus on exclusive actions and formulate the problem as
single-label classification, we use cross-entropy loss H . λ
is a hyper-parameter that decides how much the unsuper-
vised part of the loss affects the overall training. Adapted
from [74], we use an adaptive schedule for λ, where it is the
proportion of instances in the whole unlabeled instances in
the mixed video clip, of which the predictions have a confi-
dence above a certain threshold.

3.4. DA-AIM Algorithm

The overall DA-AIM algorithm is summarized in Alg.1.
The source-domain and target-domain datasets are referred
to as DS and DT . A batch of video clips, bounding boxes
and labels, XS , BS and YS , is sampled from DS , and an-
other batch of video clips, XT from DT . B̂T represents
bounding boxes of target domain video clips estimated by a
pre-trained person detector. The unlabeled video clips XT

and bounding boxes B̂T are firstly fed to the teacher net-
work fθ′ , from which pseudo-labels ŶT are obtained. Then,
the augmented video clips XM are created by mixing XS

and XT .The pseudo-labels YM and bounding boxes BM

are correspondingly constructed by mixing YS , ŶT and BS ,
B̂T . Start from here, the algorithm resembles a supervised
learning approach and the process is repeated for a prede-
termined amount of iterations N .

4. Experiments and Results
4.1. Datasets

We use four datasets in our experiments: AVA [25],
AVA-Kinetics [38], and two in-house labelled datasets,
namely InHouseDataset-1 (IhD-1) and InHouseDataset-2
(IhD-2). In this section, we will briefly introduce them and
describe how we use them to fit our experiment settings.
AVA [25]: is a dataset with atomic visual action and consists
of 430 densely annotated 15-minute video clips with 80 vi-
sual actions. In total, roughly 1.62M action annotations are
provided with the possibility that multiple annotations are
made for one action instance, i.e. each action instance can
perform multiple actions at the same time. We use version
v2.2 of the annotation files throughout this work. In our ex-
periments, we use AVA as one of the target domain when
source domain is AVA-Kinetics
AVA-Kinetics [38]: annotates more than 200k videos from
Kinetics-400 [34] dataset with AVA action classes and
bounding boxes in one key-frame per 10 seconds long
video. The main reason for using AVA-Kinetics as primary
source domain is that it comes from YouTube and have high
diversity compared to AVA which comes from movie clips.

Algorithm 1 DA-AIM Algorithm

Input: DS , DT (source and target domains),
fθ′ , fθ, θ′, θ (teacher, student nets and parameters),
dp (pretrained person detector).

Output: fθ (trained student net).
1: Initialize θ and θ′ with MiT pretrained weights.
2: for t← 1, 2, ..., N do
3: Randomly sample mini-batches:

(XS , BS , YS) ∼ DS , (XT ) ∼ DT .
4: Compute bounding boxes: B̂T ← dp(XT ).
5: Compute pseudo-labels:

ŶT ← argmax
(
fθ′(XT , B̂T )

)
.

6: Generate mask M for mixed sampling.
7: Generate the mixed video XM :

XM ←M ⊙XS + (1−M)⊙XT .
8: Compute pseudo-labels YM , and

bounding boxes BM for XM :
YM ← CDMS(YS , ŶT ),
BM ← CDMS(BS , B̂T ).

9: Forwards pass of student net fθ:
ŶS ← fθ(XS , BS), ŶM ← fθ(XM , BM ).

10: Compute cross-entropy losses:
ℓ = LS(ŶS , YS) + LM(ŶM , YM ).

11: Compute gradient∇θℓ by backpropagation.
12: Optimize θ with stochastic gradient descent.
13: Update θ′ using EMA (exponential moving average):

θ′t = αθ′t−1 + (1− α)θt.
14: end for
15: return fθ

In-House Datasets: we build two in-house datasets us-
ing two different scenes. One dataset is recorded in public
place with different views of the scene while actors perform
one or more actions from action list at a given time. The
other dataset is recorded at a private facility to which ac-
cess is permitted only for limited time and actors are dif-
ferent from former setup due to strict regulations. Going
forward, former is named as In-House-Datasets-1 (IhD-1).
and later (IhD-2). Both of these dataset contain three ex-
tra classes than AVA-Kinetics or AVA datatset, namely,
‘carry-bag’, ‘drop-bag’, and ‘leave-bag-unattended’. We
will make these datasets publicly available along with the
training and evaluation code upon the acceptance of paper.

4.2. Dataset Sampling

We reduce large-scale datasets because of three reasons:
(1) action classes needs to be matched to target domain class
set, (2) for fair comparison with smaller datasets, (3) for
the sake of time and resource consumption. To reduce the
large-scale primary source domain dataset (AVA-Kinetics)
we set 5000 as the maximum number of training samples for
each action class. For the case of insufficient training sam-
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Table 1: Overall statistics of datasets used in our experiments. Each sub dataset from large-scale datasets is constructed based
on number of classes in target domain and 5k limit on number of samples of any of the given classes.

AVA AVA-Kin IhD-2 AVA-Kin IhD-1 IhD-2
Train Val Train Val Train Val Train Val Train Val Train Val

Num.of classes 6 6 3 3 8 8

Annotations 28,281 89,481 29,009 27,173 441 339 6,686 1,920 18,123 3,415 21,919 3,468
Unique boxes 28,281 89,481 29,009 27,173 441 339 6,686 1,920 18,114 3,415 21,843 3,442
Key-frames 14,248 48,741 15,453 19,205 441 339 6,115 1,779 16,881 2,695 13,974 2,753

Videos 235 64 15,453 19,205 12 7 6,115 1,779 28 7 34 8

Table 2: Ablation study: impact of each operation/module introduced in our DA-AIM framework for action detection.
Specifically, impact of resizing (resize), pseudo-labeling (pLabel), and instance-mixing (iMix) modules is shown below.

Operations AVA-Kinetics→ AVA AVA-Kinetics→ IhD-2
resize pLabel iMix bend/bow lie/sleep run/jog sit stand walk mAP touch throw take a photo mAP

33.66 54.82 56.82 73.70 80.56 75.18 62.46 34.12 32.91 27.42 31.48
✓ 30.74 56.20 55.09 73.53 80.84 72.44 61.47 29.97 28.10 29.82 29.30

✓ 33.07 55.87 60.69 72.51 79.43 73.05 62.44 33.00 29.79 29.26 30.68
✓ ✓ 34.65 56.50 60.19 70.80 79.17 74.75 62.68 32.27 32.48 30.37 31.71

✓ ✓ 32.18 57.70 59.42 74.03 80.73 74.38 63.07 33.67 38.06 32.83 34.85
✓ ✓ ✓ 33.79 59.27 62.16 71.67 79.90 75.13 63.65 34.38 35.65 39.84 36.62

ples owing to the class imbalance inside large scale datasets,
the highest possible number of samples from that class will
be taken. Regarding validation datasets, there is no restric-
tion on the amount of samples, i.e. we use all the samples
from those specific action classes mentioned above during
the validation. Overall statistics of datasets used in our ex-
periments is provided in Tab.1. Table contains the statistics
of each subset according to the number of target domain
classes used in our experiments. More details can be found
in the supplementary material. Auxiliary source domain
is introduced either when primary source domain does not
contain one or more target domain classes or when primary
source domain needs help from auxiliary source domain.

4.3. Baseline and Implementation details

We implement SlowFast [19] with the help of
pySlowFast [18] as our supervised baseline on both source
and target domain. All of the methods presented in this
work uses SlowFastR50 [19] model as backbone model for
fair comparison. Since, we use AVA-Kinetics videos as pri-
mary source domain, we do not want to show undue bias
towards Kinetics [34] dataset, we pretrain SlowFastR50 for
video classification task on MiT dataset [50]. Mean Av-
erage Precision (mAP) is used as metric to indicate overall
performance of various domain adaptation (DA) techniques.
We use Stochastic Gradient Descent (SGD) with Nesterov
acceleration, and a base learning rate of 1× 10−2 for base-

(a) Pseudo-Labeling (alone) (b) DA-AIM

Figure 5: Confusion matrix of pseudo-labels at the end of training
for AVA-Kinetics →AVA setup. (a, left) Pseudo-labeling alone for
UDA (b, right) Pseudo-labeling within our DA-AIM.

line experiments while 1.25×10−2 for others, which is then
decreased using cosine scheduler with final learning rate
equal to 1/100 of base learning rate. Warm-up lasts 1 epoch
and starts from 1/10 of base learning rate. Weight decay is
set to 1×10−7 and momentum to 0.9. For AVA-Kinetics→
AVA experiments, we train on 4 GPUs with batch size 24 for
6 epochs, for all other setups (e.g. AVA-Kinetics→ IhD-2),
we use batch size 8 and train on 2 GPUs for 4 epochs.

4.4. Ablation Studies

We also conduct ablation study to investigate the ef-
ficacy of different components of our proposed DA-AIM
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Table 3: Evaluation results with IhD-2 dataset as target domain with different source domains.

Source domain DA-AIM carryBag dropBag leaveBag stand take a photo throw touch walk mAP

IhD-2 (oracle) ✗ 54.83 54.61 28.54 99.99 99.48 100.0 27.17 85.25 68.73

AVA-Kin ✗ 37.54 7.36 1.14 90.72 96.28 68.40 2.02 88.18 48.96
AVA-Kin ✓ 39.97 9.42 1.26 86.04 83.71 76.88 2.08 89.83 48.65
IhD-1 ✗ 18.06 3.12 0.99 93.17 98.31 98.62 4.18 76.04 49.06
IhD-1 ✓ 27.75 7.47 1.16 94.88 99.26 97.94 2.70 81.86 51.63
AVA-Kin+IhD-1 ✗ 23.44 3.13 1.09 97.46 99.30 98.65 3.72 77.21 50.50
AVA-Kin+IhD-1 ✓ 42.27 2.77 1.16 93.45 98.73 99.01 7.55 74.89 52.48

method. We perform ablation study on two setups setups,
AVA-Kinetics→ AVA and AVA-Kinetics→ IhD-2. Results
of the same can be found in Tab. 2. Clear message from
the above table is that we need to have all the component in
place to gain substantial improvement.

Cross-domain instance mixing (iMix) itself can barely
promote the model to learn from target domain, as seen in
row 3-5 of Tab. 2. Since mixing only utilizes the ground-
truth labels to compute final loss, which makes the loss rely
heavily on the contents from source domain while contents
from target domain only have few impact.

Pseudo-labeling worsen the performance on both source
and target domain compared to baseline experiment without
any of other DA techniques (see row 2 Tab 2). We observe
that the pseudo-labels created by the teacher network tend
to be biased towards easy-to-predict classes. Fig.5 (a) illus-
trate the confusion matrices of pseudo-labels created dur-
ing the last epoch of training. In AVA-Kinetics → AVA
experiment pseudo-labels bias towards class sit. Similar
phenomenon is identified in earlier works applying pseudo-
labelling to UDA for semantic segmentation tasks [91, 74].

The above mentioned drawbacks of cross-domain in-
stance mixing and pseudo-labeling can be redressed by in-
tegration with resizing. Taking pseudo-labels into consid-
eration during loss computation push the network to learn
domain-invariant features that apply to target domain clas-
sification as well. On the other hand, replacing parts of the
pseudo-labels by parts of the ground-truth labels incredibly
addresses the bias issue of pseudo-labels. The confusion
matrices of pseudo-labels created by DA-AIM are present
in Fig.5 (b). We observe similar trend in AVA-Kinetics→
IhD-2 as well, which we can see in Tab. 2, confusion matrix
is provided in the supplementary material.

Resizing is one the important injection into DA-AIM. We
verify by comparing results of cross-domain instance mix-
ing (row 3 to row 4) and DA-AIM with and without resizing
(row 5 and row 6) that resizing can actually enhance perfor-
mance on target domain.

4.5. Need for Auxiliary Source Domain

Here we discuss the need for an auxiliary source do-
main. We need an auxiliary source domain to account for
under-represented or missing classes in the primary source
domain. It can be observed in Tab. 3, under-represented
classes such as ‘take photo’, ‘throw’ and ‘touch’ are highly
benefited by the auxiliary source domain supervision. Note
the maximum performance gain (52.48 mAP) is achieved
by the model (AVA-Kin+IhD-1), which learns meaningful
representations from both primary and auxiliary source do-
mains for adaptation.

4.6. Comparison to State-of-the-art

Here, we compare our DA-AIM with state-of-the-art
approaches in Table 4 without adding auxiliary domain.
First, we briefly describe each approach, ‘baseline’ is where
SlowFast is trained only on given source domain and tested
on target domain. Next, We implement and evaluate four
UDA strategies on our datasets: self-supervised learning
with rotation prediction (Rotation) [32] or clip-order pre-
diction (Clip-order) [81], adversarial learning with gradient
reversal layer (GRL) [1, 21] and our DA-AIM framework.

DA-AIM outperforms other DA techniques on target do-
main for both AVA-Kinetics → AVA and AVA-Kinetics
→ IhD-2 benchmarks. Since, our evaluation bench-
mark are more challenging that of presented in [1],
their GRL based approach fails to make any gains (see
row second-last in Tab. 4). Simple adaption of image-
level approach simply fails in challenging video based
unsupervised domain adaptatio action detection, same can
be observed in ablation study Section 4.4, where simple
adaption of pseudo-labeling fails.

It is important to note that, our DA-AIM consistently
improve over other approaches, especially in under repre-
sented classes, e.g. ‘lie/sleep’ and ‘take a photo’. DA-AIM
achieves 63.65 mAP on target domain AVA-Kinetics →
AVA benchmark compared with 62.46 mAP of baseline ex-
periment. The improvements of average precision for class
lie/sleep and class run/jog are more than 5%. Meanwhile on
AVA-Kinetics→ IhD-2 benchmark, DA-AIM increases the
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Table 4: Comparison with state-of-the-art methods for UDA. DA-AIM is trained without the supervision of the auxiliary
source domain. The “source-only” model is trained on the source domain and evaluated on the target domain without any
adaptation. The “oracle model” is trained and evaluated on the target domain.

AVA-Kinetics→ AVA AVA-Kinetics→ IhD-2
Method bend/bow lie/sleep run/jog sit stand walk mAP touch throw take a photo mAP

Oracle model 36.34 67.49 57.74 75.61 84.64 79.26 66.84 37.91 51.76 45.38 45.02

Source-only model 33.66 54.82 56.82 73.70 80.56 75.18 62.46 34.12 32.91 27.42 31.48
Rotation [32] 25.53 58.86 55.05 72.42 79.84 68.49 60.03 30.12 34.58 25.39 30.03
Clip-order [81] 28.24 57.38 56.90 69.54 77.10 74.68 60.64 28.28 32.30 29.93 30.17
GRL [1, 7, 21] 24.99 48.41 59.89 68.68 78.79 71.38 58.69 25.79 39.71 28.90 31.46
DA-AIM (ours) 33.79 59.27 62.16 71.67 79.90 75.13 63.65 34.38 35.65 39.84 36.62

mAP from 31.48 of baseline experiment to 36.62. There,
the improvements of average precision for class take a
photo exceeds 10%.

Incorrect pred. touch Correctly predicted: take photo

Baseline w/o DA DA-AIM

Correctly predicted: bend/bowIncorrectly predicted bend/bow as sit

Incorrect prediction touch Correct prediction take photo

touch take photo

sit

sit sit sit
sit

sit

sit

Incorrect prediction sit

sit

sit sit sit
sit sit

sit

sit sit sit
sit

bend or bow (at the waist)

sit

Correct prediction bend or bow

sit

sit sit sit
sit sit

Correct predictions

stand stand

walk

Correct predictions

stand stand

walk

Baseline (without DA) DA AIM (ours)

Figure 6: Qualitative results illustrated on key-frames.

Qualitative results: are also provided from our experi-
ments in Fig.6. It shows examples where DA-AIM can
identify difficult classes that baseline fails to do or DA-AIM
obtains much better confidence scores.
Limitations: there remain limits to be removed and open
questions to be answered. We didn’t consider action classes

involving more than one action instances at the same time,
such as class talking. This limit can be removed by treat-
ing those action classes particularly during mixing. More-
over, there is still great potential to improve the current per-
formance of DA-AIM. For example, we pasted the action
tubes at exactly the same position as it located in the origi-
nal video clips. If introducing randomness of the pasted po-
sitions, there is chance to further avoid overlapping. Over-
sampling minority classes during mixing may also enhance
the performance, especially when datasets are imbalanced.

5. Conclusions
We are the first to propose a DA action detection frame-

work based on cross-domain mixed sampling and self-
training. We implemented and systematically analyzed the
efficacy of various domain adaptation strategies including
self-supervised learning, adversarial learning, self-training
and naive cross-domain video mixing. More importantly,
we proposed DA-AIM, a novel algorithm tailored for unsu-
pervised domain adaptive action detection. DA-AIM con-
siders the inherent characteristics of action detection and
mixes 3D video clips, bounding boxes and labels (ground-
truth or pseudo-labels) from source and target domain rea-
sonably. We empirically demonstrated DA-AIM beat other
DA techniques on two challenging benchmarks: Kinetics
→ AVA and Kinetics → IhD-2. Compared with baseline
experiment without DA techniques, DA-AIM gives rise to
an increase of mAP by 1.2% on Kinetics → AVA bench-
mark and 5.2% on Kinetics→ IhD-2 benchmark. Average
precision of class take a photo improves over 10%. In addi-
tion, we introduced the concept of auxiliary source domain.
ASD domain not only help to improve the performance of
DA-AIM on classes that are missing in primary source do-
main but also help other under-represented classes in long-
tailed primary source domain.
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